1
|
Crapnell RD, Arantes IVS, Bernalte E, Sigley E, Smith GC, Paixão TRLC, Banks CE. The effects of different plasticisers on the electrochemical performance of bespoke conductive additive manufacturing filaments using recycled PLA. Analyst 2025. [PMID: 40401454 DOI: 10.1039/d4an00969j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
In this work, we report the production, physicochemical, electrochemical, and electroanalytical characterisation of 10 different bespoke additive manufacturing filaments that utilise different chemicals as plasticisers. The inclusion of a plasticiser within a recycled poly(lactic acid) based additive manufacturing filament produced through thermal mixing is required when incorporating high loadings of conductive fillers. All 10 chemicals used in this work acted as suitable plasticisers for producing conductive filaments, allowing the incorporation of 25 wt% carbon black with 65 wt% recycled poly(lactic acid) whilst ensuring excellent low-temperature flexibility and printability. The surfaces of the additive manufactured electrodes were characterised before and after electrochemical activation, revealing a significant increase in the amount of graphitic carbon present after activation in all cases. Through electrochemical characterisation against [Ru(NH3)6]3+ and [Fe(CN)6]4-, as well as through the electroanalytical detection of dopamine, castor oil, tris(2-ethylhexyl) trimellitate, and poly(ethylene glycol) were identified as the best overall performing plasticisers for the production of additively manufactured electrodes.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Dalton Building, Manchester, M1 5GD, Great Britain.
| | - Iana V S Arantes
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Dalton Building, Manchester, M1 5GD, Great Britain.
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Elena Bernalte
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Dalton Building, Manchester, M1 5GD, Great Britain.
| | - Evelyn Sigley
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Dalton Building, Manchester, M1 5GD, Great Britain.
| | - Graham C Smith
- School of Natural Sciences, Faculty of Science, Business and Enterprise, University of Chester, Parkgate Road, Chester CH1 4BJ, UK
| | - Thiago R L C Paixão
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Dalton Building, Manchester, M1 5GD, Great Britain.
| |
Collapse
|
2
|
Vaněčková E, Hrdlička V, Šebera J, Hromadová M, Kocábová J, Sebechlebská T, Kolivoška V. Pencil graphite electrodes for in-situ spectroelectrochemical sensing of reaction intermediates and products in organic solvents. Anal Chim Acta 2024; 1296:342350. [PMID: 38401936 DOI: 10.1016/j.aca.2024.342350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Spectroelectrochemistry (SEC) is a valuable analytical tool providing insights to reaction mechanisms and the structure of species involved in charge transfer reactions. Most of commercial SEC setups are based on platinum working electrodes where the adsorption of species involved in reactions often complicates their analysis. RESULTS In this work, we employ an array of pencil graphite rods as an optically transparent working electrode in a custom-made air-tight thin-layer cell suitable for the SEC analysis performed here in acetonitrile as a representative non-aqueous solvent. The functionality of the device was demonstrated by UV-Vis SEC sensing of charge transfer reactions of ruthenium acetylacetonate, ferrocene and ethylviologen dibromide redox probes performed employing the cyclic voltammetry. The SEC response obtained for all three probes confirmed no adsorption and the absence of oxygen in the cell. Furthermore, we have developed and utilized finite element method numerical simulations considering charge transfer reactions coupled with the diffusional mass transport to model the cyclic voltammetric response and the reaction conversion in the thin-layer SEC cell. SIGNIFICANCE Our work paves the way for easy-to-assemble customized air-tight adsorption-free SEC devices with the manufacturing costs well below those of commercially available platforms. Developed computational approaches have the predictive power for optimizing reaction conditions and the geometry of the SEC cell.
Collapse
Affiliation(s)
- Eva Vaněčková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| | - Vojtěch Hrdlička
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| | - Jakub Šebera
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic
| | - Magdaléna Hromadová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| | - Jana Kocábová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| | - Táňa Sebechlebská
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215, Bratislava 4, Slovak Republic.
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| |
Collapse
|
3
|
Anthi J, Vaněčková E, Spasovová M, Houska M, Vrabcová M, Vogelová E, Holubová B, Vaisocherová-Lísalová H, Kolivoška V. Probing charge transfer through antifouling polymer brushes by electrochemical methods: The impact of supporting self-assembled monolayer chain length. Anal Chim Acta 2023; 1276:341640. [PMID: 37573118 DOI: 10.1016/j.aca.2023.341640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Ultrathin surface-tethered polymer brushes represent attractive platforms for a wide range of sensing applications in strategically vital areas such as medicine, forensics, or security. The recent trends in such developments towards "real world conditions" highlighted the role of zwitterionic poly(carboxybetaine) (pCB) brushes which provide excellent antifouling properties combined with bio-functionalization capacity. Highly dense pCB brushes are usually prepared by the "grafting from" polymerization triggered by initiators on self-assembled monolayers (SAMs). Here, multi-methodological experimental studies are pursued to elucidate the impact of the alkanethiolate SAM chain length (C6, C8 and C11) on structural and functional properties of antifouling poly(carboxybetaine methacrylamide) (pCBMAA) brush. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a custom-made 3D printed cell employing [Ru(NH3)6]3+/2+ redox probe were used to investigate penetrability of SAM/pCBMAA bilayers for small molecules and interfacial charge transfer characteristics. The biofouling resistance of pCBMAA brushes was characterized by surface plasmon resonance; ellipsometry and FT-IRRAS spectroscopy were used to determine swelling and relative density of the brushes synthesized from initiator-bearing SAMs with varied carbon chain length. The SAM length was found to have a substantial impact on all studied characteristics; the highest value of charge transfer resistance (Rct) was observed for denser pCBMAA on longer-chain (C11) SAM when compared to shorter (C8/C6) SAMs. The observed high value of Rct for C11 implies a limitation for the analytical performance of electrochemical sensing methods. At the same time, the pCBMAA brushes on C11 SAM exhibited the best bio-fouling resistance among inspected systems. This demonstrates that proper selection of supporting structures for brushes is critical in the design of these assemblies for biosensing applications.
Collapse
Affiliation(s)
- Judita Anthi
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague, Czech Republic
| | - Eva Vaněčková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic
| | - Monika Spasovová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic
| | - Milan Houska
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic
| | - Markéta Vrabcová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic
| | - Eva Vogelová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic
| | - Barbora Holubová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague, Czech Republic
| | - Hana Vaisocherová-Lísalová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic.
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| |
Collapse
|
4
|
Šikula M, Vaněčková E, Hromadová M, Kolivoška V. Spectroelectrochemical sensing of reaction intermediates and products in an affordable fully 3D printed device. Anal Chim Acta 2023; 1267:341379. [PMID: 37257964 DOI: 10.1016/j.aca.2023.341379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Recent advances in fused deposition modelling 3D printing (FDM 3DP) and synthesis of printable electrically conductive materials enabled the manufacture of customized electrodes and electrochemical devices by this technique. The past couple of years have seen a boom in applying approaches of FDM 3DP in the realm of spectroelectrochemistry (SEC). Despite significant progress, reported designs of SEC devices still rely on conventionally manufactured optical components such as quartz windows and cuvettes. To bridge this technological gap, in this work we apply bi-material FDM 3DP combining electrically conductive and optically translucent filaments to manufacture working electrodes and cells, constituting a fully integrated microfluidic platform for transmission absorption UV-Vis SEC measurements. The cell design enables de-aeration of samples and their convenient handling and analysis. Employing cyclic voltammetric measurements with ruthenium(III) acetylacetonate, ethylviologen dibromide and ferrocenemethanol redox-active probes as model analytes, we demonstrate that the presented platform allows SEC sensing of reactants, intermediates and products of charge transfer reactions, including the inspection of their long-term stability. Approaches developed and presented in this work pave the way for manufacturing customized SEC devices with dramatically reduced costs compared to currently available commercial platforms.
Collapse
Affiliation(s)
- Martin Šikula
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic.
| | - Eva Vaněčková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic.
| | - Magdaléna Hromadová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic.
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223, Prague, Czech Republic.
| |
Collapse
|
5
|
Dakošová O, Melníková E, Naumowicz M, Kolivoška V, Vaněčková E, Navrátil T, Labuda J, Veteška P, Gál M. Direct electrochemical determination of environmentally harmful pharmaceutical ciprofloxacin in 3D printed flow-through cell. CHEMOSPHERE 2023; 313:137517. [PMID: 36495982 DOI: 10.1016/j.chemosphere.2022.137517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Rising amounts of antibiotic residues in wastewater cause serious problems including increased bacterial resistance. Wastewater treatment plants (WWTPs) do not, in the case of new, modern pharmaceuticals, ensure their complete removal. Ciprofloxacin (CIP) is one of many micropollutants that partially pass through WWTPs, implying that its monitoring is essential for the assessment of the water quality. In real sewage systems, the determination of CIP needs to be performed under flowing conditions, which calls for the deployment of inexpensive, robust, and easily integrable approaches such as electrochemical techniques. However, to the best of our knowledge, there is no report on the electrochemical determination of CIP in a flowing matrix. To bridge this gap, we perform here cyclic and square-wave voltammetric sensing study of CIP employing boron-doped diamond screen printed electrodes in a custom-made 3D printed flow-through cell to mimic conditions in real sewage systems. An irreversible two-step oxidation of CIP is demonstrated, with the first step providing clear Faradaic response as analytically relevant signal. This response was found to scale with the sample flow rate according to the prediction given by Levich equation. Our work provides an in-depth inspection of the electrochemical response of CIP under controlled-convection conditions, which is an essential prerequisite for monitoring this antibiotic in real flowing sewage systems.
Collapse
Affiliation(s)
- Olívia Dakošová
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 821 37 Bratislava, Slovakia
| | - Eva Melníková
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 821 37 Bratislava, Slovakia
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Białystok, Poland.
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague, Czech Republic.
| | - Eva Vaněčková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague, Czech Republic
| | - Tomáš Navrátil
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague, Czech Republic
| | - Ján Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 821 37 Bratislava, Slovakia
| | - Peter Veteška
- Department of Inorganic Materials, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 821 37 Bratislava, Slovakia
| | - Miroslav Gál
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 821 37 Bratislava, Slovakia.
| |
Collapse
|
6
|
Printing parameters affect the electrochemical performance of 3D-printed carbon electrodes obtained by fused deposition modeling. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Sebechlebská T, Vaněčková E, Choińska-Młynarczyk MK, Navrátil T, Poltorak L, Bonini A, Vivaldi F, Kolivoška V. 3D Printed Platform for Impedimetric Sensing of Liquids and Microfluidic Channels. Anal Chem 2022; 94:14426-14433. [PMID: 36200526 PMCID: PMC9951178 DOI: 10.1021/acs.analchem.2c03191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
Abstract
Fused deposition modeling 3D printing (FDM-3DP) employing electrically conductive filaments has recently been recognized as an exceptionally attractive tool for the manufacture of sensing devices. However, capabilities of 3DP electrodes to measure electric properties of materials have not yet been explored. To bridge this gap, we employ bimaterial FDM-3DP combining electrically conductive and insulating filaments to build an integrated platform for sensing conductivity and permittivity of liquids by impedance measurements. The functionality of the device is demonstrated by measuring conductivity of aqueous potassium chloride solution and bottled water samples and permittivity of water, ethanol, and their mixtures. We further implement an original idea of applying impedance measurements to investigate dimensions of 3DP channels as base structures of microfluidic devices, complemented by their optical microscopic analysis. We demonstrate that FDM-3DP allows the manufacture of microchannels of width down to 80 μm.
Collapse
Affiliation(s)
- Táňa Sebechlebská
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, 84215Bratislava 4, Slovakia
| | - Eva Vaněčková
- J.
Heyrovsky Institute of Physical Chemistry of the Czech Academy of
Sciences, Dolejskova
3, 18223Prague, Czech Republic
| | | | - Tomáš Navrátil
- J.
Heyrovsky Institute of Physical Chemistry of the Czech Academy of
Sciences, Dolejskova
3, 18223Prague, Czech Republic
| | - Lukasz Poltorak
- Department
of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403Lodz, Poland
| | - Andrea Bonini
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124Pisa, Italy
| | - Federico Vivaldi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124Pisa, Italy
| | - Viliam Kolivoška
- J.
Heyrovsky Institute of Physical Chemistry of the Czech Academy of
Sciences, Dolejskova
3, 18223Prague, Czech Republic
| |
Collapse
|
8
|
Additively manufactured electrodes for the electrochemical detection of hydroxychloroquine. Talanta 2022; 250:123727. [PMID: 35850056 PMCID: PMC9262657 DOI: 10.1016/j.talanta.2022.123727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022]
Abstract
Although studies have demonstrated the inactivity of hydroxychloroquine (HCQ) towards SARS-CoV-2, this compound was one of the most prescribed by medical organizations for the treatment of hospitalized patients during the coronavirus pandemic. As a result of it, HCQ has been considered as a potential emerging contaminant in aquatic environments. In this context, we propose a complete electrochemical device comprising cell and working electrode fabricated by the additive manufacture (3D-printing) technology for HCQ monitoring. For this, a 3D-printed working electrode made of a conductive PLA containing carbon black assembled in a 3D-printed cell was associated with square wave voltammetry (SWV) for the fast and sensitive determination of HCQ. After a simple surface activation procedure, the proposed 3D-printed sensor showed a linear response towards HCQ detection (0.4-7.5 μmol L-1) with a limit of detection of 0.04 μmol L-1 and precision of 2.4% (n = 10). The applicability of this device was shown to the analysis of pharmaceutical and water samples. Recovery values between 99 and 112% were achieved for tap water samples and, in addition, the obtained concentration values for pharmaceutical tablets agreed with the values obtained by spectrophotometry (UV region) at a 95% confidence level. The proposed device combined with portable instrumentation is promising for on-site HCQ detection.
Collapse
|
9
|
Bui JC, Lees EW, Pant LM, Zenyuk IV, Bell AT, Weber AZ. Continuum Modeling of Porous Electrodes for Electrochemical Synthesis. Chem Rev 2022; 122:11022-11084. [PMID: 35507321 DOI: 10.1021/acs.chemrev.1c00901] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electrochemical synthesis possesses substantial promise to utilize renewable energy sources to power the conversion of abundant feedstocks to value-added commodity chemicals and fuels. Of the potential system architectures for these processes, only systems employing 3-D structured porous electrodes have the capacity to achieve the high rates of conversion necessary for industrial scale. However, the phenomena and environments in these systems are not well understood and are challenging to probe experimentally. Fortunately, continuum modeling is well-suited to rationalize the observed behavior in electrochemical synthesis, as well as to ultimately provide recommendations for guiding the design of next-generation devices and components. In this review, we begin by presenting an historical review of modeling of porous electrode systems, with the aim of showing how past knowledge of macroscale modeling can contribute to the rising challenge of electrochemical synthesis. We then present a detailed overview of the governing physics and assumptions required to simulate porous electrode systems for electrochemical synthesis. Leveraging the developed understanding of porous-electrode theory, we survey and discuss the present literature reports on simulating multiscale phenomena in porous electrodes in order to demonstrate their relevance to understanding and improving the performance of devices for electrochemical synthesis. Lastly, we provide our perspectives regarding future directions in the development of models that can most accurately describe and predict the performance of such devices and discuss the best potential applications of future models.
Collapse
Affiliation(s)
- Justin C Bui
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eric W Lees
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biological Engineering, University of British Columbia Vancouver, British Columbia V6T 1Z3, Canada
| | - Lalit M Pant
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Sustainable Energy Engineering, Indian Institute of Technology, Kanpur, Kanpur-208016, India
| | - Iryna V Zenyuk
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Alexis T Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Adam Z Weber
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Vivaldi F, Sebechlebská T, Vaněčková E, Biagini D, Bonini A, Kolivoška V. Electric conductivity measurements employing 3D printed electrodes and cells. Anal Chim Acta 2022; 1203:339600. [DOI: 10.1016/j.aca.2022.339600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
|
11
|
Stefano JS, Guterres E Silva LR, Rocha RG, Brazaca LC, Richter EM, Abarza Muñoz RA, Janegitz BC. New conductive filament ready-to-use for 3D-printing electrochemical (bio)sensors: Towards the detection of SARS-CoV-2. Anal Chim Acta 2022; 1191:339372. [PMID: 35033268 PMCID: PMC9381826 DOI: 10.1016/j.aca.2021.339372] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
The 3D printing technology has gained ground due to its wide range of applicability. The development of new conductive filaments contributes significantly to the production of improved electrochemical devices. In this context, we report a simple method to producing an efficient conductive filament, containing graphite within the polymer matrix of PLA, and applied in conjunction with 3D printing technology to generate (bio)sensors without the need for surface activation. The proposed method for producing the conductive filament consists of four steps: (i) mixing graphite and PLA in a heated reflux system; (ii) recrystallization of the composite; (iii) drying and; (iv) extrusion. The produced filament was used for the manufacture of electrochemical 3D printed sensors. The filament and sensor were characterized by physicochemical techniques, such as SEM, TGA, Raman, FTIR as well as electrochemical techniques (EIS and CV). Finally, as a proof-of-concept, the fabricated 3D-printed sensor was applied for the determination of uric acid and dopamine in synthetic urine and used as a platform for the development of a biosensor for the detection of SARS-CoV-2. The developed sensors, without pre-treatment, provided linear ranges of 0.5-150.0 and 5.0-50.0 μmol L-1, with low LOD values (0.07 and 0.11 μmol L-1), for uric acid and dopamine, respectively. The developed biosensor successfully detected SARS-CoV-2 S protein, with a linear range from 5.0 to 75.0 nmol L-1 (0.38 μg mL-1 to 5.74 μg mL-1) and LOD of 1.36 nmol L-1 (0.10 μg mL-1) and sensitivity of 0.17 μA nmol-1 L (0.01 μA μg-1 mL). Therefore, the lab-made produced and the ready-to-use conductive filament is promising and can become an alternative route for the production of different 3D electrochemical (bio)sensors and other types of conductive devices by 3D printing.
Collapse
Affiliation(s)
- Jéssica Santos Stefano
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil.
| | - Luiz Ricardo Guterres E Silva
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil
| | - Raquel Gomes Rocha
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Laís Canniatti Brazaca
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970, São Carlos, São Paulo, Brazil; National Institute of Science and Technology in Bioanalysis-INCTBio, 13083-970, Campinas, São Paulo, Brazil
| | - Eduardo Mathias Richter
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil; National Institute of Science and Technology in Bioanalysis-INCTBio, 13083-970, Campinas, São Paulo, Brazil
| | - Rodrigo Alejandro Abarza Muñoz
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil; National Institute of Science and Technology in Bioanalysis-INCTBio, 13083-970, Campinas, São Paulo, Brazil.
| | - Bruno Campos Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil.
| |
Collapse
|