1
|
Li C, Lepre E, Bi M, Antonietti M, Zhu J, Fu Y, López-Salas N. Oxygen-Rich Carbon Nitrides from an Eutectic Template Strategy Stabilize Ni, Fe Nanosites for Electrocatalytic Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300526. [PMID: 37246284 PMCID: PMC10401138 DOI: 10.1002/advs.202300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/08/2023] [Indexed: 05/30/2023]
Abstract
Functionalized porous carbons are central to various important applications such as energy storage and conversion. Here, a simple synthetic route to prepare oxygen-rich carbon nitrides (CNOs) decorated with stable Ni and Fe-nanosites is demonstrated. The CNOs are prepared via a salt templating method using ribose and adenine as precursors and CaCl2 ·2H2 O as a template. The formation of supramolecular eutectic complexes between CaCl2 ·2H2 O and ribose at relatively low temperatures facilitates the formation of a homogeneous starting mixture, promotes the condensation of ribose through the dehydrating effect of CaCl2 ·2H2 O to covalent frameworks, and finally generates homogeneous CNOs. As a specific of the recipe, the condensation of the precursors at higher temperatures and the removal of water promotes the recrystallization of CaCl2 (T < Tm = 772 °C), which then acts as a hard porogen. Due to salt catalysis, CNOs with oxygen and nitrogen contents as high as 12 and 20 wt%, respectively, can be obtained, while heteroatom content stayed about unchanged even at higher temperatures of synthesis, pointing to the extraordinarily high stability of the materials. After decorating Ni and Fe-nanosites onto the CNOs, the materials exhibit high activity and stability for electrochemical oxygen evolution reaction with an overpotential of 351 mV.
Collapse
Affiliation(s)
- Chun Li
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Enrico Lepre
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Min Bi
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yongsheng Fu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Nieves López-Salas
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
2
|
Wan S, Liu Q, Cheng M, Chen Y, Chen H. Binary-Metal Mn 2SnO 4 Nanoparticles and Sn Confined in a Cubic Frame with N-Doped Carbon for Enhanced Lithium and Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38278-38288. [PMID: 34342441 DOI: 10.1021/acsami.1c08632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sn-based materials have been popularly researched as anodes for energy storage due to their high theoretical capacity. However, the sluggish reaction kinetics and unsatisfied cycling stability caused by poor conductivity and dramatic volume expansion are still pivotal barriers for the development of Sn-based materials as anodes. In this work, the binary-metal Mn2SnO4 nanoparticles and Sn encapsulated in N-doped carbon (Sn@Mn2SnO4-NC) were fabricated by multistep reactions and employed as the anode for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The coexistence of binary metals (Sn and Mn) can improve intrinsic conductivity. Simultaneously, hollow architecture along with carbon relieves internal stress and prevents structural collapse. A Sn@Mn2SnO4-NC anode delivers an appealing capacity of 1039.5 mAh g-1 for 100 cycles at 100 mA g-1 and 823.8 mAh g-1 for 600 cycles at 1000 mA g-1 in LIBs. When evaluated as an anode in SIBs, the Sn@Mn2SnO4-NC anode tolerates up to 7000 cycles at 2000 mA g-1 and maintains a capacity of 185.8 mAh g-1. Quantified kinetic investigations demonstrate the high contribution of pseudocapacitive effects during the cycle process. Furthermore, density functional theory (DFT) calculations further verify that introduction of the second metal (Mn) improves the conductivity of the material, which is favorable for charge transport. This work is expected to provide a feasible preparation strategy for binary-metal materials to enhance the performance of lithium- and sodium-ion batteries.
Collapse
Affiliation(s)
- Shuyun Wan
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Qiming Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ming Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yucheng Chen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hongyi Chen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Wang M, Wang X, Yao Z, Tang W, Xia X, Gu C, Tu J. SnO 2 Nanoflake Arrays Coated with Polypyrrole on a Carbon Cloth as Flexible Anodes for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24198-24204. [PMID: 31199106 DOI: 10.1021/acsami.9b08378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
SnO2 has been extensively studied as an anode material for sodium-ion batteries, which, however, has long been subjected to poor conductivity and large volume expansion accompanied with an unsatisfactory electrochemical performance. Here, novel interlaced SnO2 nanoflakes are synthesized directly on a carbon cloth collector via hydrothermal and annealing treatment and then coated with polypyrrole (PPy) via electrodeposition. The as-prepared flexible SnO2@PPy on the carbon cloth exhibits a high initial capacity of 1172.1 mAh g-1 and an outstanding cycling stability with 85% capacity retention after 300 cycles at 0.1 A g-1, which can be contributed to the interlaced SnO2 nanoflakes as well as the coating of PPy. This result shows promising potential for construction of an electrode in high-performance energy storage fields.
Collapse
Affiliation(s)
- Minya Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhujun Yao
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Wangjia Tang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Changdong Gu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|