1
|
Shao Y, Xu J, Amardeep A, Xia Y, Meng X, Liu J, Liao S. Lithium-Ion Conductive Coatings for Nickel-Rich Cathodes for Lithium-Ion Batteries. SMALL METHODS 2024; 8:e2400256. [PMID: 38708816 PMCID: PMC11671860 DOI: 10.1002/smtd.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Indexed: 05/07/2024]
Abstract
Nickel (Ni)-rich cathodes are among the most promising cathode materials of lithium batteries, ascribed to their high-power density, cost-effectiveness, and eco-friendliness, having extensive applications from portable electronics to electric vehicles and national grids. They can boost the wide implementation of renewable energies and thereby contribute to carbon neutrality and achieving sustainable prosperity in the modern society. Nevertheless, these cathodes suffer from significant technical challenges, leading to poor cycling performance and safety risks. The underlying mechanisms are residual lithium compounds, uncontrolled lithium/nickel cation mixing, severe interface reactions, irreversible phase transition, anisotropic internal stress, and microcracking. Notably, they have become more serious with increasing Ni content and have been impeding the widespread commercial applications of Ni-rich cathodes. Various strategies have been developed to tackle these issues, such as elemental doping, adding electrolyte additives, and surface coating. Surface coating has been a facile and effective route and has been investigated widely among them. Of numerous surface coating materials, have recently emerged as highly attractive options due to their high lithium-ion conductivity. In this review, a thorough and comprehensive review of lithium-ion conductive coatings (LCCs) are made, aimed at probing their underlying mechanisms for improved cell performance and stimulating new research efforts.
Collapse
Affiliation(s)
- Yijia Shao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & the Key Laboratory of New Energy Technology of Guangdong UniversitiesSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641China
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Jia Xu
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Amardeep Amardeep
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Yakang Xia
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Xiangbo Meng
- Department of Mechanical EngineeringUniversity of ArkansasFayettevilleAR72701USA
| | - Jian Liu
- School of EngineeringFaculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & the Key Laboratory of New Energy Technology of Guangdong UniversitiesSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641China
| |
Collapse
|
2
|
Ye W, He W, Long J, Chen P, Ding B, Dou H, Zhang X. Versatile Composite Binder with Fast Lithium-Ion Transport for LiCoO 2 Cathodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17401-17410. [PMID: 38537112 DOI: 10.1021/acsami.3c17008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The low ionic conductivity of LiCoO2 limits the rate performance of the overall electrode. Here, a polymeric composite binder composed of poly(vinylidene fluoride) (PVDF) and poly(ethylene oxide) (PEO) is reported to efficiently improve the ion transport in the LiCoO2 electrode. This is where the lithium-ion transport channel constructed by oxygen atoms of PEO can afford the electrode a lithium-ion transport number (tLi+) as high as 0.70 with the optimized composite binder in a mass ratio of 1:1 (O5F5), significantly higher than that of traditional PVDF (0.44). As a result, the O5F5 binder endows the LiCoO2 electrode with an impressive capacity of 90 mAh g-1 even at 15 C, which is twice as high as the PVDF electrode. In addition, the initial Coulombic efficiency of the LiCoO2 electrode with the O5F5 binder is close to 100% and the capacity retention is 91% after 100 cycles at 1 C. This study overcomes the problem of slow ion conductivity of the LiCoO2 electrode, providing an easy method for developing high-rate cathode binders.
Collapse
Affiliation(s)
- Wenjun Ye
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wenjie He
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Jiang Long
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Peng Chen
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Bing Ding
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Hui Dou
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
3
|
Li S, Guan C, Zhang W, Li H, Gao X, Zhang S, Li S, Lai Y, Zhang Z. Stabilized Anionic Redox by Rational Structural Design from Surface to Bulk for Long-Life Fast-Charging Li-Rich Oxide Cathodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303539. [PMID: 37287389 DOI: 10.1002/smll.202303539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Indexed: 06/09/2023]
Abstract
On account of high capacity and high voltage resulting from anionic redox, Li-rich layered oxides (LLOs) have become the most promising cathode candidate for the next-generation high-energy-density lithium-ion batteries (LIBs). Unfortunately, the participation of oxygen anion in charge compensation causes lattice oxygen evolution and accompanying structural degradation, voltage decay, capacity attenuation, low initial columbic efficiency, poor kinetics, and other problems. To resolve these challenges, a rational structural design strategy from surface to bulk by a facile pretreatment method for LLOs is provided to stabilize oxygen redox. On the surface, an integrated structure is constructed to suppress oxygen release, electrolyte attack, and consequent transition metals dissolution, accelerate lithium ions transport on the cathode-electrolyte interface, and alleviate the undesired phase transformation. While in the bulk, B doping into Li and Mn layer tetrahedron is introduced to increase the formation energy of O vacancy and decrease the lithium ions immigration barrier energy, bringing about the high stability of surrounding lattice oxygen and outstanding ions transport ability. Benefiting from the specific structure, the designed material with the enhanced structural integrity and stabilized anionic redox performs an excellent electrochemical performance and fast-charging property..
Collapse
Affiliation(s)
- Shihao Li
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Chaohong Guan
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Zhang
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Huangxu Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Xianggang Gao
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Shuai Zhang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Simin Li
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Yanqing Lai
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Zhian Zhang
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
4
|
Zhang X, Xiong J, Chang F, Xu Z, Wang Z, Hall P, Cheng YJ, Xia Y. Sol/Antisolvent Coating for High Initial Coulombic Efficiency and Ultra-stable Mechanical Integrity of Ni-Rich Cathode Materials. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45272-45288. [PMID: 36166735 DOI: 10.1021/acsami.2c10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Ni-rich cathode holds great promise for high energy density lithium-ion batteries because of its high capacity and operating voltage. However, crucial problems such as cation disorder, structural degradation, side reactions, and microcracks become serious with increasing nickel content. Herein, a novel and facile sol/antisolvent coating modification of Ni-rich layered oxide LiNi0.85Co0.1Mn0.05O2 (NCM) is developed where we use ethanol to disperse the nanosized LiBO2 to form the sol and adopt tetrahydrofuran (THF) as antisolvent to prepare the cluster of nanoparticles to be coated on the surface of NCM. The coating thickness can be tuned through the THF addition amount. The LiBO2 nanorod deposition is formed as well over the crack of the NCM cathode, likely acting as a patch to repair the original defect of the intrinsic crack. The uniform LiBO2 nanospherical particle coating together with LiBO2 nanorod wrapping provides a double protection against electrolytes. Compared with the raw material, LiBO2-coated LiNi0.85Co0.1Mn0.05O2 (LiBO2-coated NCM) exhibits a high initial Coulombic efficiency of 90.3% at 0.2 C between 2.8 and 4.3 V vs Li+/Li, a superior rate capability, enhanced fast charge property at 3 C, and restricted microcrack formation. This simple in-site modification and repairing technology guarantees a good mechanical integrity of the polycrystalline Ni-rich cathode.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, PR China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, PR China
| | - Jianwei Xiong
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, PR China
| | - Fengzhen Chang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, PR China
| | - Zhuijun Xu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, PR China
| | - Zheng Wang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, PR China
| | - Philip Hall
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, PR China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo 315100, PR China
| | - Ya-Jun Cheng
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, PR China
| | - Yonggao Xia
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
5
|
Reduction of Surface Residual Lithium Compounds for Single-Crystal LiNi0.6Mn0.2Co0.2O2 via Al2O3 Atomic Layer Deposition and Post-Annealing. COATINGS 2022. [DOI: 10.3390/coatings12010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface residual lithium compounds of Ni-rich cathodes are tremendous obstacles to electrochemical performance due to blocking ion/electron transfer and arousing surface instability. Herein, ultrathin and uniform Al2O3 coating via atomic layer deposition (ALD) coupled with the post-annealing process is reported to reduce residual lithium compounds on single-crystal LiNi0.6Mn0.2Co0.2O2 (NCM622). Surface composition characterizations indicate that LiOH is obviously reduced after Al2O3 growth on NCM622. Subsequent post-annealing treatment causes the consumption of Li2CO3 along with the diffusion of Al atoms into the surface layer of NCM622. The NCM622 modified by Al2O3 coating and post-annealing exhibits excellent cycling stability, the capacity retention of which reaches 92.2% after 300 cycles at 1 C, much higher than that of pristine NCM622 (34.8%). Reduced residual lithium compounds on NCM622 can greatly decrease the formation of LiF and the degree of Li+/Ni2+ cation mixing after discharge–charge cycling, which is the key to the improvement of cycling stability.
Collapse
|