1
|
Thakur N, Kumar P. Effect of Shape and Size on Synthesized Triple (Co/Ni/Zn)-Doped α-Fe 2O 3 Nanoparticles on their Photocatalytic and Scavenging Properties. INTERNATIONAL JOURNAL OF NANOSCIENCE 2024. [DOI: 10.1142/s0219581x24500108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Co/Ni/Zn triple doped [Formula: see text]-Fe2O3 nanoparticles (NPs) have been synthesized via polyvinylpyrrolidone (PVP)/Azadirachta indica (A. Indica) leaf extract coating. XRD, UV–Vis, SEM, TEM, EDS, Raman spectroscopy, FTIR, VSM were used to characterize the synthesized NPs. XRD pattern revealed that the crystallite size of NPs ranges from 14[Formula: see text]nm to 21[Formula: see text]nm. Spherical NPs were found by SEM/TEM examination ranging from 16[Formula: see text]nm to 26[Formula: see text]nm of doped [Formula: see text]-Fe2O3 NPs. Analysis of the magnetic properties of [Formula: see text]-Fe2O3 NPs revealed antiferromagnetic characteristics, convergence between magnetization curves (MS), and switching field distribution dM/dh below an irreversible temperature of [Formula: see text][Formula: see text]K. Produced catalyst was used for the degradation of anionic azo dye Malachite green (MG) and Rhodamine blue (RhB) dyes under the influence of UV radiation. RhB and MG were reduced as a result of the doped [Formula: see text]-Fe2O3 catalyzing the conversion of dissolved O2 to hydroxyl radicals (OH) when exposed to visible light. This shows that the main active radical specifically engaged in the photo-catalytic breakdown of dyes is OH. The most effective photo-catalyst was determined by investigating the proposed doped [Formula: see text]-Fe2O3 NPs reusability over three cycles. The catalyst was retrieved and utilized three times after the reaction without suffering a substantial loss of catalytic activity. The plant-mediated [Formula: see text]-Fe2O3 NPs have significant antioxidant activity due to their higher phenolic content. These have a promising future with potential applications in health, aging, food preservation, cosmetics, agriculture and environmental protection.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Physics, Career Point University, Hamirpur 176041, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Physics, Career Point University, Hamirpur 176041, Himachal Pradesh, India
| |
Collapse
|
2
|
Lv J, Wu M, Fan M, Zhang Q, Chang Z, Wang X, Zhou Q, Wang L, Chong R, Zhang L. Insights into the multirole CoAl layered double hydroxide on boosting photoelectrochemical activity of hematite: Application to hydrogen peroxide sensing. Talanta 2023; 262:124681. [PMID: 37224575 DOI: 10.1016/j.talanta.2023.124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
As an important compound in many industrial and biological processes, hydrogen peroxide (H2O2) would cause harmfulness to human health at high concentration level. It thus is urgent to develop highly sensitive and selective sensors for practical H2O2 detection in the fields of water monitoring, food quality control, and so on. In this work, CoAl layered double hydroxide ultrathin nanosheets decorated hematite (CoAl-LDH/α-Fe2O3) photoelectrode was successfully fabricated by a facile hydrothermal process. CoAl-LDH/α-Fe2O3 displays the relatively wide linear range from 1 to 2000 μM with a high sensitivity of 132.0 μA mM-1 cm-2 and a low detection limit of 0.04 μM (S/N ≥ 3) for PEC detection of H2O2, which is superior to other similar α-Fe2O3-based sensors in literatures. The (photo)electrochemical characterizations, such as electrochemical impedance spectroscopy, Mott-Schottky plot, cyclic voltammetry, open circuit potential and intensity modulated photocurrent spectroscopy, were used to investigate the roles of CoAl-LDH on the improved PEC response of α-Fe2O3 toward H2O2. It revealed that, CoAl-LDH could not only passivate the surface states and enlarge the band bending of α-Fe2O3, but also could act as trapping centers for holes and followed by as active sites for H2O2 oxidation, thus facilitated the charge separation and transfer. The strategy for boosting PEC response would be help for the further development of semiconductor-based PEC sensors.
Collapse
Affiliation(s)
- Jiaqi Lv
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Mingwei Wu
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ming Fan
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Qinqin Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan Province, 475000, China
| | - Zhixian Chang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Xinshou Wang
- College of Science, Henan Kaifeng College of Science Technology and Communication, Kaifeng, 475004, China
| | - Qian Zhou
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Li Wang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ruifeng Chong
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Ling Zhang
- Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Zhang Q, Liu Q, Liu Y, Wang H, Chen J, Shi T. PEC thrombin aptasensor based on Ag-Ag 2S decorated hematite photoanode with signal-down effect of precipitation catalyzed by G-quadruplexes/hemin. Biosens Bioelectron 2023; 232:115321. [PMID: 37075612 DOI: 10.1016/j.bios.2023.115321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
A photoelectrochemical (PEC) aptasensor for thrombin detection was rationally designed based on the photoanode of one-dimensional hematite nanorods (α-Fe2O3 NRs) with several steps of modifications. Uniform α-Fe2O3 NRs were grown vertically on the surface of fluorine-doped tin oxide (FTO) conductive glass through a one-step hydrothermal method; then Ag was grown on the surface of α-Fe2O3 NRs through a photoreduction method followed by a partial in-situ transformation into Ag2S, conferring an improvement on the initial photocurrent. Two main critical factors, namely, the steric hindrance of thrombin, benzoquinone (BQ) precipitation oxidized by H2O2 under the catalysis of G-quadruplexes/hemin, contributed to the sensitive signal-down response toward the target. Photocurrent signals related with thrombin concentration was established for thrombin analysis due to the non-conductive complex as well as their competitive consumption of electron donors and irradiation light. The excellent initial photocurrent was combined with the signal-down amplification in the design of the biosensor, conferring a limit of detection (LOD) as low as 40.2 fM and a wide linear range from 0.0001 nM to 50 nM for the detection of thrombin. The proposed biosensor was also assessed in terms of selectivity, stability, and applicability in human serum analyses, which provided an appealing maneuver for the specific analysis of thrombin in trace amount.
Collapse
Affiliation(s)
- Qiaoxia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China.
| | - Yang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
| | - Houchen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
| | - Jialiang Chen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
| | - Tiesheng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, 277160, Shandong Province, China.
| |
Collapse
|
4
|
Non-noble metal Bi/BiVO4 photoanode for surface plasmon resonance-induced photoelectrochemical biosensor of hydrogen peroxide detection. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Doménech‐Carbó A, Giannuzzi M, Mangone A, Giannossa LC, Di Turo F, Cofini E, Doménech‐Carbó MT. Hematite as an Electrocatalytic Marker for the Study of Archaeological Ceramic Clay bodies: A VIMP and SECM Study**. ChemElectroChem 2022. [DOI: 10.1002/celc.202101197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Antonio Doménech‐Carbó
- Departament de Química Analítica Universitat de València Dr. Moliner, 50 46100 Burjassot (València) Spain
| | - Michele Giannuzzi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Via E. Orabona, 4 70125 Bari Italy
| | - Annarosa Mangone
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Via E. Orabona, 4 70125 Bari Italy
- Centro Interdipartimentale Laboratorio di Ricerca per la Diagnostica dei Beni Culturali Via E. Orabona 4 70126 Bari Italy
| | - Lorena Carla Giannossa
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Via E. Orabona, 4 70125 Bari Italy
- Centro Interdipartimentale Laboratorio di Ricerca per la Diagnostica dei Beni Culturali Via E. Orabona 4 70126 Bari Italy
| | - Francesca Di Turo
- National Enterprise for nanoScience and nanoTechnology (NEST) Scuola Normale Superiore Piazza dei Cavalieri 12 56127 Pisa Italy
| | - Elena Cofini
- Department of Earth Sciences Sapienza University of Rome P.le Aldo Moro 5 Rome Italy
| | - María Teresa Doménech‐Carbó
- Institut de Restauració del Patrimoni Universitat Politècnica de València Camí de Vera 14 46022 València Spain
| |
Collapse
|
6
|
Lv J, Fan M, Zhang L, Zhou Q, Wang L, Chang Z, Chong R. Photoelectrochemical sensing and mechanism investigation of hydrogen peroxide using a pristine hematite nanoarrays. Talanta 2022; 237:122894. [PMID: 34736710 DOI: 10.1016/j.talanta.2021.122894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/17/2021] [Accepted: 09/18/2021] [Indexed: 01/03/2023]
Abstract
In this paper, a facile hydrothermal combined with subsequent two-step post-calcination method was used to fabricate hematite (α-Fe2O3) nanoarrays on fluorine-doped SnO2 glass (FTO). The morphology, crystalline phase, optical property and surface chemical states of the fabricated α-Fe2O3 photoelectrode were characterized by scanning electron microscopy, X-ray diffraction, ultraviolet visible spectroscopy and X-ray photoelectron spectroscopy correspondingly. The α-Fe2O3 photoelectrode exhibits excellent photoelectrochemical (PEC) response toward hydrogen peroxide (H2O2) in aqueous solutions, with a low detection limit of 20 μM (S/N = 3) and wide linear range (0.01-0.09, 0.3-4, and 6-16 mM). Additionally, the α-Fe2O3 photoelectrode shows satisfying reproducibility, stability, selectivity and good feasibility for real samples. Mechanism analysis indicates, comparing with H2O, H2O2 possesses much more fast reaction kinetics over α-Fe2O3 surface, thus the recombination of photogenerated charges are reduced, followed by much more photogenerated electrons are migrated to the counter electrode via external circuit. The insight on the enhanced photocurrent, which is corelative to the concentration of H2O2 in aqueous solution, will stimulate us to further optimize the surface structure of α-Fe2O3 to gain highly efficient α-Fe2O3 based sensors.
Collapse
Affiliation(s)
- Jiaqi Lv
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Ming Fan
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Ling Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qian Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Li Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhixian Chang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Ruifeng Chong
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
7
|
Guo KK, Jiang XY, Xu M, Li FY, Dong SM, Zheng Y, Xu L. An unprecedented polyoxometalate-based 1D double chain compound with opposite charges enables conductivity improvement. Chem Commun (Camb) 2021; 57:11398-11401. [PMID: 34651157 DOI: 10.1039/d1cc03581a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A POM-based one-dimensional (1D) chain compound, {BW12O40[Cu(2,2'-bipy)2]2[Cu(2,2'-bipy)(H2O)]}{BW12O40[Cu(2,2'-bipy)2][Cu(2,2'-bipy)(H2O)2]}·7H2O, has been synthesized and structurally characterized, which represents an unprecedented 1D double chain structure with opposite charges. In contrast to common POMs, this compound exhibits a relatively high electrical conductivity of 1.17 × 10-9 S cm-1 at 25 °C. In addition, its semiconducting properties have also been investigated by application of photoelectrochemical sensing of H2O2.
Collapse
Affiliation(s)
- Ke-Ke Guo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Xin-Ye Jiang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Ming Xu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Feng-Yan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Si-Meng Dong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Yue Zheng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| | - Lin Xu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
| |
Collapse
|
8
|
|
9
|
Meena, Sharma A. Investigation of structural, optical and sensing performance of starch films reinforced with Ag nanoparticles. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1897770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Meena
- Department of Physics, Kurukshetra University, Kurukshetra, India
- Department of Physics, Dr. Bhim Rao Ambedkar Govt. College, Kaithal, India
| | - Annu Sharma
- Department of Physics, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
10
|
|
11
|
Design and fabrication of cost-effective and sensitive non-enzymatic hydrogen peroxide sensor using Co-doped δ-MnO 2 flowers as electrode modifier. Anal Bioanal Chem 2020; 413:789-798. [PMID: 32794004 DOI: 10.1007/s00216-020-02861-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
The development of a cost-effective and highly sensitive hydrogen peroxide sensor is of great importance. Electrochemical sensing is considered the most sensitive technique for hydrogen peroxide detection. Herein, we reported a cost-effective and highly sensitive hydrogen peroxide sensor using Co-doped δ-MnO2 (Co@δ-MnO2) flower-modified screen-printed carbon electrode. The δ-MnO2 and Co@δ-MnO2 flowers were synthesized by employing a hydrothermal approach. Advanced techniques such as PXRD, SEM, FTIR, Raman, UV, EDX, BET, and TEM were utilized to confirm the formation of δ-MnO2 and Co-doped δ-MnO2 flowers. The fabricated sensor exhibited an excellent detection limit (0.12 μM) and sensitivity of 5.3 μAμM-1 cm-2.Graphical abstract.
Collapse
|
12
|
Terrero Rodríguez IM, Borrill AJ, Schaffer KJ, Hernandez JB, O’Neil GD. Light-Addressable Electrochemical Sensing with Electrodeposited n-Silicon/Gold Nanoparticle Schottky Junctions. Anal Chem 2020; 92:11444-11452. [DOI: 10.1021/acs.analchem.0c02512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Irina M. Terrero Rodríguez
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Alexandra J. Borrill
- Department of Chemistry and the Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Katherine J. Schaffer
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Jocelyn B. Hernandez
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Glen D. O’Neil
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|