1
|
Song K, Yang D, Zhou C, Li Q, Zhang L, Gong J, Zhong W, Shen S, Chen S. CoPS/Co 4S 3 Heterojunction with Highly Exposed Active Sites and Dual-site Synergy for Effective Hydrogen Evolution Reactions. Chemistry 2024; 30:e202401038. [PMID: 38775655 DOI: 10.1002/chem.202401038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024]
Abstract
Cobalt phosphosulphide (CoPS) has recently been recognized as a potentially effective electrocatalyst for the hydrogen evolution reaction (HER). However, there have been no research on the design of CoPS-based heterojunctions to boost their HER performance. Herein, CoPS/Co4S3 heterojunction was prepared by phosphating treatment based on defect-rich flower-like Co1-xS precursors. The high specific surface area of nanopetals, together with the heterojunction structure with inhomogeneous strain, exposes more active sites in the catalyst. The electronic structure of the catalyst is reconfigured as a result of the interfacial interactions, which promote the catalyst's ability to adsorb hydrogen and conduct electricity. The synergistic effect of the Co and S dual-site further enhance the catalytic activity. The catalyst has overpotentials of 61 and 70 mV to attain a current density of 10 mA cm-2 in acidic and alkaline media, respectively, which renders it competitive with previously reported analogous catalysts. This work proposes an effective technique for constructing transition metal phosphosulfide heterojunctions, as well as the development of an efficient HER electrocatalyst.
Collapse
Affiliation(s)
- Kai Song
- School of Materials Science ( Engineering, Zhejiang Sci-Tech University, 310018, Zhejiang, China
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Dian Yang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Chenjing Zhou
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Qingao Li
- School of Materials Science ( Engineering, Zhejiang Sci-Tech University, 310018, Zhejiang, China
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Lili Zhang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Junjie Gong
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Wenwu Zhong
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Shijie Shen
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Shichang Chen
- School of Materials Science ( Engineering, Zhejiang Sci-Tech University, 310018, Zhejiang, China
| |
Collapse
|
2
|
Kim HH, Lee E, Kim KH, Shim H, Lee J, Lee D, Lee D, Kim WS, Hong SH. Synthesis of Graphitic Carbon Coated ZnPS 3 and its Superior Electrochemical Properties for Lithium and Sodium Ion Storage. SMALL METHODS 2024; 8:e2301294. [PMID: 37988680 DOI: 10.1002/smtd.202301294] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Graphitic carbon-coated ZnPS3 is prepared via direct phosphosulfurization and high energy mechanical milling (HEMM) with multiwall carbon nanotubes (MWCNTs) and first introduced as an anode for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The HEMM process with MWCNTs reduces the particle size of as-synthesized ZnPS3 bulk to 100-500 nm and yields the ≈5 nm thick graphitic carbon coated ZnPS3 nanoparticles, which are the nanocomposites of 5 nm sized nanocrystallites embedded in the amorphous matrix. The ZnPS3 electrode undergoes the combined conversion and alloying reactions with Li and Na ions and exhibits high initial discharge and charge capacities in both LIBs and SIBs. The graphitic carbon-coated ZnPS3 electrode exhibits excellent high-rate capability and long-term cyclability. The superior electrochemical properties can be attributed to high electrical conductivity, high Li ion mobility, and high reversibility and structural stability derived from the graphitic carbon-coated nanoparticles. This study demonstrates that the novel graphitic carbon-coated ZnPS3 is a promising anode material for both LIBs and SIBs and the graphitic carbon coating methodology by HEMM is expected to apply to the various metal oxides, sulfides, and phosphides.
Collapse
Affiliation(s)
- Hyung-Ho Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eungjae Lee
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeong-Ho Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hun Shim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongwon Lee
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongjun Lee
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Doyeon Lee
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Sik Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong-Hyeon Hong
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Wang S, Yuan F, Yang G, Luo S, Chen M, Fan T, Ma J. In situ construction of CoFe-LDH by regulating the Co/Fe molar ratio for promoting oxygen evolution reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Chen M, Hu Y, Liang K, Zhao Z, Luo Y, Luo S, Ma J. Interface engineering triggered by carbon nanotube-supported multiple sulfides for boosting oxygen evolution. NANOSCALE 2021; 13:18763-18772. [PMID: 34747966 DOI: 10.1039/d1nr04540g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Finding an efficient, stable and cheap oxygen evolution reaction (OER) catalyst is very important for renewable energy conversion systems. There are relatively few related research reports due to the thermodynamic instability of transition metal sulfides (TMSs) at the oxidation potential and these are usually focused on single metal sulfides or bimetal sulfides. Metal sulfide mixture systems are rarely studied. The fabrication of a TMS/TMS interface is a feasible method to improve the kinetics of the OER. Here, we constructed TMS hybrid electrocatalysts with multiple phase interfaces for the oxygen evolution reaction, named S-CoFe/CNTs. The results show that the S-CoFe/CNT catalyst exhibits a low overpotential of 258 mV to achieve a current density of 10 mA cm-2, and has high activity in the OER process. Meanwhile, the catalyst also shows a low Tafel slope (69 mV dec-1) and good stability. This can be attributed to the synergistic catalysis of the multiphase interface in the catalyst and the rapid electron transfer pathway brought by CNTs. The new strategy for the synthesis of catalysts containing the TMS/TMS interface provides a new idea and method for the development of efficient and practical water splitting catalysts.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yiping Hu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Kun Liang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Ziming Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yutong Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Sha Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Wang X, Zhang W, Zhang J, Zhang J, Wu Z. Co(OH)
2
Nanosheets Array Doped by Cu
2+
Ions with Optimal Electronic Structure for Urea‐Assisted Electrolytic Hydrogen Generation. ChemElectroChem 2021. [DOI: 10.1002/celc.202100443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiangyu Wang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) The Key Laboratory of Functional Molecular Solids, Ministry of Education Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Wuzhengzhi Zhang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) The Key Laboratory of Functional Molecular Solids, Ministry of Education Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Junliang Zhang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) The Key Laboratory of Functional Molecular Solids, Ministry of Education Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Jing Zhang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) The Key Laboratory of Functional Molecular Solids, Ministry of Education Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Zhengcui Wu
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) The Key Laboratory of Functional Molecular Solids, Ministry of Education Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| |
Collapse
|
6
|
Wang Y, Ge Z, Li X, Zhao J, Ma B, Chen Y. Cu2S nanorod arrays with coarse surfaces to enhance the electrochemically active surface area for water oxidation. J Colloid Interface Sci 2020; 567:308-315. [DOI: 10.1016/j.jcis.2020.02.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/13/2020] [Accepted: 02/09/2020] [Indexed: 11/25/2022]
|
7
|
Wang X, Zhang W, Zhang J, Wu Z. Fe‐Doped Ni
3
S
2
Nanowires with Surface‐Restricted Oxidation Toward High‐Current‐Density Overall Water Splitting. ChemElectroChem 2019. [DOI: 10.1002/celc.201901201] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiangyu Wang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Wuzhengzhi Zhang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Junliang Zhang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Zhengcui Wu
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), The Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| |
Collapse
|