1
|
Li M, Wang M, Wang Q, Cao Y, Gao J, Wang Z, Gao M, Duan G, Cao F. In-Situ Construction of Fe-Doped NiOOH on the 3D Ni(OH) 2 Hierarchical Nanosheet Array for Efficient Electrocatalytic Oxygen Evolution Reaction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4670. [PMID: 39336414 PMCID: PMC11434255 DOI: 10.3390/ma17184670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Accessible and superior electrocatalysts to overcome the sluggish oxygen evolution reaction (OER) are pivotal for sustainable and low-cost hydrogen production through electrocatalytic water splitting. The iron and nickel oxohydroxide complexes are regarded as the most promising OER electrocatalyst attributed to their inexpensive costs, easy preparation, and robust stability. In particular, the Fe-doped NiOOH is widely deemed to be superior constituents for OER in an alkaline environment. However, the facile construction of robust Fe-doped NiOOH electrocatalysts is still a great challenge. Herein, we report the facile construction of Fe-doped NiOOH on Ni(OH)2 hierarchical nanosheet arrays grown on nickel foam (FeNi@NiA) as efficient OER electrocatalysts through a facile in-situ electrochemical activation of FeNi-based Prussian blue analogues (PBA) derived from Ni(OH)2. The resultant FeNi@NiA heterostructure shows high intrinsic activity for OER due to the modulation of the overall electronic energy state and the electrical conductivity. Importantly, the electrochemical measurement revealed that FeNi@NiA exhibits a low overpotential of 240 mV at 10 mA/cm2 with a small Tafel slope of 62 mV dec-1 in 1.0 M KOH, outperforming the commercial RuO2 electrocatalysts for OER.
Collapse
Affiliation(s)
- Mengyang Li
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (M.L.); (M.W.); (Q.W.); (Y.C.); (J.G.); (Z.W.); (M.G.)
| | - Mingran Wang
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (M.L.); (M.W.); (Q.W.); (Y.C.); (J.G.); (Z.W.); (M.G.)
| | - Qianwei Wang
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (M.L.); (M.W.); (Q.W.); (Y.C.); (J.G.); (Z.W.); (M.G.)
| | - Yang Cao
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (M.L.); (M.W.); (Q.W.); (Y.C.); (J.G.); (Z.W.); (M.G.)
| | - Jie Gao
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (M.L.); (M.W.); (Q.W.); (Y.C.); (J.G.); (Z.W.); (M.G.)
| | - Zhicheng Wang
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (M.L.); (M.W.); (Q.W.); (Y.C.); (J.G.); (Z.W.); (M.G.)
| | - Meiqi Gao
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (M.L.); (M.W.); (Q.W.); (Y.C.); (J.G.); (Z.W.); (M.G.)
| | - Guosheng Duan
- School of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Feng Cao
- Key Lab for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (M.L.); (M.W.); (Q.W.); (Y.C.); (J.G.); (Z.W.); (M.G.)
| |
Collapse
|
2
|
Marimuthu S, Shankar A, Maduraiveeran G. FeCoP nanosheets on NiO nanoparticles as electrocatalysts: tuning and stabilizing active sites for water splitting. Chem Commun (Camb) 2023; 59:2600-2603. [PMID: 36756796 DOI: 10.1039/d2cc06386g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Herein, we demonstrate a novel strategy for tailoring and stabilizing the interface of active sites on hierarchical three-dimensional (3D) iron-cobalt phosphide (Fe1-xCoxP) nanosheets on nickel oxide nanoparticles for overall water splitting. The developed bifunctional electrode required an overpotential of only ∼158 mV and ∼74 mV to attain 10 mA cm-2 for oxygen evolution and hydrogen evolution reactions, respectively, with excellent durability over 100 h in 1.0 M KOH via engineering interfacial active sites, revealing the progress in the development of electrocatalytic activity.
Collapse
Affiliation(s)
- Sundaramoorthy Marimuthu
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603 203, India.
| | - Ayyavu Shankar
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603 203, India.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603 203, India.
| |
Collapse
|
3
|
2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
4
|
Shen L, Tang S, Yu L, Huang Q, Zhou T, Yang S, Yu H, Xiong H, Xu M, Zhong X, Zhang L. Efficient ternary CeFeCoP bifunctional electrocatalyst for overall water splitting. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Battiato S, Bruno L, Pellegrino AL, Terrasi A, Mirabella S. ×Optimized electroless deposition of NiCoP electrocalysts for enhanced water splitting. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Guo F, Liu Z, Zhang Y, Xiao J, Zeng X, Zhang C, Dong P, Liu T, Zhang Y, Li M. Tiny Ni Nanoparticles Embedded in Boron- and Nitrogen-Codoped Porous Carbon Nanowires for High-Efficiency Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24447-24461. [PMID: 35604016 DOI: 10.1021/acsami.2c04956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The integration of nickel (Ni) nanoparticle (NP)-embedded carbon layers (Ni@C) into the three-dimensional (3D) hierarchically porous carbon architectures, where ultrahigh boron (B) and nitrogen (N) doping is a potential methodology for boosting Ni catalysts' water splitting performances, was achieved. In this study, the novel 3D ultrafine Ni NP-embedded and B- and N-codoped hierarchically porous carbon nanowires (denoted as Ni@BNPCFs) were successfully synthesized via pyrolysis of the corresponding 3D nickel acetate [Ni(AC)2·4H2O]-hydroxybenzeneboronic acid-polyvinylpyrrolidone precursor networks woven by electrospinning. After optimizing the pyrolysis temperatures, various structural and morphological characterization analyses indicate that the optimal Ni@BNPCFs-900 networks own a large surface area, abundant micro/mesopores, and vast carbon edges/defects, which boost doping a large amount of B (5.81 atom %) and N (5.84 atom %) dopants into carbon frameworks with 6.36 atom % of BC3, pyridinic-N (pyridinic-N-Ni), and graphitic-N active sites. Electrochemical measurements demonstrate that Ni@BNPCFs-900 reveals the best hydrogen evolution reaction (HER) and oxygen reduction reaction catalytic activities in an alkaline solution. The HER potential at 10 mA cm-2 [E10 = -164.2 mV vs reversible hydrogen electrode (RHE)] of the optimal Ni@BNPCFs-900 is just 96.2 mV more negative than that of the state-of-the-art 20 wt % Pt/C (E10 = -68 mV vs RHE). In particular, the OER E10 and Tafel slope of the optimal Ni@BNPCFs-900 (1.517 V vs RHE and 19.31 mV dec-1) are much smaller than those of RuO2 (1.557 V vs RHE and 64.03 mV dec-1). For full water splitting, the catalytic current density achieves 10 mA cm-2 at a low cell voltage of 1.584 V for the (-) Ni@BNPCFs-900||Ni@BNPCFs-900 (+) electrolysis cell, which is 10 mV smaller than that of the (-) 20 wt % Pt/C||RuO2 (+) benchmark (1.594 V) under the same conditions. The synergistic effects of 3D hierarchically porous structures, advanced charge transport ability, and abundant active centers [such as Ni@BNC, BC3, pyridinic-N (pyridinic-N-Ni), and graphitic-N] are responsible for the excellent water-splitting catalytic activity of the Ni@BNPCFs-900 networks. Especially, because of the remarkable structural and chemical stabilities of 3D hierarchically porous Ni@BNPCFs-900 networks, the (-) Ni@BNPCFs-900||Ni@BNPCFs-900 (+) water electrolysis cell displays an excellent stability.
Collapse
Affiliation(s)
- Fei Guo
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Zhuo Liu
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Yiyong Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Jie Xiao
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Xiaoyuan Zeng
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Chengxu Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Peng Dong
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Tingting Liu
- School of Materials and Energy, Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, No. 2, Green Lake North Road, Kunming 650091, PR China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Mian Li
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| |
Collapse
|
7
|
Nano-control synthesis the porous network of NiCoP and F doped NiCo2Al-LDHs@ZnFeAl-LDHs nanosheets as superior catalyst for efficient overall water splitting. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Li H, Yang S, Wei W, Zhang M, Jiang Z, Yan Z, Xie J. Chrysanthemum-like FeS/Ni 3S 2 heterostructure nanoarray as a robust bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2022; 608:536-548. [PMID: 34626995 DOI: 10.1016/j.jcis.2021.09.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
The development of a scalable strategy to prepare highly efficient and stable bifunctional electrocatalysts is the key to industrial electrocatalytic water splitting cycles to produce clean hydrogen. Here, a simple and quick one-step hydrothermal method was used to successfully fabricate a three-dimensional core chrysanthemum-like FeS/Ni3S2 heterogeneous nanoarray (FeS/Ni3S2@NF) on a porous nickel foam skeleton. Compared with the monomer Ni3S2@NF, the chrysanthemum-like FeS/ Ni3S2@NF heterostructure nanomaterials have improved catalytic performance in alkaline media, showing low overpotentials of 192 mV (η10) and 130 mV (η-10) for OER and HER, respectively. This study attests that integrated interface engineering and precise morphology control are effective strategies for activating the Ni3+/Ni2+ coupling, promoting charge transfer and improving the intrinsic activity of the material to accelerate the OER reaction kinetics and promote the overall water splitting performance. The scheme can be reasonably applied to the design and development of transition metal sulfide-based electrocatalysts to put into industrial practice of electrochemical water oxidation.
Collapse
Affiliation(s)
- Hui Li
- School of Chemistry & Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang, PR China
| | - Shilong Yang
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, 159 Longpan Road, 210037 Nanjing, PR China
| | - Wei Wei
- School of Chemistry & Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang, PR China.
| | - Mingmei Zhang
- School of Chemistry & Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang, PR China
| | - Zhifeng Jiang
- School of Chemistry & Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang, PR China
| | - Zaoxue Yan
- School of Chemistry & Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang, PR China
| | - Jimin Xie
- School of Chemistry & Chemical Engineering, Center of Analysis and Test, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|