1
|
Parrilla J, Segundo ID, Marchante CMF, Santos EV, Lobato J, Castro SSL, Martínez-Huitle CA, Rodrigo MA. Proof of Concept for the Organic Electrorefinery Technology with Actual Effluents. Ind Eng Chem Res 2024; 63:18734-18745. [PMID: 39525072 PMCID: PMC11544606 DOI: 10.1021/acs.iecr.4c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024]
Abstract
This work describes results of a first proof of the concept of electrorefinery with a real waste obtained from a cashew nut factory, and it shows the effect of the current densities of both the anodic oxidation and electrochemically assisted separation processes on the performance of the system. Results obtained demonstrate that electrorefinery is a promising option to minimize the carbon fingerprint, worth studying for increasing the sustainability of the environmental remediation of wastes, because valuable species can be obtained from the destruction of pollutants and recovered within the same integrated process. They also point out that there is still a long way to reach an optimum solution for this technology, but it is worth the effort to be made. Many different carboxylates were detected, but oxalate was the primary product both in the reaction tank and in the recovery tank. The production is almost linear during the electrolysis, with a reaction rate of 23.3 mg C h-1 in the case of oxalate and a separation ration of around 20% in the electrodialysis stage. There is a negligible crossover of aromatic species into the recovery solution, which becomes an important advantage for further processing of the carboxylate solutions in the search to valorize these species in terms of circular economy principles. Energy efficiencies in the range of 0.04-0.21 mg C-carboxylates (Wh)-1 and Coulombic efficiencies in the range 0.92-2.03 mg C-carboxylates (Ah)-1 were obtained in this work. A life cycle assessment indicated carbon dioxide and water footprints as low as 0.31 g of CO2 mg-1 C and 30 mL of H2O mg-1 C recovered in the products obtained, respectively.
Collapse
Affiliation(s)
- Jesús Parrilla
- Chemical
Engineering Department, University of Castilla-La
Mancha, Ed. Enrique
Costa Novella, Campus Universitario s/n, Ciudad Real 13005, Spain
| | - Inalmar Dantas
Barbosa Segundo
- School
of Science and Technology, Federal University
of Rio Grande do Norte, Campus Universitário, Av.Salgado Filho 3000, Lagoa Nova, Natal, RN CEP 59078-970, Brazil
| | - Carmen María Fernández Marchante
- Chemical
Engineering Department, University of Castilla-La
Mancha, Ed. Enrique
Costa Novella, Campus Universitario s/n, Ciudad Real 13005, Spain
| | - Elisama Vieira
Dos Santos
- School
of Science and Technology, Federal University
of Rio Grande do Norte, Campus Universitário, Av.Salgado Filho 3000, Lagoa Nova, Natal, RN CEP 59078-970, Brazil
- Renewable
Energies and Environmental Sustainability Research Group, Institute
of Chemistry, Federal University of Rio
Grande do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal, Rio Grande do Norte CEP 59078-970, Brazil
| | - Justo Lobato
- Chemical
Engineering Department, University of Castilla-La
Mancha, Ed. Enrique
Costa Novella, Campus Universitario s/n, Ciudad Real 13005, Spain
| | - Suely S. L. Castro
- Faculty
of Exact and Natural Sciences, State University
of Rio Grande do Norte, Campus Central, Mossoró, Rio Grande do Norte P59625-620, Brazil
| | - Carlos Alberto Martínez-Huitle
- Renewable
Energies and Environmental Sustainability Research Group, Institute
of Chemistry, Federal University of Rio
Grande do Norte, Campus Universitário, Av. Salgado Filho 3000, Lagoa Nova, Natal, Rio Grande do Norte CEP 59078-970, Brazil
| | - Manuel Andrés Rodrigo
- Chemical
Engineering Department, University of Castilla-La
Mancha, Ed. Enrique
Costa Novella, Campus Universitario s/n, Ciudad Real 13005, Spain
| |
Collapse
|
2
|
Xu X, Li P, Zhong Y, Yu J, Miao C, Tong G. Review on the oxidative catalysis methods of converting lignin into vanillin. Int J Biol Macromol 2023:125203. [PMID: 37270116 DOI: 10.1016/j.ijbiomac.2023.125203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Vanillin plays an important role not only in food and flavouring, but also as a platform compound for the synthesis of other valuable products, mainly derived from the oxidative decarboxylation of petroleum-based guaiacol production. In order to alleviate the problem of collapsing oil resources, the preparation of vanillin from lignin has become a good option from the perspective of environmental sustainability, but it is still not optimistic in terms of vanillin production. Currently, catalytic oxidative depolymerization of lignin for the preparation of vanillin is the main development trend. This paper mainly reviews four ways of preparing vanillin from lignin base: alkaline (catalytic) oxidation, electrochemical (catalytic) oxidation, Fenton (catalytic) oxidation and photo (catalytic) oxidative degradation of lignin. In this work, the working principles, influencing factors, vanillin yields obtained, respective advantages and disadvantages and the development trends of the four methods are systematically summarized, and finally, several methods for the separation and purification of lignin-based vanillin are briefly reviewed.
Collapse
Affiliation(s)
- Xuewen Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Yidan Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangdong Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Guolin Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Klein J, Waldvogel SR. Selective Electrochemical Degradation of Lignosulfonate to Bio-Based Aldehydes. CHEMSUSCHEM 2023; 16:e202202300. [PMID: 36651115 DOI: 10.1002/cssc.202202300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Indexed: 06/17/2023]
Abstract
A sustainable electrochemical pathway for degradation and thermal treatment of technical lignosulfonate is presented. This approach is an opportunity to produce remarkable quantities of low molecular weight compounds, such as vanillin and acetovanillone. For the electrochemical degradation, a simple two-electrode arrangement in aqueous media is used, which is also easily scalable. The oxidation of the biopolymer occurs at the anode whereas hydrogen is evolved at the cathode. The subsequent thermal treatment supports the degradation of the robust chemical structure of lignosulfonates. With optimized electrolytic conditions, vanillin could be obtained in 9.7 wt% relative to the dry mass of lignosulfonate used. Aside from vanillin, by-products such as acetovanillone or vanillic acid were observed in lower yields. A new and reliable one-pot, two-step degradation of different technically relevant lignosulfonates is established with the advantages of using electrons as an oxidizing agent, which results in low quantities of reagent waste.
Collapse
Affiliation(s)
- Jana Klein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55131, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55131, Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Huang J, Jian Y, Zhou M, Wu H. Oxidative C−C bond cleavage of lignin via electrocatalysis. Front Chem 2022; 10:1007707. [PMID: 36186593 PMCID: PMC9522476 DOI: 10.3389/fchem.2022.1007707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin, which is an important component of biomass in nature and is constantly produced in industry, becomes potential raw material for sustainable production of fine chemicals and biofuels. Electrocatalysis has been extensively involved in the activation of simple molecules and cleavage-recasting of complex scaffolds in an elegant environment. As such, electrocatalytic cleavage of C−C(O) in β-O-4 model molecules of lignin to value-added chemicals has received much attention in recent years. This mini-review introduces various anodes (e.g., Pb, Pt, Ni, Co., and Ir) developed for electro-oxidative lignin degradation (EOLD) under mild conditions. Attention was placed to understand the conversion pathways and involved reaction mechanisms during EOLD, with emphasis on the product distribution caused by different electrodes.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Yumei Jian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Min Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang, China
- *Correspondence: Hongguo Wu,
| |
Collapse
|
5
|
da Cruz MGA, Gueret R, Chen J, Piątek J, Beele B, Sipponen MH, Frauscher M, Budnyk S, Rodrigues BVM, Slabon A. Electrochemical Depolymerization of Lignin in a Biomass-based Solvent. CHEMSUSCHEM 2022; 15:e202200718. [PMID: 35608798 PMCID: PMC9545899 DOI: 10.1002/cssc.202200718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Breaking down lignin into smaller units is the key to generate high value-added products. Nevertheless, dissolving this complex plant polyphenol in an environment-friendly way is often a challenge. Levulinic acid, which is formed during the hydrothermal processing of lignocellulosic biomass, has been shown to efficiently dissolve lignin. Herein, levulinic acid was evaluated as a medium for the reductive electrochemical depolymerization of the lignin macromolecule. Copper was chosen as the electrocatalyst due to the economic feasibility and low activity towards the hydrogen evolution reaction. After depolymerization, high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy revealed lignin-derived monomers and dimers. A predominance of aryl ether and phenolic groups was observed. Depolymerized lignin was further evaluated as an anti-corrosion coating, revealing enhancements on the electrochemical stability of the metal. Via a simple depolymerization process of biomass waste in a biomass-based solvent, a straightforward approach to produce high value-added compounds or tailored biobased materials was demonstrated.
Collapse
Affiliation(s)
- Márcia G. A. da Cruz
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
| | - Robin Gueret
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
| | - Jianhong Chen
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
| | - Jędrzej Piątek
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
| | - Björn Beele
- Inorganic ChemistryBergische Universität WuppertalGaußstraße 2042119WuppertalGermany
| | - Mika H. Sipponen
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
| | | | - Serhiy Budnyk
- AC2T research GmbHViktor-Kaplan-Str. 2/c2700Wiener NeustadtAustria
| | - Bruno V. M. Rodrigues
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
- Inorganic ChemistryBergische Universität WuppertalGaußstraße 2042119WuppertalGermany
| | - Adam Slabon
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
- Inorganic ChemistryBergische Universität WuppertalGaußstraße 2042119WuppertalGermany
| |
Collapse
|
6
|
A proof of concept for the electro-refinery: Selective electroproduction of acetic acid from t-CNSL waste by using DSA electrode. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Lux S. Application of the TRIZ Contradictory Matrix to Foster Innovation for Sustainable Chemical Engineering. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Susanne Lux
- Graz University of Technology Institute of Chemical Engineering and Environmental Technology, NAWI Graz Inffeldgasse 25C 8010 Graz Austria
| |
Collapse
|
8
|
Electrochemical membrane-assisted pH-swing extraction and back-extraction of lactic acid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Li P, Zhou H, Tao Y, Ren J, Wu C, Wu W. Recent Development and Perspectives of Solvents and Electrode Materials for Electrochemical Oxidative Degradation of Lignin. ELECTROANAL 2022. [DOI: 10.1002/elan.202200100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Ayub R, Raheel A. High-Value Chemicals from Electrocatalytic Depolymerization of Lignin: Challenges and Opportunities. Int J Mol Sci 2022; 23:3767. [PMID: 35409138 PMCID: PMC8999055 DOI: 10.3390/ijms23073767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Lignocellulosic biomass is renewable and one of the most abundant sources for the production of high-value chemicals, materials, and fuels. It is of immense importance to develop new efficient technologies for the industrial production of chemicals by utilizing renewable resources. Lignocellulosic biomass can potentially replace fossil-based chemistries. The production of fuel and chemicals from lignin powered by renewable electricity under ambient temperatures and pressures enables a more sustainable way to obtain high-value chemicals. More specifically, in a sustainable biorefinery, it is essential to valorize lignin to enhance biomass transformation technology and increase the overall economy of the process. Strategies regarding electrocatalytic approaches as a way to valorize or depolymerize lignin have attracted significant interest from growing scientific communities over the recent decades. This review presents a comprehensive overview of the electrocatalytic methods for depolymerization of lignocellulosic biomass with an emphasis on untargeted depolymerization as well as the selective and targeted mild synthesis of high-value chemicals. Electrocatalytic cleavage of model compounds and further electrochemical upgrading of bio-oils are discussed. Finally, some insights into current challenges and limitations associated with this approach are also summarized.
Collapse
Affiliation(s)
- Rabia Ayub
- RISE Processum AB, Bioeconomy and Health Division, SE-891 22 Örnsköldsvik, Sweden
| | - Ahmad Raheel
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| |
Collapse
|
11
|
Echtermeyer A, Marks C, Mitsos A, Viell J. Inline Raman Spectroscopy and Indirect Hard Modeling for Concentration Monitoring of Dissociated Acid Species. APPLIED SPECTROSCOPY 2021; 75:506-519. [PMID: 33107761 DOI: 10.1177/0003702820973275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We propose an approach for monitoring the concentration of dissociated carboxylic acid species in dilute aqueous solution. The dissociated acid species are quantified employing inline Raman spectroscopy in combination with indirect hard modeling (IHM) and multivariate curve resolution (MCR). We introduce two different titration-based hard model (HM) calibration procedures for a single mono- or polyprotic acid in water with well-known (method A) or unknown (method B) acid dissociation constants pKa. In both methods, spectra of only one acid species in water are prepared for each acid species. These spectra are used for the construction of HMs. For method A, the HMs are calibrated with calculated ideal dissociation equilibria. For method B, we estimate pKa values by fitting ideal acid dissociation equilibria to acid peak areas that are obtained from a spectral HM. The HM in turn is constructed on the basis of MCR data. Thus, method B on the basis of IHM is independent of a priori known pKa values, but instead provides them as part of the calibration procedure. As a detailed example, we analyze itaconic acid in aqueous solution. For all acid species and water, we obtain low HM errors of < 2.87 × 10-4mol mol-1 in the cases of both methods A and B. With only four calibration samples, IHM yields more accurate results than partial least squares regression. Furthermore, we apply our approach to formic, acetic, and citric acid in water, thereby verifying its generalizability as a process analytical technology for quantitative monitoring of processes containing carboxylic acids.
Collapse
Affiliation(s)
| | - Caroline Marks
- Process Systems Engineering (AVT.SVT), 9165RWTH Aachen University, Aachen, Germany
| | - Alexander Mitsos
- Process Systems Engineering (AVT.SVT), 9165RWTH Aachen University, Aachen, Germany
- Energy Systems Engineering, Institute for Energy and Climate Research IEK-10, Jülich, Germany
- JARA-ENERGY, Aachen, Germany
| | - Jörn Viell
- Process Systems Engineering (AVT.SVT), 9165RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Keller R, Weyand J, Vennekoetter JB, Kamp J, Wessling M. An electro-Fenton process coupled with nanofiltration for enhanced conversion of cellobiose to glucose. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Vega-Aguilar CA, Barreiro MF, Rodrigues AE. Effect of Methoxy Substituents on Wet Peroxide Oxidation of Lignin and Lignin Model Compounds: Understanding the Pathway to C 4 Dicarboxylic Acids. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Carlos A. Vega-Aguilar
- Laboratory of Separation and Reaction Engineering−Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Centro de Investigação de Montanha−CIMO, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - M. Filomena Barreiro
- Centro de Investigação de Montanha−CIMO, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering−Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
14
|
Kumaravel S, Thiruvengetam P, Karthick K, Sankar SS, Karmakar A, Kundu S. Green and sustainable route for oxidative depolymerization of lignin: New platform for fine chemicals and fuels. Biotechnol Prog 2020; 37:e3111. [PMID: 33336509 DOI: 10.1002/btpr.3111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023]
Abstract
Depolymerization of lignin biomass to its value-added chemicals and fuels is pivotal for achieving the goals for sustainable society, and therefore has acquired key interest among the researchers worldwide. A number of distinct approaches have evolved in literature for the deconstruction of lignin framework to its mixture of complex constituents in recent decades. Among the existing practices, special attention has been devoted for robust site selective chemical transformation in the complex structural frameworks of lignin. Despite the initial challenges over a period of time, oxidation and oxidative cleavage process of aromatic building blocks of lignin biomass toward the fine chemical synthesis and fuel generation has improved substantially. The development has improved in terms of cost effectiveness, milder reaction conditions, and purity of compound individuals. These aforementioned oxidative protocols mainly involve the breaking of C-C and C-O bonds of complex lignin frameworks. More precisely in the line with environmentally friendly greener approach, the catalytic oxidation/oxidative cleavage reactions have received wide spread interest for their mild and selective nature toward the lignin depolymerization. This mini-review aims to provide an overview of recent developments in the field of oxidative depolymerization of lignin under greener and environmentally benign conditions. Also, these oxidation protocols have been discussed in terms of scalability and recyclability as catalysts for different fields of applications.
Collapse
Affiliation(s)
- Sangeetha Kumaravel
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Kannimuthu Karthick
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Selvasundarasekar Sam Sankar
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Arun Karmakar
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630003, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Yang R, Fan B, Wang S, Li L, Li Y, Li S, Zheng Y, Fu L, Lin CT. Electrochemical Voltammogram Recording for Identifying Varieties of Ornamental Plants. MICROMACHINES 2020; 11:E967. [PMID: 33138269 PMCID: PMC7693950 DOI: 10.3390/mi11110967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
An electrochemical voltammogram recording method for plant variety identification is proposed. Electrochemical voltammograms of Vistula, Andromeda, Danuta, Armandii 'Apple Blossom,' Proteus, Hagley Hybrid, Violet Elizabeth, Kiri Te Kanawa, Regina, and Veronica's Choice were recorded using leaf extracts with two solvents under buffer solutions. The voltametric data recorded under different conditions were derived as scatter plots, 2D density patterns, and hot maps for variety identification. In addition, the voltametric data were further used for genetic relationship studies. The dendrogram deduced from the voltammograms was used as evidence for relationship study. The dendrogram deduced from voltametric data suggested the Andromeda, Danuta, Proteus, Regina, and Hagley Hybrid were closely related, while Violet Elizabeth and Veronica's Choice were closely related. In addition, Vistula and Armandii 'Apple Blossom' could be considered outliers among the varieties.
Collapse
Affiliation(s)
- Rutong Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (R.Y.); (S.W.); (L.L.); (S.L.); (Y.Z.)
| | - Boyuan Fan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Shu’an Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (R.Y.); (S.W.); (L.L.); (S.L.); (Y.Z.)
| | - Linfang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (R.Y.); (S.W.); (L.L.); (S.L.); (Y.Z.)
| | - Ya Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (R.Y.); (S.W.); (L.L.); (S.L.); (Y.Z.)
| | - Sumei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (R.Y.); (S.W.); (L.L.); (S.L.); (Y.Z.)
| | - Yuhong Zheng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (R.Y.); (S.W.); (L.L.); (S.L.); (Y.Z.)
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Garedew M, Lin F, Song B, DeWinter TM, Jackson JE, Saffron CM, Lam CH, Anastas PT. Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for Renewable Chemicals and Fuels Production. CHEMSUSCHEM 2020; 13:4214-4237. [PMID: 32460408 DOI: 10.1002/cssc.202000987] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Lignin valorization is essential for biorefineries to produce fuels and chemicals for a sustainable future. Today's biorefineries pursue profitable value propositions for cellulose and hemicellulose; however, lignin is typically used mainly for its thermal energy value. To enhance the profit potential for biorefineries, lignin valorization would be a necessary practice. Lignin valorization is greatly advantaged when biomass carbon is retained in the fuel and chemical products and when energy quality is enhanced by electrochemical upgrading. Though lignin upgrading and valorization are very desirable in principle, many barriers involved in lignin pretreatment, extraction, and depolymerization must be overcome to unlock its full potential. This Review addresses the electrochemical transformation of various lignins with the aim of gaining a better understanding of many of the barriers that currently exist in such technologies. These studies give insight into electrochemical lignin depolymerization and upgrading to value-added commodities with the end goal of achieving a global low-carbon circular economy.
Collapse
Affiliation(s)
- Mahlet Garedew
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
| | - Fang Lin
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Bing Song
- Scion, 49 Sala Street, Private Bag 3020, Rotorua, 3020, New Zealand
| | - Tamara M DeWinter
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher M Saffron
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Chun Ho Lam
- City University of Hong Kong, School of Energy and Environment, Kowloon Tong, China
| | - Paul T Anastas
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
- School of Public Health, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
17
|
Recovery of succinic acid by integrated multi-phase electrochemical pH-shift extraction and crystallization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116489] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Keller RG, Di Marino D, Blindert M, Wessling M. Hydrotropic Solutions Enable Homogeneous Fenton Treatment of Lignin. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Robert G. Keller
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Davide Di Marino
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Malte Blindert
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Matthias Wessling
- Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
19
|
Martí-Calatayud M, Evdochenko E, Bär J, García-Gabaldón M, Wessling M, Pérez-Herranz V. Tracking homogeneous reactions during electrodialysis of organic acids via EIS. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|