1
|
Abbasi R, Hu X, Zhang A, Dummer I, Wachsmann-Hogiu S. Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors. Bioengineering (Basel) 2024; 11:912. [PMID: 39329654 PMCID: PMC11428294 DOI: 10.3390/bioengineering11090912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Optical biosensors have emerged as a powerful tool in analytical biochemistry, offering high sensitivity and specificity in the detection of various biomolecules. This article explores the advancements in the integration of optical biosensors with microfluidic technologies, creating lab-on-a-chip (LOC) platforms that enable rapid, efficient, and miniaturized analysis at the point of need. These LOC platforms leverage optical phenomena such as chemiluminescence and electrochemiluminescence to achieve real-time detection and quantification of analytes, making them ideal for applications in medical diagnostics, environmental monitoring, and food safety. Various optical detectors used for detecting chemiluminescence are reviewed, including single-point detectors such as photomultiplier tubes (PMT) and avalanche photodiodes (APD), and pixelated detectors such as charge-coupled devices (CCD) and complementary metal-oxide-semiconductor (CMOS) sensors. A significant advancement discussed in this review is the integration of optical biosensors with pixelated image sensors, particularly CMOS image sensors. These sensors provide numerous advantages over traditional single-point detectors, including high-resolution imaging, spatially resolved measurements, and the ability to simultaneously detect multiple analytes. Their compact size, low power consumption, and cost-effectiveness further enhance their suitability for portable and point-of-care diagnostic devices. In the future, the integration of machine learning algorithms with these technologies promises to enhance data analysis and interpretation, driving the development of more sophisticated, efficient, and accessible diagnostic tools for diverse applications.
Collapse
Affiliation(s)
| | | | | | | | - Sebastian Wachsmann-Hogiu
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (R.A.); (X.H.); (A.Z.); (I.D.)
| |
Collapse
|
2
|
Firoozbakhtian A, Hosseini M, Guan Y, Xu G. Boosting Electrochemiluminescence Immunoassay Sensitivity via Co-Pt Nanoparticles within a Ti 3C 2 MXene-Modified Single Electrode Electrochemical System on Raspberry Pi. Anal Chem 2023; 95:15110-15117. [PMID: 37750307 DOI: 10.1021/acs.analchem.3c03285] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Point-of-care testing plays a crucial role in diagnostics within resource-poor areas, necessitating the utilization of portable and user-friendly devices. The adaptation of biosensors for point-of-care applications requires careful considerations, such as miniaturization, cost-effectiveness, and streamlined sample processing. In recent years, the electrochemiluminescence (ECL) immunoassay has gained significant attention due to its visual detection capabilities and ability to facilitate high-throughput analysis. However, the development of a practical and cost-effective ECL device remains a challenging task. This study presents the development of an integrated MXene-modified single-electrode electrochemical system (SEES) for visual and high-throughput ECL immunoassays incorporating a Raspberry Pi system. The SEES was designed by affixing a plastic sticker with multiple perforations onto a single carbon ink screen-printed electrode, which operates based on a resistance-induced potential difference. Leveraging the excellent adsorption and bioaffinity properties of the carbon ink screen-printed electrode, effective immobilization of antibodies was achieved. Furthermore, the incorporation of Co-Pt nanoparticles enhanced the ECL intensity and electron transfer kinetics, enabling the sensitive detection of SARS-CoV-2. The developed system comprised 18 individual reaction cells, allowing for simultaneous analysis while maintaining sample isolation. Impressively, the system achieved a remarkable minimum virus detection limit of 10-14 g mL-1, accompanied by a high R2 value of 0.9798. These findings highlight the promising potential of our developed system for efficient point-of-care testing in resource-limited settings.
Collapse
Affiliation(s)
- Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Yiran Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Salinas G, Beladi-Mousavi SM, Gerasimova L, Bouffier L, Kuhn A. Wireless Imaging of Transient Redox Activity Based on Bipolar Light-Emitting Electrode Arrays. Anal Chem 2022; 94:14317-14321. [PMID: 36190826 DOI: 10.1021/acs.analchem.2c02872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bipolar electrochemistry (BE) is a wireless electrochemical technique, which enables asymmetric electroactivity on the surface of conducting objects. This technique has been extensively studied for different electrochemical applications, including synthesis, separation, sensing, and surface modification. Here, we employ BE for imaging the transient electrochemical activity of different redox species with high accuracy via an array of light-emitting diodes having different lengths. Such a gradient allows the differentiation of redox systems due to their intrinsic difference in thermodynamic potential and the evaluation of their diffusional behavior based on the intensity of light emission. The result is an instantaneous optical readout of analytical information, equivalent to classic electrochemical scanning techniques, such as linear sweep voltammetry.
Collapse
Affiliation(s)
- Gerardo Salinas
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac, France
| | | | - Liubov Gerasimova
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac, France
| | - Laurent Bouffier
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac, France
| | - Alexander Kuhn
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac, France
| |
Collapse
|
4
|
Xia S, Pan J, Dai D, Dai Z, Yang M, Yi C. Design of portable electrochemiluminescence sensing systems for point-of-care-testing applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Totoricaguena-Gorriño J, Dei M, Alba AF, Peřinka N, Rubio LR, Vilas-Vilela JL, del Campo FJ. Toward Next-Generation Mobile Diagnostics: Near-Field Communication-Powered Electrochemiluminescent Detection. ACS Sens 2022; 7:1544-1554. [PMID: 35559616 DOI: 10.1021/acssensors.2c00425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mobile phones have been used in combination with point of care (PoC) devices for over a decade now. However, their use seems restricted to the detection of sensing events using the video and camera functions. In contrast, the complementary ability to use mobile phones to power such PoC devices has been largely unexplored. This work demonstrates the proof-of-principle that a smartphone can be used to both power and analyze an electrochemiluminescence (ECL) detection system. A printed device is presented featuring an electrochemical cell connected in series to a rectenna that is able to use the Near Field Communication (NFC, 13.56 MHz) signal to provide the energy needed to generate ECL from Ru(bpy)32+/tri-n-propylamine. The emitted light, the intensity of which is directly proportional to the concentration of the ruthenium complex, can then be captured by the mobile phone camera and analyzed. This work presents the fabrication and the electrical and electrochemical characterization of the device. Effective voltages ranging from 0.90 to 4.50 V have been recorded, depending on the coupling between emitter and receiver, which translate into working electrode potentials ranging from 0.76 up to 1.79 V vs Ag. Detection and quantification limits of 0.64 and 1.52 μM, respectively, have been achieved for Ru(bpy)32+, and linear ranges up to 0.1 mM (red channel) and no less than 1.0 mM (green channel) have been found.
Collapse
Affiliation(s)
- Joseba Totoricaguena-Gorriño
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Vizcaya, Spain
| | - Michele Dei
- Department of Information Engineering, University of Pisa, 56122 - Pisa, Italy
| | - Alejandro Fidel Alba
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Vizcaya, Spain
- Grupo de Química Macromolecular, Departamento Química-Física, Universidad del País Vasco, UPV-EHU, 48940 Leioa, Vizcaya, Spain
| | - Nikola Peřinka
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Vizcaya, Spain
| | - Leire-Ruiz Rubio
- Grupo de Química Macromolecular; Departamento Química-Física, Universidad del País Vasco, UPV-EHU, 48940 Leioa, Vizcaya, Spain
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular; Departamento Química-Física, Universidad del País Vasco, UPV-EHU, 48940 Leioa, Vizcaya, Spain
| | - Francisco Javier del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| |
Collapse
|
6
|
Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A, Arnaboldi S. Wireless light-emitting device for the determination of chirality in real samples. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Abbasi R, Liu J, Suarasan S, Wachsmann-Hogiu S. SE-ECL on CMOS: a miniaturized electrochemiluminescence biosensor. LAB ON A CHIP 2022; 22:994-1005. [PMID: 35137754 DOI: 10.1039/d1lc00905b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biosensors exhibit high potential for the detection of analytes of interest at the point-of-need. Over the past two decades, the combination of novel biosensing systems - such as electrochemiluminescence (ECL) biosensors - and advances in microfluidic techniques has allowed the development of lab-on-a-chip devices with enhanced overall performance and simplified sample handling. However, recording data with conventional platforms requires advanced and complicated instruments, such as sensitive photodetectors coupled to microscopes, to capture the photons from the chemiluminescent reaction. In this work, we integrated microfluidic and luminol/hydrogen peroxide ECL systems on a complementary metal-oxide-semiconductor (CMOS) chip for sample handling and data collection on the same platform. This was achieved by the adaptation of a single electrode as an electrochemical transducer and a CMOS chip as a built-in detector. We demonstrated the application of this platform for the detection of uric acid (UA), a biomarker of gout disease. A linear detection range was observed from 25 to 300 μM, with a detection limit (LOD) as low as 26.09 μM. The device showed high reusability and reproducibility within the linear detection range while maintaining high selectivity for UA detection. The analytical performance has also been evaluated in simulated saliva and urine samples, demonstrating the potential utility in medical diagnosis at the point-of-need. Compared to other ECL imaging platforms, this device showed an eightfold increase in photon collection efficiency. Overall, this approach has promising potential as an inexpensive, portable, and efficient ECL platform for measuring analytes at the point-of-need.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC, Canada.
| | - Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal, QC, Canada.
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurean 42, Cluj-Napoca 400271, Romania
| | | |
Collapse
|
8
|
D'Alton L, Carrara S, Barbante GJ, Hoxley D, Hayne DJ, Francis PS, Hogan CF. A simple, low-cost instrument for electrochemiluminescence immunoassays based on a Raspberry Pi and screen-printed electrodes. Bioelectrochemistry 2022; 146:108107. [DOI: 10.1016/j.bioelechem.2022.108107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
|
9
|
Karthik PE, Jothi VR, Pitchaimuthu S, Yi S, Anantharaj S. Alternating Current Techniques for a Better Understanding of Photoelectrocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pitchiah E. Karthik
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Vasanth Rajendiran Jothi
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sudhagar Pitchaimuthu
- Research Centre for Carbon Solutions, Institute of Mechanical, Processing, and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - SungChul Yi
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Department of Hydrogen and Fuel Cell Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sengeni Anantharaj
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
10
|
|
11
|
Bouffier L, Zigah D, Sojic N, Kuhn A. Bipolar (Bio)electroanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:65-86. [PMID: 33940930 DOI: 10.1146/annurev-anchem-090820-093307] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This contribution reviews a selection of the most recent studies on the use of bipolar electrochemistry in the framework of analytical chemistry. Despite the fact that the concept is not new, with several important studies dating back to the middle of the last century, completely novel and very original approaches have emerged over the last decade. This current revival illustrates that scientists still (re)discover some exciting virtues of this approach, which are useful in many different areas, especially for tackling analytical challenges in an unconventional way. In several cases, this "wireless" electrochemistry strategy enables carrying out measurements that are simply not possible with classic electrochemical approaches. This review will hopefully stimulate new ideas and trigger scientists to integrate some aspects of bipolar electrochemistry in their work in order to drive the topic into yet unexplored and eventually completely unexpected directions.
Collapse
Affiliation(s)
- Laurent Bouffier
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Dodzi Zigah
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Alexander Kuhn
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| |
Collapse
|
12
|
Borchers JS, Campbell CR, Van Scoy SB, Clark MJ, Anand RK. Redox Cycling at an Array of Interdigitated Bipolar Electrodes for Enhanced Sensitivity in Biosensing**. ChemElectroChem 2021. [DOI: 10.1002/celc.202100523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Janis S. Borchers
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Claire R. Campbell
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Savanah B. Van Scoy
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Morgan J. Clark
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Robbyn K. Anand
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| |
Collapse
|
13
|
Affiliation(s)
- Kira L. Rahn
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Robbyn K. Anand
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| |
Collapse
|
14
|
Hadjixenis AP, Hrbac J, Prodromidis MI. A compact bipolar electrochemistry device utilizing a liquid free catholyte and eye visual indication of the reporting event for the determination of antioxidant capacity in real-world samples. Talanta 2020; 219:121313. [DOI: 10.1016/j.talanta.2020.121313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/29/2022]
|