1
|
Chen WH, Maheshwaran S, Park YK, Ong HC. Iron-based electrode material composites for electrochemical sensor application in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176128. [PMID: 39255942 DOI: 10.1016/j.scitotenv.2024.176128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
This review explores the expanding role of electrochemical sensors across diverse domains such as environmental monitoring, medical diagnostics, and food quality assurance. In recent years, iron-based electrocatalysts have emerged as promising candidates for enhancing sensor performance. Notable for their non-toxicity, abundance, catalytic activity, and cost-effectiveness, these materials offer significant advantages. However, further investigation is needed to fully understand how iron-based materials' physical, chemical, and electrical properties influence their catalytic performance in sensor applications. It explores the overview of electrochemical sensor technology, examines the impact of iron-based materials and their characteristics on catalytic activity, and investigates various iron-based materials, their advantages, functionalization, and modification techniques. Additionally, the review investigates the application of iron-based electrode material composites in electrochemical sensors for real sample detections. Ultimately, continued research and development in this area promise to unlock new avenues for using iron-based electrode materials in sensor applications.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Selvarasu Maheshwaran
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan.
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
2
|
Wang L, Guo GZ, Wang M, Ruan HY, Wu YP, Wu XQ, Zhang QC, Li DS. Ultrafast Response in Nonenzymatic Electrochemical Glucose Sensing with Ni(II)-MOFs by Dimensional Manipulation. Inorg Chem 2023; 62:16426-16434. [PMID: 37750677 DOI: 10.1021/acs.inorgchem.3c02107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Metal-organic frameworks (MOFs) are emerging as promising candidates for electrochemical glucose sensing owing to their ordered channels, tunable chemistry, and atom-precision metal sites. Herein, the efficient nonenzymatic electrochemical glucose sensing is achieved by taking advantage of Ni(II)-based metal-organic frameworks (Ni(II)-MOFs) and acquiring the ever-reported fastest response time. Three Ni(II)-MOFs ({[Ni6L2(H2O)26]4H2O}n (CTGU-33), {Ni(bib)1/2(H2L)1/2(H2O)3}n (CTGU-34), {Ni(phen)(H2L)1/2(H2O)2}n (CTGU-35)) have been synthesized for the first time, which use benzene-1,2,3,4,5,6-hexacarboxylic acid (H6L) as an organic ligand and introduce 1,4-bis(1-imidazoly)benzene (bib) or 1,10-phenanthroline (phen) as spatially auxiliary ligands. Bib and phen convert the coordination mode of CTGU-33, affording structural dimensions from 2D of CTGU-33 to 3D of CTGU-34 or 1D of CTGU-35. By tuning the dimension of the skeleton, CTGU-34 with 3D interconnected channels exhibits an ultrafast response of less than 0.4 s, which is superior to the existing nonenzymatic electrochemical sensors. Additionally, a low detection limit of 0.12 μM (S/N = 3) and a high sensitivity of 1705 μA mM-1 cm-2 are simultaneously achieved. CTGU-34 further showcases desirable anti-interference and cycling stability, which demonstrates a promising application prospect in the real-time detection of glucose.
Collapse
Affiliation(s)
- Le Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, Hubei, P. R. China
| | - Gui-Zhi Guo
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
- Hanchuan Experimental Senior High School, Hanchuan 432300, Hubei, P. R. China
| | - Meidi Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, Hubei, P. R. China
| | - Heng-Yu Ruan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Ya-Pan Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, Hubei, P. R. China
| | - Xue-Qian Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, Hubei, P. R. China
| | - Qi-Chun Zhang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, Hubei, P. R. China
| |
Collapse
|
3
|
Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Anal Chim Acta 2022; 1233:340362. [DOI: 10.1016/j.aca.2022.340362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
|
4
|
Wang X, Liu Q, Qiu X, Wang Y, Xu H, Liang Q, Wang J, Gao M, Bao J, Chen M. Flexible Electrode for Rapid Glucose Detection Based on CuO Nanoflowers/Stereo‐Graphene Coated on Carbon Cloth. ChemElectroChem 2022. [DOI: 10.1002/celc.202200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao Wang
- Southwest Hospital Department of Clinical Laboratory Medicine CHINA
| | - Qian Liu
- Southwest Hospital Department of Clinical Laboratory Medicine CHINA
| | - Xiaopei Qiu
- Southwest Hospital Department of Clinical Laboratory Medicine CHINA
| | - Yingran Wang
- Southwest Hospital Department of Clinical Laboratory Medicine CHINA
| | - Hanqing Xu
- Southwest Hospital Department of Clinical Laboratory Medicine CHINA
| | - Qingle Liang
- Southwest Hospital Department of Clinical Laboratory Medicine CHINA
| | - Jun Wang
- Southwest Hospital Department of Clinical Laboratory Medicine CHINA
| | - Mingxuan Gao
- Southwest Hospital Department of Clinical Laboratory Medicine CHINA
| | - Jing Bao
- Southwest Hospital Department of Clinical Laboratory Medicine 30 Gaotanyan, Shapingba District 400038 Chongqing CHINA
| | - Ming Chen
- Southwest Hospital Department of Clinical Laboratory Medicine CHINA
| |
Collapse
|
5
|
Fu X, Sale M, Ding B, Lewis W, Silvester DS, Ling CD, D'Alessandro DM. Hydrogen-Bonding 2D Coordination Polymer for Enzyme-Free Electrochemical Glucose Sensing. CrystEngComm 2022. [DOI: 10.1039/d2ce00240j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regular detection of blood glucose levels is a critical indicator for effective diabetes management. Owing to the intrinsic highly sensitive nature of enzymes, the performance of enzymatic glucose sensors is...
Collapse
|