1
|
Li W, Song Q, Li M, Yuan Y, Zhang J, Wang N, Yang Z, Huang J, Lu J, Li X. Chemical Heterointerface Engineering on Hybrid Electrode Materials for Electrochemical Energy Storage. SMALL METHODS 2021; 5:e2100444. [PMID: 34927864 DOI: 10.1002/smtd.202100444] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 06/14/2023]
Abstract
The chemical heterointerfaces in hybrid electrode materials play an important role in overcoming the intrinsic drawbacks of individual materials and thus expedite the in-depth development of electrochemical energy storage. Benefiting from the three enhancement effects of accelerating charge transport, increasing the number of storage sites, and reinforcing structural stability, the chemical heterointerfaces have attracted extensive interest and the electrochemical performances of hybrid electrode materials have been significantly optimized. In this review, recent advances regarding chemical heterointerface engineering in hybrid electrode materials are systematically summarized. Especially, the intrinsic behaviors of chemical heterointerfaces on hybrid electrode materials are refined based on built-in electric field, van der Waals interaction, lattice mismatch and connection, electron cloud bias and chemical bond, and their combination. The strategies for introducing chemical heterointerfaces are classified into in situ local transformation, in situ growth, cosynthesis, and other strategy. The recent progress about the chemical heterointerfaces engineering specially focusing on metal-ion batteries, supercapacitors, and Li-S batteries are introduced in detail. Furthermore, the classification and characterization of chemical heterointerfaces are briefly described. Finally, the emerging challenges and perspectives about future directions of chemical heterointerface engineering are proposed.
Collapse
Affiliation(s)
- Wenbin Li
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Qianqian Song
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Matthew Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yifei Yuan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jianhua Zhang
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Ni Wang
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Zihao Yang
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jianfeng Huang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xifei Li
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Center for International Cooperation on Designer Low-Carbon and Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
2
|
Zhang L, Qin X, Zhao S, Wang A, Luo J, Wang ZL, Kang F, Lin Z, Li B. Advanced Matrixes for Binder-Free Nanostructured Electrodes in Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908445. [PMID: 32310315 DOI: 10.1002/adma.201908445] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/09/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Commercial lithium-ion batteries (LIBs), limited by their insufficient reversible capacity, short cyclability, and high cost, are facing ever-growing requirements for further increases in power capability, energy density, lifespan, and flexibility. The presence of insulating and electrochemically inactive binders in commercial LIB electrodes causes uneven active material distribution and poor contact of these materials with substrates, reducing battery performance. Thus, nanostructured electrodes with binder-free designs are developed and have numerous advantages including large surface area, robust adhesion to substrates, high areal/specific capacity, fast electron/ion transfer, and free space for alleviating volume expansion, leading to superior battery performance. Herein, recent progress on different kinds of supporting matrixes including metals, carbonaceous materials, and polymers as well as other substrates for binder-free nanostructured electrodes in LIBs are summarized systematically. Furthermore, the potential applications of these binder-free nanostructured electrodes in practical full-cell-configuration LIBs, in particular fully flexible/stretchable LIBs, are outlined in detail. Finally, the future opportunities and challenges for such full-cell LIBs based on binder-free nanostructured electrodes are discussed.
Collapse
Affiliation(s)
- Lihan Zhang
- Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Tsinghua Shenzhen International Gradute School, Tsinghua University, Shenzhen, 518055, China
- Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xianying Qin
- Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Tsinghua Shenzhen International Gradute School, Tsinghua University, Shenzhen, 518055, China
| | - Shiqiang Zhao
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aurelia Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jun Luo
- Center for Electron Microscopy, TUT-FEI Joint Laboratory, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Feiyu Kang
- Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Tsinghua Shenzhen International Gradute School, Tsinghua University, Shenzhen, 518055, China
- Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Baohua Li
- Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Tsinghua Shenzhen International Gradute School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Zhan D, Wen T, Li Y, Zhu Y, Liu K, Cui P, Jia Z, Liu H, Lei K, Xiao Z. Using Peanut Shells to Construct a Porous MnO/C Composite Material with Highly Improved Lithium Storage Performance. ChemElectroChem 2020. [DOI: 10.1002/celc.201901811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dan Zhan
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and DevicesHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 P. R. China
- Hubei Key Laboratory of Power System Design and Test for Electrical VehicleHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 P. R. China
- Department of Food Science&Chemical EngineeringHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 PR China
| | - Tao Wen
- Department of Food Science&Chemical EngineeringHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 PR China
| | - Yuqi Li
- Department of Food Science&Chemical EngineeringHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 PR China
| | - Yuqing Zhu
- Department of Food Science&Chemical EngineeringHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 PR China
| | - Ke Liu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and DevicesHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 P. R. China
| | - Ping Cui
- Department of Food Science&Chemical EngineeringHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 PR China
| | - Zhiyong Jia
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and DevicesHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 P. R. China
- Hubei Key Laboratory of Power System Design and Test for Electrical VehicleHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 P. R. China
| | - Huajun Liu
- Department of Food Science&Chemical EngineeringHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 PR China
| | - Kelin Lei
- Department of Food Science&Chemical EngineeringHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 PR China
| | - Zuoan Xiao
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and DevicesHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 P. R. China
- Hubei Key Laboratory of Power System Design and Test for Electrical VehicleHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 P. R. China
- Department of Food Science&Chemical EngineeringHubei University of Arts and Science No. 296, Longzhong Road Xiangyang 441053 PR China
| |
Collapse
|