1
|
Long Y, Zhu X, Gao C, Si W, Li J, Peng Y. Modulation of Co spin state at Co 3O 4 crystalline-amorphous interfaces for CO oxidation and N 2O decomposition. Nat Commun 2025; 16:1048. [PMID: 39865077 PMCID: PMC11770148 DOI: 10.1038/s41467-025-56487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025] Open
Abstract
Modulation of electronic spin states in cobalt-based catalysts is an effective strategy for molecule activations. Crystalline-amorphous interfaces often exhibit unique catalytic properties due to disruptions of long-range order and alterations in electronic structure. However, the mechanisms of molecule activation and spin states at interfaces remain elusive. Herein, we present a Co3O4 spinel-based catalyst featuring crystalline-amorphous interfaces. Characterization analyses confirm that tetrahedral Co2+ is selectively etched from bulk spinel, forming amorphous CoO islands on the surface. The resultant symmetry breaking in the coordination field induces a reconstruction of the Co3+ 3 d orbitals, leading to high-spin states. In CO oxidation, the interface serves as novel active sites with a lower energy barrier, facilitated by lattice oxygen activation. In N2O decomposition, the interface promotes reassociation of dissociated oxygen through quantum spin exchange interactions. This work provides a straightforward approach to modulating the spin state of interfaces and elucidates their role in molecule activations.
Collapse
Affiliation(s)
- Yunpeng Long
- School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiao Zhu
- School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Chuan Gao
- School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenzhe Si
- School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Junhua Li
- School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Yue Peng
- School of Environment, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
2
|
Sheng S, Fu J, Song S, He Y, Qian J, Yi Z. Enhanced electron transfer for activation of peroxymonosulfate via MoS 2 modified iron-based perovskite. ENVIRONMENTAL TECHNOLOGY 2024; 45:1092-1108. [PMID: 36250403 DOI: 10.1080/09593330.2022.2137438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The increasing use of fluoroquinolone antibiotics, which are found in various environmental media, is a constant threat to ecological safety and human health. In this paper, SrFeO3@MoS2 heterogeneous catalyst was prepared to activate peroxymonosulfate (PMS) for the degradation of levofloxacin (LVO). The characteristics of SrFeO3@MoS2 samples were studied and the optimum conditions for the removal of LVO by SrFeO3@MoS2/PMS system were investigated. The removal of LVO by the SrFeO3@MoS2-0.3/PMS system could reach 96.06% within 20 min of reaction. The effect of inorganic anions (SO42-, Cl-, NO3- and H2PO4-) commonly found in actual water bodies on catalytic reaction was explored. The reusability investigation revealed that the catalyst could still remove 88.06% of LVO within 20 min after four cycles. Moreover, SO4•-, •OH and 1O2 were identified by Electron Paramagnetic Resonance (EPR) tests and scavenger experiments, where the SO4•- and •OH were dominant reactive species. Combining with the XPS characterisation, the activation mechanism of SrFeO3@MoS2-0.3/PMS was proposed, and the oxygen vacancies and transition metals on the sample surface were active sites of PMS activation. Furthermore, the possible degradation pathways of LVO were well-established based on the detected intermediates.
Collapse
Affiliation(s)
- Sheng Sheng
- PowerChina Huadong Engineering Corporation Limited, Hangzhou, People's Republic of China
| | - Jingjing Fu
- PowerChina Huadong Engineering Corporation Limited, Hangzhou, People's Republic of China
| | - Siyuan Song
- PowerChina Huadong Engineering Corporation Limited, Hangzhou, People's Republic of China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| | - Ziyang Yi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, People's Republic of China
- College of Environment, Hohai University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Weng Z, Liu L, Hu Y, Wei Y, Da P, Wu Z, Mu Z, Xi P, Yan CH. Significance of Engineering the MnO 6 Octahedral Units to Promote the Oxygen Reduction Reaction of Perovskite Oxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311102. [PMID: 38100677 DOI: 10.1002/adma.202311102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The electronic structure and geometric configuration of catalysts play a crucial role to design novel perovskite-type catalysts for oxygen reduction reaction (ORR). Nowadays, many studies are more concerned with the influence of electronic structure and ignore the geometric effect, which plays a nonnegligible role in enhancing catalytic performances. Herein, this work regulates the MnO6 octahedral tilting degree of LaMnO3 by modulating the concentration of Y3+ , excluding the electronic effect from the valence state of manganese. Plotting the MnO6 octahedral tilting degree as a function of concentration of Y3+ produces a volcano-shaped plot. The octahedral tilting can reduce the Mn-O covalency, generating more highly active Mn3+ and oxygen vacancies during ORR process. The specific activity has a positive correlation with octahedral tilting degree. Meanwhile, the octahedral tilting stabilizes Mn-O interactions during ORR process and promote stability. Based on experimental results and DFT calculations, octahedral tilting alters the rate-determining step (RDS) and decrease the energy barrier. Subsequent extended experiment confirms that octahedral tilting is the key factor to affect the catalytic performances.
Collapse
Affiliation(s)
- Zheng Weng
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Luohua Liu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yicheng Wei
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zelong Wu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhaori Mu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Fu K, Chen W, Jiang F, Chen X, Liu J. Research Progress of Perovskite-Based Bifunctional Oxygen Electrocatalyst in Alkaline Conditions. Molecules 2023; 28:7114. [PMID: 37894593 PMCID: PMC10608921 DOI: 10.3390/molecules28207114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
In light of the depletion of conventional energy sources, it is imperative to conduct research and development on sustainable alternative energy sources. Currently, electrochemical energy storage and conversion technologies such as fuel cells and metal-air batteries rely heavily on precious metal catalysts like Pt/C and IrO2, which hinders their sustainable commercial development. Therefore, researchers have devoted significant attention to non-precious metal-based catalysts that exhibit high efficiency, low cost, and environmental friendliness. Among them, perovskite oxides possess low-cost and abundant reserves, as well as flexible oxidation valence states and a multi-defect surface. Due to their advantageous structural characteristics and easily adjustable physicochemical properties, extensive research has been conducted on perovskite-based oxides. However, these materials also exhibit drawbacks such as poor intrinsic activity, limited specific surface area, and relatively low apparent catalytic activity compared to precious metal catalysts. To address these limitations, current research is focused on enhancing the physicochemical properties of perovskite-based oxides. The catalytic activity and stability of perovskite-based oxides in Oxygen Reduction Reaction/Oxygen Evolution Reaction (ORR/OER) can be enhanced using crystallographic structure tuning, cationic regulation, anionic regulation, and nano-processing. Furthermore, extensive research has been conducted on the composite processing of perovskite oxides with other materials, which has demonstrated enhanced catalytic performance. Based on these different ORR/OER modification strategies, the future challenges of perovskite-based bifunctional oxygen electrocatalysts are discussed alongside their development prospects.
Collapse
Affiliation(s)
- Kailin Fu
- Department of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China; (W.C.); (F.J.)
| | - Weijian Chen
- Department of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China; (W.C.); (F.J.)
| | - Feng Jiang
- Department of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China; (W.C.); (F.J.)
| | - Xia Chen
- Sichuan Volcational College of Cultural Industries, Chengdu 610213, China;
| | - Jianmin Liu
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333000, China
| |
Collapse
|
5
|
Wang Y, Liu J, Song Y, Yu J, Tian Y, Robson MJ, Wang J, Zhang Z, Lin X, Zhou G, Wang Z, Shen L, Zhao H, Grasso S, Ciucci F. High-Entropy Perovskites for Energy Conversion and Storage: Design, Synthesis, and Potential Applications. SMALL METHODS 2023; 7:e2201138. [PMID: 36843320 DOI: 10.1002/smtd.202201138] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/17/2022] [Indexed: 06/18/2023]
Abstract
Perovskites have shown tremendous promise as functional materials for several energy conversion and storage technologies, including rechargeable batteries, (electro)catalysts, fuel cells, and solar cells. Due to their excellent operational stability and performance, high-entropy perovskites (HEPs) have emerged as a new type of perovskite framework. Herein, this work reviews the recent progress in the development of HEPs, including synthesis methods and applications. Effective strategies for the design of HEPs through atomistic computations are also surveyed. Finally, an outlook of this field provides guidance for the development of new and improved HEPs.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| | - Jiapeng Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| | - Yufei Song
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| | - Jing Yu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| | - Yunfeng Tian
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| | - Matthew James Robson
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| | - Jian Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
| | - Zhiqi Zhang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| | - Xidong Lin
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
- Julong College, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Guodong Zhou
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| | - Zheng Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| | - Longyun Shen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
- Division of Emerging Interdisciplinary Areas, Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| | - Hailei Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Municipal Key Lab for Advanced Energy Materials and Technologies, Beijing, 100083, P. R. China
| | - Salvatore Grasso
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, 518048, P. R. China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| |
Collapse
|
6
|
Han L, Zhang J, Zou M, Tong JJ. Toward Superb Perovskite Oxide Electrocatalysts: Engineering of Coupled Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204784. [PMID: 36300911 DOI: 10.1002/smll.202204784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
A significant issue that bedeviled the commercialization of renewable energy technologies, ranging from low-temperature water electrolyzers to high-temperature solid oxide cells, is the lack of high-performance catalysts. Among various candidates that could tackle such a challenge, perovskite oxides are rising-star materials because of their unique structural and compositional flexibility. However, single-phase perovskite oxides are challenging to satisfy all the requirements of electrocatalysts concurrently for practical applications, such as high catalytic activity, excellent stability, good ionic and electronic conductivities, and superior chemical/thermo-mechanical robustness. Impressively, perovskite oxides with coupled nanocomposites are emerging as a novel form offering multifunctionality due to their intrinsic features, including infinite interfaces with solid interaction, tunable compositions, flexible configurations, and maximum synergistic effects between assorted components. Considering this new configuration has attracted great attention owing to its promising performances in various energy-related applications, this review timely summarizes the leading-edge development of perovskite oxide-based coupled nanocomposites. Their state-of-art synthetic strategies are surveyed and highlighted, their unique structural advantages are highlighted and illustrated through the typical oxygen reduction reaction and oxygen evolution reactions in both high and low-temperature applications. Opinions on the current critical scientific issues and opportunities in this burgeoning research field are all provided.
Collapse
Affiliation(s)
- Liang Han
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jiawei Zhang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Minda Zou
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jianhua Joshua Tong
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
7
|
Encapsulate SrCoO3 perovskite crystal within molybdenum disulfide layer as core-shell structure to enhance electron transfer for peroxymonosulfate activation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Fan L, Wang J, Huang Z, Yao X, Hou N, Gan T, Gan J, Zhao Y, Li Y. Enhancement of the electrocatalytic activity of La0.6Sr0.4Co0.2Fe0.8O3-δ through surface modification by acid etching. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Beall CE, Fabbri E, Schmidt TJ. Perovskite Oxide Based Electrodes for the Oxygen Reduction and Evolution Reactions: The Underlying Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04473] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Casey E. Beall
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Emiliana Fabbri
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Thomas J. Schmidt
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
10
|
Zhang S, Chen M, Zhao X, Cai J, Yan W, Yen JC, Chen S, Yu Y, Zhang J. Advanced Noncarbon Materials as Catalyst Supports and Non-noble Electrocatalysts for Fuel Cells and Metal–Air Batteries. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-020-00085-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Perovskite nanoparticles@N-doped carbon nanofibers as robust and efficient oxygen electrocatalysts for Zn-air batteries. J Colloid Interface Sci 2021; 581:374-384. [DOI: 10.1016/j.jcis.2020.07.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022]
|
12
|
Sun J, Du L, Sun B, Han G, Ma Y, Wang J, Huo H, Du C, Yin G. Bifunctional LaMn 0.3Co 0.7O 3 Perovskite Oxide Catalyst for Oxygen Reduction and Evolution Reactions: The Optimized e g Electronic Structures by Manganese Dopant. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24717-24725. [PMID: 32369337 DOI: 10.1021/acsami.0c03983] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Perovskite oxides as bifunctional electrocatalysts toward oxygen reduction (ORR) and oxygen evolution reactions (OER) have been investigated for decades because of the flexible and adjustable electronic structures. For example, by optimizing the strength of the Co-O bond, the ORR and OER activity of a typical perovskite oxide, LaCoO3, can be improved, but they are still unsatisfying. The insufficient insights into the effects of secondary metal dopants at the B-site on the electronic structure and activity, especially for ORR, significantly limit the R&D of bifunctional perovskite oxide catalysts. In this work, a series of LaMnxCo1-xO3 (x = 0, 0.25, 0.3, 0.35, 0.5, 1) catalysts are prepared by a polyol-assisted solvothermal method to investigate the structure-property relationships between the B-site metal substitution and the electrochemical performance of perovskite oxides catalysts. The optimized LaMn0.3Co0.7O3 catalyst demonstrates an enhanced half-wave potential of 0.72 V for ORR, 52 mV higher than that of the pristine LaCoO3 (0.668 V). Meanwhile, the OER overpotential of LaMn0.3Co0.7O3 catalyst is 416 mV, which is reduced by 64 mV compared to LaCoO3 (480 mV). It is revealed that the appropriate Mn dopant efficiently optimizes the covalency of Co-O bonds and significantly reduces the eg orbit-filling electron from 1.23 of pristine LaCoO3 to 1.02 in LaMn0.3Co0.7O3 (very close to theoretical value 1). This work paves a new way to design and synthesize bifunctional perovskite oxide electrocatalyst for ORR and OER.
Collapse
Affiliation(s)
- Jia Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lei Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Baoyu Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Guokang Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yulin Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiajun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hua Huo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chunyu Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Geping Yin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
13
|
Chen F, Xue L, Shang Z, Zhang Z, Chen D. An enhanced non-noble perovskite-based oxygen electrocatalyst for efficient oxygen reduction and evolution reactions. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Miao H, Wu X, Chen B, Wang Q, Wang F, Wang J, Zhang C, Zhang H, Yuan J, Zhang Q. A-site deficient/excessive effects of LaMnO3 perovskite as bifunctional oxygen catalyst for zinc-air batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135566] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Li L, Shao Q, Huang X. Amorphous Oxide Nanostructures for Advanced Electrocatalysis. Chemistry 2019; 26:3943-3960. [PMID: 31483074 DOI: 10.1002/chem.201903206] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/03/2019] [Indexed: 12/21/2022]
Abstract
Amorphous oxides have attracted special attention as advanced electrocatalysts owing to their unique local structural flexibility and attractive electrocatalytic properties. With abundant randomly oriented bonds and surface-exposed defects (e.g., oxygen vacancies) as active catalytic sites, the adsorption/desorption of reactants can be optimized, leading to superior catalytic activities. Amorphous oxide materials have found wide electrocatalytic applications ranging from hydrogen evolution and oxygen evolution to oxygen reduction, CO2 electroreduction and nitrogen electroreduction. The amorphous oxide electrocatalysts even outperform their crystalline counterparts in terms of electrocatalytic activity and stability. Despite of the merits and achievements for amorphous oxide electrocatalysts, there are still issues and challenges existing for amorphous oxide electrocatalysts. There are rarely reviews specifically focusing on amorphous oxide electrocatalysts and therefore it is imperative to have a comprehensive overview of the research progress and to better understand the achievements and issues with amorphous oxide electrocatalysts. In this minireview, several general preparation methods for amorphous oxides are first introduced. Then, the achievements in amorphous oxides for several important electrocatalytic reactions are summarized. Finally, the challenges and perspectives for the development of amorphous oxide electrocatalysts are outlined.
Collapse
Affiliation(s)
- Leigang Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, No.199, Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.,College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science Soochow University, No.199, Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
16
|
Yan S, Xue Y, Li S, Shao G, Liu Z. Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core-Shell Materials by Adjusting the Interface for Metal-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25870-25881. [PMID: 31259515 DOI: 10.1021/acsami.9b06141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
LaMnO3 perovskite is one of the most promising catalysts for oxygen reduction reaction (ORR) in metal-air batteries and can be compared to Pt/C. However, the low catalytic activity toward oxygen evolution reaction (OER) limits its practical application in rechargeable metal-air batteries. In this work, the MnO2/La0.7Sr0.3MnO3 hierarchical core-shell composite materials with a special interface structure have been designed via the selective dissolution method. The core of La0.7Sr0.3MnO3 particles is wrapped by the porous and loose MnO2 nanoparticles. The as-prepared MnO2/La0.7Sr0.3MnO3 materials have excellent catalytic activity toward ORR/OER and are used as bifunctional oxygen electrocatalysts for metal-air batteries. Based on results of transmission electron microscopy, X-ray photoelectron spectroscopy, valence-band spectroscopy, and O2 temperature-programmed desorption analysis, we conclude that the bifunctional catalytic activity of the MnO2/La0.7Sr0.3MnO3 materials can be effectively promoted due to the specific interface structure between the La1-xSrxMnO3 core and the MnO2 shell. This can be attributed to three aspects: (a) the electronic conductivity, which is beneficial for providing the faster charge-transfer paths and kinetics at the oxide/solution interface than that of the MnO2 sample; (b) the enhancement of oxygen adsorption capacity due to surface defects (oxygen vacancies) and chemical adsorption, which is helpful to improve the reaction kinetics during the process of oxygen catalysis; and (c) the tuning of oxygen adsorption ability via the moderate Mn-O bond strength, which may be conducive to getting for obtain an enhanced Mn-O bond strength on the surfaces for ORR and a weakened Mn-O bond in the lattice for OER.
Collapse
Affiliation(s)
- Shanshan Yan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Zhejiang 315201 , P. R. China
- State key Laboratory of Metastable Materials Science and Technology, College of Environmental and Chemical Engineering , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Yejian Xue
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Zhejiang 315201 , P. R. China
| | - Shihua Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Zhejiang 315201 , P. R. China
| | - Guangjie Shao
- State key Laboratory of Metastable Materials Science and Technology, College of Environmental and Chemical Engineering , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Zhaoping Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Zhejiang 315201 , P. R. China
| |
Collapse
|
17
|
Zhang Z, Chen Y, Dai Z, Tan S, Chen D. Promoting hydrogen-evolution activity and stability of perovskite oxides via effectively lattice doping of molybdenum. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.163] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
He J, Sunarso J, Miao J, Sun H, Dai J, Zhang C, Zhou W, Shao Z. A highly sensitive perovskite oxide sensor for detection of p-phenylenediamine in hair dyes. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:699-706. [PMID: 30831522 DOI: 10.1016/j.jhazmat.2019.02.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/17/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Effective regulation of p-phenylenediamine (PPD), a widely used precursor of hair dye that is harmful to human health in large concentration, relies upon an accurate yet simple detection of PPD. In this context, amperometric electrode sensor based on perovskite oxide becomes attractive given its portability, low cost, high sensitivity, and rapid processing time. This work reports the systematic characterization of a series of Sr-doped PrCoO3-δ perovskite oxides with composition of Pr1-xSrxCoO3-δ(x = 0, 0.2, 0.4, 0.6, 0.8, and 1) for PPD detection in an alkaline solution. PSC82 deposited onto glassy carbon electrode (PSC82/GCE) generates the highest redox currents which correlates with the highest hydrogen peroxide intermediates (HO2-) yield and the σ*-orbital (eg) filling of Co that is closest to unity for PSC82. PSC82/GCE provides the highest sensitivities of 655 and 308 μA mM-1 cm-2 in PPD concentration range of 0.5-2,900 and 2,900-10,400 μM, respectively, with a limit of detection of 0.17 μM. PSC82/GCE additionally demonstrates high selectivity to PPD and long term stability during 50 consecutive cyclic voltammetry scans and over 1-month storage period. The potential applicability of PSC82/GCE was also demonstrated by confirming the presence of very low concentration of PPD of below 0.5% in real hair dyes.
Collapse
Affiliation(s)
- Juan He
- State Key Laboratory of Materials-Oriented Chemical Engineering, college of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| | - Jie Miao
- State Key Laboratory of Materials-Oriented Chemical Engineering, college of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Hainan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, college of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Jie Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, college of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Chen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, college of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, college of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, college of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China; Department of Chemical Engineering, Curtin University, Perth, Western Australia 6845, Australia.
| |
Collapse
|
19
|
MnO
2
‐Mediated Synthesis of Mn
3
O
4
@CaMn
7
O
12
Core@Shell Nanorods for Electrocatalytic Oxygen Reduction Reaction. ChemElectroChem 2018. [DOI: 10.1002/celc.201801636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Oxygen Reduction Reaction Electrocatalysis in Alkaline Electrolyte on Glassy-Carbon-Supported Nanostructured Pr6O11 Thin-Films. Catalysts 2018. [DOI: 10.3390/catal8100461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this work, hierarchical nanostructured Pr6O11 thin-films of brain-like morphology were successfully prepared by electrostatic spray deposition (ESD) on glassy-carbon substrates. These surfaces were used as working electrodes in the rotating disk electrode (RDE) setup and characterized in alkaline electrolyte (0.1 M NaOH at 25 ± 2 °C) for the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR) for their potential application in alkaline electrolyzers or in alkaline fuel cells. The electrochemical performances of these electrodes were investigated as a function of their crystallized state (amorphous versus crystalline). Although none of the materials display spectacular HER and OER activity, the results show interesting performances of the crystallized sample towards the ORR with regards to this class of non-Pt group metal (non-PGM) electrocatalysts, the activity being, however, still far from a benchmark Pt/C electrocatalyst.
Collapse
|