1
|
Tian ZF, Zeng HY, Lv SB, Long YW, Xu S, Li HB, Zou KM. Construction of NiCoZnS materials with controllable morphology for high-performance supercapacitors. NANOTECHNOLOGY 2022; 33:245703. [PMID: 34891144 DOI: 10.1088/1361-6528/ac4210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/09/2021] [Indexed: 06/13/2023]
Abstract
A facile two-step hydrothermal approach with post-sulfurization treatment was put forward to construct the mixed transition metal sulfide (NiCoZnS) with a high electrochemical performance. The different morphologies of NiCoZnS materials were successfully fabricated by adjusted the Ni/Co molar ratio of the NiCoZn(OH)F precursor. Moreover, thein situphase transformation from the NiCoZn(OH)F phase to Zn0.76Co0.24S and NiCo2S4phases and lattice defects via the S2-ion-exchange were determined by x-ray diffractometer, transmission electron microscopy and x-ray photoelectron spectroscopy techniques, which improved electric conductivity and interfacial active sites of the NiCoZnS, and so promoted the reaction kinetics. Significantly, the urchin-like NiCoZnS1/1prepared at the Ni/Co molar ratio of 1.0 exhibited promising electrochemical performances with high capacitance and excellent cycling stability. Furthermore, the asymmetric device (NiCoZnS//AC) using NiCoZnS1/1as the positive electrode had excellent supercapacitor performances with an energy density of 57.8 Wh·kg-1at a power density of 750 W·kg-1as well as a long cycle life (79.2% capacity retention after 10 000 cycles), indicating the potential application in high-performance supercapacitors.
Collapse
Affiliation(s)
- Zi-Feng Tian
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Hong-Yan Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Shi-Bing Lv
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Yi-Wen Long
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Sheng Xu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Hao-Bo Li
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Kai-Min Zou
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| |
Collapse
|
2
|
Keshari AS, Dubey P. Interfacially coupled thin sheet-like NiO/NiMoO 4 nanocomposites synthesized by a simple reflux method for excellent electrochemical performance. Dalton Trans 2022; 51:3992-4009. [PMID: 35174381 DOI: 10.1039/d1dt04198c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, hierarchical sheet-like assemblies of interfacially coupled NiO/NiMoO4 (NNMO) nanocomposites are prepared by a simple and cost-effective one-step aqueous reflux method followed by post-thermal treatment. The reaction time is optimized for a high precursor yield and the homogeneity of the final product. The fabricated electrodes with varying amounts of active material and conducting carbon show better electrochemical activity for 50 : 50 weight ratio combinations as extrinsic pseudocapacitors. The optimized NNMO-3 electrode (obtained from the Ni-Mo hydroxide precursor during the 10 h reaction time) exhibits superior performance among all the tested nanocomposite electrodes like a high specific capacity of 649.8 C g-1 (1624.5 F g-1) and 73.5% retention of capacity after 2200 cycles at a specific current of 1.0 A g-1 along with satisfactory rate capability (42.5% retention after a ten-times increment in specific current), which may be attributed to the abundant electroactive sites due to the high bulk as well as electrochemically active surface area, mesoporous structure, and synergistic coupling between the optimum compositions of NiO and NiMoO4 within the sheet-like networks. Moreover, an aqueous asymmetric supercapacitor is assembled by employing NNMO-3 and activated carbon as the positive and negative electrodes, respectively, and exhibits a maximum specific capacity of 216.2 C g-1 (144.1 F g-1), specific energy of 45.0 W h kg-1 at a specific power of 750.0 W kg-1, promising rate capability of 58.5%, and good cycling stability with 86.2% capacitive retention after 2500 charge-discharge cycles. Based on the overall performance, we can infer that the NNMO-3 nanocomposite may be a promising electrode material for high-performance supercapacitor applications.
Collapse
Affiliation(s)
- Achal Singh Keshari
- Centre of Material Sciences, Institute of Interdisciplinary Studies (IIDS), University of Allahabad, Prayagraj-211002, U.P., India.
| | - Prashant Dubey
- Centre of Material Sciences, Institute of Interdisciplinary Studies (IIDS), University of Allahabad, Prayagraj-211002, U.P., India.
| |
Collapse
|
3
|
Li B, Xie L, Liu Y, Yao D, Yao L, Deng L. NiCo 2S 4nanosheets decorated on nitrogen-doped hollow carbon nanospheres as advanced electrodes for high-performance asymmetric supercapacitors. NANOTECHNOLOGY 2021; 33:085404. [PMID: 34781279 DOI: 10.1088/1361-6528/ac39c7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Taking advantage of both Faradaic and carbonaceous materials is an efficient way to synthesize composite electrodes with enhanced performance for supercapacitors. In this study, NiCo2S4nanoflakes were grown on the surface of nitrogen-doped hollow carbon nanospheres (NHCSs), forming a NiCo2S4/NHCS composite with a core-shell structure. This three-dimensionally confined growth of NiCo2S4can effectively inhibit its aggregation and facilitate mass transport and charge transfer. Accordingly, the NiCo2S4/NHCS composite exhibited high cycling stability with only 9.2% capacitance fading after 10 000 cycles, outstanding specific capacitance of 902 F g-1at 1 A g-1, and it retained 90.6% of the capacitance at 20 A g-1. Moreover, an asymmetric supercapacitor composed of NiCo2S4/NHCS and activated carbon electrodes delivered remarkable energy density (31.25 Wh kg-1at 750 W kg-1), excellent power density (15003 W kg-1at 21.88 Wh kg-1), and satisfactory cycling stability (13.4% capacitance fading after 5000 cycles). The outstanding overall performance is attributed to the synergistic effect of the NiCo2S4shell and NHSC core, which endows the composite with a stable structure, high electrical conductivity, abundant active reaction sites, and short ion-transport pathways. The synthesized NiCo2S4/NHCS composite is a competitive candidate for the electrodes of high-performance supercapacitors.
Collapse
Affiliation(s)
- Bei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, People's Republic of China
| | - Ling Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yanping Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, People's Republic of China
| | - Lei Yao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Libo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
4
|
Hu X, Liu S, Wang Y, Huang X, Jiang J, Cong H, Lin H, Han S. Hierarchical CuCo 2O 4@CoS-Cu/Co-MOF core-shell nanoflower derived from copper/cobalt bimetallic metal-organic frameworks for supercapacitors. J Colloid Interface Sci 2021; 600:72-82. [PMID: 34004431 DOI: 10.1016/j.jcis.2021.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
Rational design of composite materials with unique core-shell nanoflower structures is an important strategy for improving the electrochemical properties of supercapacitors such as capacitance and cycle stability. Herein, a two-step electrodeposition technique is used to orderly synthesize CuCo2O4 and CoS on Ni foam coated with Cu/Co bimetal metal organic framework (Cu/Co-MOF) to fabricate a hierarchical core-shell nanoflower material (CuCo2O4@CoS-Cu/Co-MOF). This unique structure can increase the electrochemically active site of the composite, promoting the Faradaic redox reaction and enhancing its electrochemical properties. CuCo2O4@CoS-Cu/Co-MOF shows a prominent specific capacitance of 3150 F g-1 at 1 A g-1, marvelous rate performance of 81.82% (2577.3 F g-1 at 30 A g-1) and long cycle life (maintaining 96.74% after 10,000 cycles). What is more, the assembled CuCo2O4@CoS-Cu/Co-MOF//CNTs device has an energy density of 73.19 Wh kg-1 when the power density is 849.94 W kg-1. It has unexpected application prospects.
Collapse
Affiliation(s)
- Xiaomin Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Shunchang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Yunyun Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Long Teng Road 333, 201620 Shanghai, PR China
| | - Xing Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Jibo Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China.
| | - Haishan Cong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Hualin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China; College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Long Teng Road 333, 201620 Shanghai, PR China.
| |
Collapse
|
5
|
Cao W, Liu Y, Xu F, Xia Q, Du G, Fan Z, Chen N. Metal-organic framework derived carbon-coated spherical bimetallic nickel-cobalt sulfide nanoparticles for hybrid supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138433] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
CoMoO
4
Nanoneedles/Carbon Cloth for High‐Performance Supercapacitors: Maximizing Mass Loading by Reaction Time. ChemistrySelect 2021. [DOI: 10.1002/slct.202101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Acharya J, Ojha GP, Kim BS, Pant B, Park M. Modish Designation of Hollow-Tubular rGO-NiMoO 4@Ni-Co-S Hybrid Core-shell Electrodes with Multichannel Superconductive Pathways for High-Performance Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17487-17500. [PMID: 33844490 DOI: 10.1021/acsami.1c00137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The scrupulous designation of hollow and porous electroactive materials incorporating prolific redox-active polyphase transition-metal oxide decorated with polyphase transition-metal sulfide onto rGO (reduced graphene oxide)-supported conductive substrate has never been an easy task due to the very good coordination affair of sulfur toward transition metals. Herein, cost-effective hydrothermal growth followed by a metal-organic framework (MOF)-mediated sulfidation approach is employed to achieve burl-like Ni-Co-S nanomaterial-integrated hollow and porous NiMoO4 nanotubes onto rGO-coated Ni foam (rGO-NiMoO4@Ni-Co-S) as the electrode material for supercapacitors. The open framework of the rGO-Co-MOF template after the etching and sulfidation process not only enables the creation of a tubular structure of NiMoO4 nanorods but also provides convenient ion-electron pathways to promote rapid faradic reactions for the hybrid composite electrode. Owing to the unique hollow and tubular structure, the as-fabricated rGO-NiMoO4@Ni-Co-S electrode exhibits a high specific capacity of 318 mA h g-1 at 1 A g-1 and remarkable cyclic performance of 88.87% after 10,000 consecutive charge-discharge cycles in an aqueous 2 M KOH electrolyte on a three-electrode configuration. Moreover, the assembled rGO-NiMoO4@Ni-Co-S//rGO-MDC (MOF-derived carbon) asymmetric supercapacitor device exhibits a satisfactory energy density of 57.24 W h kg-1 at a power density of 801.8 W kg-1 with an admirable life span of 90.89% after 10,000 repeated cycles.
Collapse
Affiliation(s)
- Jiwan Acharya
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, South Korea
| | - Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, South Korea
| | - Byoung-Suhk Kim
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, South Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju, Chonbuk 55338, South Korea
| |
Collapse
|
8
|
Teng XL, Sun XT, Guan L, Hu H, Wu MB. Self-supported transition metal oxide electrodes for electrochemical energy storage. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42864-020-00068-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Sajjad M, Asif SU, Guan L, Jiao Y, Jiang Y, Zhang L, Wen J, Zhang S, Lin Y, Zhang S, Ding Z, Ren Y, Zhou X, Hu W, Liu Z. Bismuth Yttrium Oxide (Bi3YO6), A New Electrode Material For Asymmetric Aqueous Supercapacitors. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01778-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Zheng L, Song J, Ye X, Wang Y, Shi X, Zheng H. Construction of self-supported hierarchical NiCo-S nanosheet arrays for supercapacitors with ultrahigh specific capacitance. NANOSCALE 2020; 12:13811-13821. [PMID: 32573570 DOI: 10.1039/d0nr02976a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Transition metal bimetallic sulfides derived from metal-organic frameworks (MOFs) hold great promise for energy-related applications. Here, a facile two-step MOF-engaged strategy is developed to grow ultrathin nickel-cobalt sulfide nanosheet arrays (NiCo-S) on Ni foam with robust adhesion, which provides a large specific surface area and excellent electric conductivity. The optimal self-supported NiCo-S electrode exhibits the best electrochemical performance as a binder-free electrode for supercapacitors with an ultrahigh specific capacitance of 3724 F g-1 at a current density of 1 A g-1 and maintains 1680 F g-1 at 20 A g-1, outperforming recently reported best values based on nickel-cobalt sulfides and oxide/hydroxide counterparts. The results demonstrate that the in situ growth of conductive Ni3S2, the presence of Co(OH)2 and the synergy between bimetals help contribute to the superior capacity. Most importantly, electronic and valence states are carefully investigated to reveal the synergetic effect and it is evidenced that the greatly decreased energy barrier differences between two redox pairs (Ni2+/Ni3+ and Co2+/Co3+) result in higher electrochemical performance. This work might shed light on the origin of high capacitance obtained from bimetallic compound based electrochemical energy storage devices.
Collapse
Affiliation(s)
- Lingxia Zheng
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China. and Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianlan Song
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China. and Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoying Ye
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China. and Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yongzhi Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China. and Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaowei Shi
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China. and Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Huajun Zheng
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China. and Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
11
|
Lou BS, Rajaji U, Chen SM, Chen TW. A simple sonochemical assisted synthesis of NiMoO 4/chitosan nanocomposite for electrochemical sensing of amlodipine in pharmaceutical and serum samples. ULTRASONICS SONOCHEMISTRY 2020; 64:104827. [PMID: 31953007 DOI: 10.1016/j.ultsonch.2019.104827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
In this investigation, a facile sonochemical route has been developed for the preparation of porous nickel molybdate nanosheets/chitosan nanocomposite (NiMoO4/CHIT) by using ammonium molybdate and nickel(II) acetate tetrahydrate and as nickel and molybdate precursor, respectively (ultrasonic power 60 W/cm2 and frequency 20 kHz). The ultrasonic based materials preparation as a fast, convenient and economical approach has been widely used to generate novel nanomaterials. Herein, we report an efficient voltammetric sensor for amlodipine drug by using porous nickel molybdate nanosheets/chitosan nanocomposite (NiMoO4/CHIT). Its structure and properties were characterized by x-ray diffraction pattern, scanning electron microscope, transmission electron microscope, elemental analysis and mapping. The electrochemical studies are indicated the NiMoO4/CHIT modified glassy carbon electrode (GCE) exhibited the good performance towards electrocatalytic sensing of amlodipine drug. Consequently, a linear correlation between the anodic peak current with sensor concentration 0.025-373.6 µM with a detection limit and sensitivity of 4.62 nM and 4.753 µA·µM-1·cm-2, respectively. A voltammetry based drug analysis was found to be high sensitive and reproducible, which able to detect nanomolar concentration. Furthermore, the fabricated electrochemical sensor was applied in drug and biological samples.
Collapse
Affiliation(s)
- Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan 333, Taiwan; Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| |
Collapse
|
12
|
Chen S, Cui S, Chandrasekaran S, Ke C, Li Z, Chen P, Zhang C, Jiang Y. Growth of CuCo2O4@MnMoO4 core/shell nanosheet arrays for high energy density asymmetric supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135893] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Wang M, Zhang J, Yi X, Liu B, Zhao X, Liu X. High-performance asymmetric supercapacitor made of NiMoO 4 nanorods@Co 3O 4 on a cellulose-based carbon aerogel. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:240-251. [PMID: 32082963 PMCID: PMC7006496 DOI: 10.3762/bjnano.11.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
In this study, a new nanoporous material comprising NiMoO4 nanorods and Co3O4 nanoparticles derived from ZIF-67 supported by a cellulose-based carbon aerogel (CA) has been successfully synthesized using a two-step hydrothermal method. Due to its chemical composition, the large specific surface and the hierarchical porous structure, the NiMoO4@Co3O4/CA ternary composite yields electrodes with an enhanced specific capacitance of 436.9 C/g at a current density of 0.5 A/g and an excellent rate capability of 70.7% capacitance retention at 5.0 A/g. Moreover, an advanced asymmetric supercapacitor (ASC) is assembled using the NiMoO4@Co3O4/CA ternary composite as the positive electrode and activated carbon as the negative electrode. The ASC device exhibits a large capacitance of 125.4 F/g at 0.5 A/g, a maximum energy density of 34.1 Wh/kg at a power density of 208.8 W/kg as well as a good cyclic stability (84% after 2000 cycles), indicating its wide applicability in energy storage. Finally, our results provide a general approach to the construction of CA and MOF-based composite materials with hierarchical porous structure for potential applications in supercapacitors.
Collapse
Affiliation(s)
- Meixia Wang
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Jing Zhang
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Xibin Yi
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Benxue Liu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Xinfu Zhao
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| | - Xiaochan Liu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, P. R. China
| |
Collapse
|
14
|
Yang P, Feng L, Hu J, Ling W, Wang S, Shi J, Yang Z, Wang F. Synthesis of the Urchin‐Like NiS@NiCo
2
S
4
Composites on Nickel Foam for High‐Performance Supercapacitors. ChemElectroChem 2019. [DOI: 10.1002/celc.201901304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ping Yang
- School of Chemical EngineeringAnhui University of Science and Technology Huainan, Anhui 232001 P. R. China
| | - Lina Feng
- School of Chemical EngineeringAnhui University of Science and Technology Huainan, Anhui 232001 P. R. China
| | - Jun Hu
- School of Chemical EngineeringAnhui University of Science and Technology Huainan, Anhui 232001 P. R. China
| | - Wenqin Ling
- School of Chemical EngineeringAnhui University of Science and Technology Huainan, Anhui 232001 P. R. China
| | - Shaohua Wang
- School of Chemical EngineeringAnhui University of Science and Technology Huainan, Anhui 232001 P. R. China
| | - Jianjun Shi
- School of Chemical EngineeringAnhui University of Science and Technology Huainan, Anhui 232001 P. R. China
| | - Zhangfu Yang
- School of Materials Science and EngineeringAnhui University of Science and Technology Huainan, Anhui 232001 P. R. China
| | - Fengwu Wang
- College of Chemistry and Materials ScienceHuainan Normal University Huainan, Anhui 232001 P. R. China
| |
Collapse
|
15
|
Sharma GP, Pala RGS, Sivakumar S. Ultrasmall NiMoO4 robust nanoclusters-active carbon composite for high performance extrinsic pseudocapacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Affiliation(s)
- Tao Chen
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| | - Shaoting Wei
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| | - Zhenghua Wang
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| |
Collapse
|