1
|
Lin MH, Kuo YT, Danglad-Flores J, Sletten ET, Seeberger PH. Parametric Analysis of Donor Activation for Glycosylation Reactions. Chemistry 2024; 30:e202400479. [PMID: 38545936 DOI: 10.1002/chem.202400479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Indexed: 04/18/2024]
Abstract
The chemical synthesis of complex oligosaccharides relies on efficient and highly reproducible glycosylation reactions. The outcome of a glycosylation is contingent upon several environmental factors, such as temperature, acidity, the presence of residual moisture, as well as the steric, electronic, and conformational aspects of the reactants. Each glycosylation proceeds rapidly and with a high yield within a rather narrow temperature range. For better control over glycosylations and to ensure fast and reliable reactions, a systematic analysis of 18 glycosyl donors revealed the effect of reagent concentration, water content, protecting groups, and structure of the glycosyl donors on the activation temperature. With these insights, we parametrize the first step of the glycosylation reaction to be executed reliably and efficiently.
Collapse
Affiliation(s)
- Mei-Huei Lin
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Yan-Ting Kuo
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
- GlycoUniverseGmbH&Co.KGaA, Am Mühlenberg 11, 14476, Potsdam, Germany
| | - José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
2
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
3
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
5
|
Dhara D, Dhara A, Murphy PV, Mulard LA. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydr Res 2022; 521:108644. [PMID: 36030632 DOI: 10.1016/j.carres.2022.108644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chemical synthesis is a powerful tool to access homogeneous complex glycans, which relies on protecting group (PG) chemistry. However, the overall efficiency of chemical glycan assembly is still low when compared to oligonucleotide or oligopeptide synthesis. There have been many contributions giving rise to collective improvement in carbohydrate synthesis that includes PG manipulation and stereoselective glycoside formation and some of this chemistry has been transferred to the solid phase or adapted for programmable one pot synthesis approaches. However, after all glycoside bond formation reactions are completed, the global deprotection (GD) required to give the desired target OS can be challenging. Difficulties observed in the removal of permanent PGs to release the desired glycans can be due to the number and diversity of PGs present in the protected OSs, nature and structural complexity of glycans, etc. Here, we have reviewed the difficulties associated with the removal of PGs from densely protected OSs to obtain their free glycans. In particularly, this review focuses on the challenges associated with hydrogenolysis of benzyl groups, saponification of esters and functional group interconversion such as oxidation/reduction that are commonly performed in GD stage. More generally, problems observed in the removal of permanent PGs is reviewed herein, including benzyl, acyl (levulinoyl, acetyl), N-trichloroacetyl, N-2,2,2-trichloroethoxycarbonyl, N-phthaloyl etc. from a number of fully protected OSs to release the free sugar, that have been previously reported in the literature.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France
| |
Collapse
|
6
|
Cattin M, Bruxelle JF, Ng K, Blaukopf M, Pantophlet R, Kosma P. Synthetic neoglycoconjugates of hepta- and nonamannoside ligands for eliciting oligomannose-specific HIV-1-neutralizing antibodies. Chembiochem 2022; 23:e202200061. [PMID: 35104013 PMCID: PMC9108342 DOI: 10.1002/cbic.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/01/2022] [Indexed: 11/08/2022]
Abstract
Oligomannose-type glycans on the spike protein of HIV-1 constitute relevant epitopes to elicit broadly neutralizing antibodies (bnAbs). Herein we describe an improved synthesis of α- and β-linked hepta- and nonamannosyl ligands that, subsequently, were converted into BSA and CRM 197 neoglycoconjugates. We assembled the ligands from anomeric 3-azidopropyl spacer glycosides from select 3-O-protected thiocresyl mannoside donors. Chain extensions were achieved using 4+3 or 4+5 block synthesis of thiocresyl and trichloroacetimidate glycosyl donors. Subsequent global deprotection generated the 3-aminopropyl oligosaccharide ligands. ELISA binding data obtained with the β-anomeric hepta- and nonamannosyl conjugates with a selection of HIV-1 bnAbs showed comparable binding of both mannosyl ligands by Fab fragments yet lesser binding of the nonasaccharide conjugate by the corresponding IgG antibodies. These results support previous observations that a complete Man 9 structure might not be the preferred antigenic binding motif for some oligomannose-specific antibodies and have implications for glycoside designs to elicit oligomannose-targeted HIV-1-neutralizing antibodies.
Collapse
Affiliation(s)
- Matteo Cattin
- University of Natural Resources and Life Sciences: Universitat fur Bodenkultur Wien, Chemistry, Muthgasse 18, A 1190, Vienna, AUSTRIA
| | - Jean-François Bruxelle
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, Burnaby, CANADA
| | - Kurtis Ng
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, CANADA
| | - Markus Blaukopf
- University of Natural Resources and Life Sciences Vienna: Universitat fur Bodenkultur Wien, Chemistry, AUSTRIA
| | - Ralph Pantophlet
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, V5A 1S6, Burnaby, CANADA
| | - Paul Kosma
- University of Natural Resources and Life Sciences, Chemistry, Muthgasse 18, A 1190, Vienna, AUSTRIA
| |
Collapse
|
7
|
Crawford CJ, Qiao Y, Liu Y, Huang D, Yan W, Seeberger PH, Oscarson S, Chen S. Defining the Qualities of High-Quality Palladium on Carbon Catalysts for Hydrogenolysis. Org Process Res Dev 2021; 25:1573-1578. [PMID: 34305386 PMCID: PMC8291771 DOI: 10.1021/acs.oprd.0c00536] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 11/30/2022]
Abstract
Palladium-catalyzed hydrogenolysis is often the final step in challenging natural product total syntheses and a key step in industrial processes producing fine chemicals. Here, we demonstrate that there is wide variability in the efficiency of commercial sources of palladium on carbon (Pd/C) resulting in significant differences in selectivity, reaction times, and yields. We identified the physicochemical properties of efficient catalysts for hydrogenolysis: (1) small Pd/PdO particle size (2) homogeneous distribution of Pd/PdO on the carbon support, and (3) palladium oxidation state are good predictors of catalytic efficiency. Now chemists can identify and predict a catalyst's efficiency prior to the use of valuable synthetic material and time.
Collapse
Affiliation(s)
- Conor J Crawford
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Yan Qiao
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| | - Yequn Liu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| | - Dongmei Huang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| | - Wenjun Yan
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Shuai Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| |
Collapse
|
8
|
Chang CW, Lin MH, Chan CK, Su KY, Wu CH, Lo WC, Lam S, Cheng YT, Liao PH, Wong CH, Wang CC. Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions. Angew Chem Int Ed Engl 2021; 60:12413-12423. [PMID: 33634934 DOI: 10.1002/anie.202013909] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/07/2021] [Indexed: 12/17/2022]
Abstract
The stereoselectivity and yield in glycosylation reactions are paramount but unpredictable. We have developed a database of acceptor nucleophilic constants (Aka) to quantify the nucleophilicity of hydroxyl groups in glycosylation influenced by the steric, electronic and structural effects, providing a connection between experiments and computer algorithms. The subtle reactivity differences among the hydroxyl groups on various carbohydrate molecules can be defined by Aka, which is easily accessible by a simple and convenient automation system to assure high reproducibility and accuracy. A diverse range of glycosylation donors and acceptors with well-defined reactivity and promoters were organized and processed by the designed software program "GlycoComputer" for prediction of glycosylation reactions without involving sophisticated computational processing. The importance of Aka was further verified by random forest algorithm, and the applicability was tested by the synthesis of a Lewis A skeleton to show that the stereoselectivity and yield can be accurately estimated.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Kuan-Yu Su
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wei-Chih Lo
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Sarah Lam
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Ting Cheng
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Pin-Hsuan Liao
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Huey Wong
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.,Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, 92037, USA
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
9
|
Chang C, Lin M, Chan C, Su K, Wu C, Lo W, Lam S, Cheng Y, Liao P, Wong C, Wang C. Automated Quantification of Hydroxyl Reactivities: Prediction of Glycosylation Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chun‐Wei Chang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Mei‐Huei Lin
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Chieh‐Kai Chan
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Kuan‐Yu Su
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Chia‐Hui Wu
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Wei‐Chih Lo
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Sarah Lam
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Yu‐Ting Cheng
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Pin‐Hsuan Liao
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Chi‐Huey Wong
- The Genomics Research Center Academia Sinica Taipei 115 Taiwan
- Department of Chemistry The Scripps Research Institute 10550 N Torrey Pines Road La Jolla 92037 USA
| | - Cheng‐Chung Wang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
- Chemical Biology and Molecular Biophysics Program Taiwan International Graduate Program (TIGP) Academia Sinica Taipei 115 Taiwan
| |
Collapse
|
10
|
Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13090211. [PMID: 32859124 PMCID: PMC7558951 DOI: 10.3390/ph13090211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In the last decades, organoselenium compounds gained interest due to their important biological features. However, the lack of solubility, which characterizes most of them, makes their actual clinical exploitability a hard to reach goal. Selenosugars, with their intrinsic polarity, do not suffer from this issue and as a result, they can be conceived as a useful alternative. The aim of this review is to provide basic knowledge of the synthetic aspects of selenosugars, selenonium salts, selenoglycosides, and selenonucleotides. Their biological properties will be briefly detailed. Of course, it will not be a comprehensive dissertation but an analysis of what the authors think is the cream of the crop of this interesting research topic.
Collapse
|
11
|
Crawford C, Oscarson S. Optimized Conditions for the Palladium-Catalyzed Hydrogenolysis of Benzyl and Naphthylmethyl Ethers: Preventing Saturation of Aromatic Protecting Groups. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Conor Crawford
- School of Chemistry; University College Dublin; Belfield 4 Dublin Ireland
| | - Stefan Oscarson
- School of Chemistry; University College Dublin; Belfield 4 Dublin Ireland
| |
Collapse
|
12
|
Thalgaspitiya WRK, Kankanam Kapuge T, He J, Kerns P, Meguerdichian AG, Suib SL. A novel, mesoporous molybdenum doped titanium dioxide/reduced graphene oxide composite as a green, highly efficient solid acid catalyst for acetalization. Dalton Trans 2020; 49:3786-3795. [DOI: 10.1039/c9dt03633d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel, mesoporous molybdenum doped titanium dioxide-reduced graphene oxide composite is synthesized as a highly efficient heterogeneous solid acid catalyst.
Collapse
Affiliation(s)
| | | | - Junkai He
- Institute of Materials Science
- University of Connecticut
- Storrs
- USA
| | | | | | - Steven L. Suib
- Department of Chemistry
- Storrs
- USA
- Institute of Materials Science
- University of Connecticut
| |
Collapse
|
13
|
Bera S, Mondal D. A role for ultrasound in the fabrication of carbohydrate-supported nanomaterials. J Ultrasound 2019; 22:131-156. [PMID: 30811013 PMCID: PMC6531602 DOI: 10.1007/s40477-019-00363-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/24/2019] [Indexed: 01/02/2023] Open
Abstract
Nowadays, sonication is a well-known technique for the fabrication and surface modification of nanomaterials with various sizes, shapes, and chemical and physical properties. In addition to conducting catalyst-mediated chemical reactions and enhancing medicinal properties, such as antibacterial and antifungal activities, nanoparticles made from biodegradable and biocompatible carbohydrate coatings and glycosidic frameworks offer exciting opportunities for the development of biomaterials, optical sensors, packaging materials, agricultural products, and food. This review article discusses the synthesis of carbohydrate-coated nanoparticles by ultrasound radiation as well as the many applications of these nanoparticles.
Collapse
Affiliation(s)
- Smritilekha Bera
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| | - Dhananjoy Mondal
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| |
Collapse
|
14
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
15
|
Zhang Y, Meng C, Jin L, Chen X, Wang F, Cao H. Chemoenzymatic synthesis of α-dystroglycan core M1 O-mannose glycans. Chem Commun (Camb) 2015; 51:11654-7. [PMID: 26100261 PMCID: PMC4617230 DOI: 10.1039/c5cc02913a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The diversity-oriented chemoenzymatic synthesis of α-dystroglycan (α-DG) core M1 O-mannose glycans has been achieved via a three-step sequential one-pot multienzyme (OPME) glycosylation of a chemically prepared disaccharyl serine intermediate. The high flexibility and efficiency of this chemoenzymatic strategy was demonstrated for the synthesis of three more complex core M1 O-mannose glycans for the first time along with three previously reported core M1 structures.
Collapse
Affiliation(s)
- Yan Zhang
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Caicai Meng
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Lan Jin
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Fengshan Wang
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
- Key Laboratory of Chemical Biology(Ministry of Education), Shandong University, Jinan 250012, China
| | - Hongzhi Cao
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| |
Collapse
|
16
|
Bera S, Mondal D, Martin JT, Singh M. Potential effect of ultrasound on carbohydrates. Carbohydr Res 2015; 410:15-35. [DOI: 10.1016/j.carres.2015.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
|
17
|
Zulueta MML, Janreddy D, Hung SC. One-Pot Methods for the Protection and Assembly of Sugars. Isr J Chem 2015. [DOI: 10.1002/ijch.201400171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Kozioł A, Lendzion-Paluch A, Manikowski A. A Fast and Effective Hydrogenation Process of Protected Pentasaccharide: A Key Step in the Synthesis of Fondaparinux Sodium. Org Process Res Dev 2013. [DOI: 10.1021/op300367c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anna Kozioł
- Organic Synthesis Laboratory, Adamed Sp. z o.o., Pienków 149, 05-152 Czosnów, Poland
| | - Anna Lendzion-Paluch
- Organic Synthesis Laboratory, Adamed Sp. z o.o., Pienków 149, 05-152 Czosnów, Poland
| | - Andrzej Manikowski
- Organic Synthesis Laboratory, Adamed Sp. z o.o., Pienków 149, 05-152 Czosnów, Poland
| |
Collapse
|
19
|
Swarts BM, Guo Z. Chemical synthesis of glycosylphosphatidylinositol anchors. Adv Carbohydr Chem Biochem 2012; 67:137-219. [PMID: 22794184 DOI: 10.1016/b978-0-12-396527-1.00004-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Kumar AA, Illyés TZ, Kövér KE, Szilágyi L. Convenient syntheses of 1,2-trans selenoglycosides using isoselenuronium salts as glycosylselenenyl transfer reagents. Carbohydr Res 2012; 360:8-18. [PMID: 22975274 DOI: 10.1016/j.carres.2012.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/10/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Se-glycosyl-isoselenuronium salts such as three and four which can be prepared in one high-yielding step from acetohalogeno sugars proved to be convenient starting materials for the syntheses of a variety of selenoglycosides. Reaction with (ar)alkyl halides proceeds under mild conditions, in short time, at room temperature to afford the corresponding selenoglycosides in good yields. Aryl halides react to appreciable extent only if bearing activating nitro groups on the aromatic ring. Reactions with acylating reagents such as acetic anhydride and benzoyl chlorides furnished anomeric selenoesters some of which were recently proposed as starting compounds for alternative selenoglycoside syntheses. Selenodisaccharides with two different monosaccharide units could also be prepared via reactions of glycosyl-isoselenuronium salts with monosaccharide derivatives bearing primary or secondary triflate groups.
Collapse
Affiliation(s)
- Ambati Ashok Kumar
- Department of Organic Chemistry, University of Debrecen, H-4010 Debrecen Pf 20, Hungary
| | | | | | | |
Collapse
|
21
|
Cendret V, François-Heude M, Méndez-Ardoy A, Moreau V, Fernández JMG, Djedaïni-Pilard F. Design and synthesis of a "click" high-mannose oligosaccharide mimic emulating Man8 binding affinity towards Con A. Chem Commun (Camb) 2012; 48:3733-5. [PMID: 22399071 DOI: 10.1039/c2cc30773a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A dendritic "click" mannooligomer mimicking the high-mannose oligosaccharide Man(8) has been designed by replacing some of the inner mannopyranosyl subunits with triazole moieties; evaluation of its binding affinity towards the mannose-specific lectin concanavalin A revealed striking similarities between the "click" mimic and the natural Man(8).
Collapse
Affiliation(s)
- Virginie Cendret
- Laboratoire des Glucides FRE-CNRS 3517, Institut de Chimie de Picardie, Université de Picardie Jules Verne, 33 Rue Saint-Leu, 80039 Amiens Cedex 1, France
| | | | | | | | | | | |
Collapse
|
22
|
Uriel C, Gómez AM, López JC, Fraser-Reid B. Ready access to a branched Man5 oligosaccharide based on regioselective glycosylations of a mannose-tetraol with n-pentenyl orthoesters. Org Biomol Chem 2012; 10:8361-70. [DOI: 10.1039/c2ob26432c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
A potential glucuronate glycosyl donor with 2-O-acyl-6,3-lactone structure: efficient synthesis of glycosaminoglycan disaccharides. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Lu Z, Ding N, Zhang W, Wang P, Li Y. A convenient synthesis of the core trisaccharide of the N-glycans. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.04.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Nikolaev AV, Al-Maharik N. Synthetic glycosylphosphatidylinositol (GPI) anchors: how these complex molecules have been made. Nat Prod Rep 2011; 28:970-1020. [PMID: 21448495 DOI: 10.1039/c0np00064g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Andrei V Nikolaev
- College of Life Sciences, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK.
| | | |
Collapse
|
26
|
|
27
|
Martínez-Avila O, Hijazi K, Marradi M, Clavel C, Campion C, Kelly C, Penadés S. Gold manno-glyconanoparticles: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN. Chemistry 2010; 15:9874-88. [PMID: 19681073 DOI: 10.1002/chem.200900923] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The HIV envelope glycoprotein gp120 takes advantage of the high-mannose clusters on its surface to target the C-type lectin dendritic cell-specific intracellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) on dendritic cells. Mimicking the cluster presentation of oligomannosides on the virus surface is a strategy for designing carbohydrate-based antiviral agents. Bio-inspired by the cluster presentation of gp120, we have designed and prepared a small library of multivalent water-soluble gold glyconanoparticles (manno-GNPs) presenting truncated (oligo)mannosides of the high-mannose undecasaccharide Man(9)GlcNAc(2) and have tested them as inhibitors of DC-SIGN binding to gp120. These glyconanoparticles are ligands for DC-SIGN, which also interacts in the early steps of infection with a large number of pathogens through specific recognition of associated glycans. (Oligo)mannosides endowed with different spacers ending in thiol groups, which enable attachment of the glycoconjugates to the gold surface, have been prepared. manno-GNPs with different spacers and variable density of mannose (oligo)saccharides have been obtained and characterized. Surface plasmon resonance (SPR) experiments with selected manno-GNPs have been performed to study their inhibition potency towards DC-SIGN binding to gp120. The tested manno-GNPs completely inhibit the binding from the micro- to the nanomolar range, while the corresponding monovalent mannosides require millimolar concentrations. manno-GNPs containing the disaccharide Manalpha1-2Manalpha are the best inhibitors, showing more than 20 000-fold increased activity (100 % inhibition at 115 nM) compared to the corresponding monomeric disaccharide (100 % inhibition at 2.2 mM). Furthermore, increasing the density of dimannoside on the gold platform from 50 to 100 % does not improve the level of inhibition.
Collapse
Affiliation(s)
- Olga Martínez-Avila
- Laboratory of GlycoNanotechnology, Biofunctional Nanomaterial Unit, CIC biomaGUNE and CIBER-BBN, Parque Tecnológico, San Sebastián, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Affiliation(s)
- Feng Cai
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
30
|
Valerio S, Pastore A, Adinolfi M, Iadonisi A. Sequential one-pot glycosidations catalytically promoted: unprecedented strategy in oligosaccharide synthesis for the straightforward assemblage of the antitumor PI-88 pentasaccharide. J Org Chem 2008; 73:4496-503. [PMID: 18479167 DOI: 10.1021/jo8003953] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pentasaccharide sequence of the most active components of the antitumor drug PI-88, currently in phase II clinical trial, has been rapidly assembled in high overall yield and in only three steps starting from three monosaccharide building blocks. The procedure takes advantage of the first reported strategy of sequential one-pot glycosidations conducted exclusively under catalytic activation. In addition, the procedure relies only on shelf-stable and mild promoters such as Yb(OTf)(3) and Bi(OTf)(3).
Collapse
Affiliation(s)
- Silvia Valerio
- Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | | | | |
Collapse
|
31
|
Drouin L, Compton RG, Fairbanks AJ. Electrochemical glycosylation in the presence of a catalytic chemical mediator. J PHYS ORG CHEM 2008. [DOI: 10.1002/poc.1388] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Dong H, Pei Z, Angelin M, Byström S, Ramström O. Efficient Synthesis of β-d-Mannosides and β-d-Talosides by Double Parallel or Double Serial Inversion. J Org Chem 2007; 72:3694-701. [PMID: 17439283 DOI: 10.1021/jo062643o] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A neighboring equatorial ester group plays a highly important role in the Lattrell-Dax (nitrite-mediated) carbohydrate epimerization reaction, inducing the formation of inversion compounds in good yields. On the basis of this effect, efficient synthetic routes to beta-D-mannosides and beta-D-talosides, from the corresponding beta-D-galactosides and beta-D-glucosides, have been designed. The present routes are based on multiple regioselective acylation via the respective stannylene intermediates, followed by inversions to the corresponding manno- and talopyranoside structures by nitrite or acetate substitution. It was found that the ester group was able to induce the inversion of its two neighboring groups in high yields following either a double parallel or a double serial inversion process. By combination of direct inversion, and neighboring- as well as remote-group participation, several beta-d-mannoside and beta-D-taloside derivatives were very conveniently obtained in good yields.
Collapse
Affiliation(s)
- Hai Dong
- KTH - Royal Institute of Technology, Department of Chemistry Teknikringen 30, S-10044, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
33
|
Abstract
1,2-Diacetals are readily prepared, rigid structural motifs that provide a wide range of opportunities for applications in natural product assembly. These uses encompass selective 1,2-diol or alpha-hydroxy acid protection, enantiotopic recognition and desymmetrization methods, chiral memory applications, and reactivity control in oligosaccharide synthesis, as well as functioning as templating components, chiral auxiliaries, and building blocks. 1,2-Diacetals are often more stable and lead to products with enhanced crystallinity compared to their five-ring acetonide counterparts. Many 1,2-diacetals have favorable NMR parameters, which facilitate structural assignment, particularly during asymmetric reaction processes.
Collapse
Affiliation(s)
- Steven V Ley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, U.K.
| | | |
Collapse
|
34
|
Kantchev EAB, Bader SJ, Parquette JR. Oligosaccharide synthesis on a soluble, hyperbranched polymer support via thioglycoside activation. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.06.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Baker CDL, Fawcett J, Insley CD, Messenger DS, Newland CL, Overend HL, Patel AB, Shah M, Vara B, Virdee D, Rawlings BJ. Triol protection with 6-benzoyl-3,4-dihydro-(2H)-pyran. Chem Commun (Camb) 2005:1883-5. [PMID: 15795775 DOI: 10.1039/b418035f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
6-Benzoyl-3,4-dihydro-(2H)-pyran will protect 1,2,3-triols such as glycerol as their corresponding spiro-[5-phenyl-3,6,8-trioxabicyclo[3.2.1]octane-4,2[prime or minute]-tetrahydropyran]s and 1,2,4-triols (less efficiently) as the corresponding trioxabicyclo[3.2.2]nonanes; the hexol mannitol is converted into the corresponding bis-protected product.
Collapse
Affiliation(s)
- Caroline D L Baker
- Department of Chemistry, University of Leicester, University Road, Leicester, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tanaka H, Adachi M, Takahashi T. One-Pot Synthesis of Sialo-Containing Glycosyl Amino Acids by Use of anN-Trichloroethoxycarbonyl-?-thiophenyl Sialoside. Chemistry 2005; 11:849-62. [PMID: 15580651 DOI: 10.1002/chem.200400840] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe an efficient synthesis of 2,6- and 2,3-sialyl T antigens linked to serine in a one-pot glycosylation. We first investigated the glycosidation of thiosialosides by varying the N-protecting group. Modification of the C-5 amino group of beta-thiosialosides into the N-9-fluorenylmethoxycarbonyl, N-2,2,2-trichloroethoxycarbonyl (N-Troc), and N-trichloroacetyl derivatives enhanced the reactivity of these compounds towards glycosidation. Addition of a minimum amount of 3 A molecular sieves was also effective in improving the yield of alpha-linked sialosides. Next, we conducted one-pot syntheses of the glycosyl amino acids by using the N-Troc sialyl donor. The N-Troc derivative can be converted into the N-acetyl derivative without racemization of the amino acids. Branched-type one-pot glycosylation, initiated by regioselective glycosylation of the 3,6-dihydroxy galactoside with the N-Troc-beta-thiophenyl sialoside, provided the protected 2,6-sialyl T antigen in good yield. Linear-type one-pot glycosylation, initiated by chemoselective glycosylation of galactosyl fluoride with the N-Troc-beta-thiophenyl sialoside, afforded the protected 2,3-sialyl T antigen in excellent yield. Both protected glycosyl amino acids were converted into the fully deprotected 2,6- and 2,3-sialyl T antigens linked to serine in good yields.
Collapse
Affiliation(s)
- Hiroshi Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan
| | | | | |
Collapse
|
37
|
Chinchilla R, Nájera C, Yus M. Metalated Heterocycles and Their Applications in Synthetic Organic Chemistry. Chem Rev 2004; 104:2667-722. [PMID: 15137804 DOI: 10.1021/cr020101a] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rafael Chinchilla
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica, Facultad de Ciencias, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain.
| | | | | |
Collapse
|
38
|
Tanaka H, Adachi M, Tsukamoto H, Ikeda T, Yamada H, Takahashi T. Synthesis of di-branched heptasaccharide by one-pot glycosylation using seven independent building blocks. Org Lett 2002; 4:4213-6. [PMID: 12443061 DOI: 10.1021/ol020150+] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] We describe an efficient synthesis of di-branched heptasaccharide 1 having phytoalexin elicitor activity in soybeans by one-pot glycosylation. The synthesis involves chemo- and regioselective sequential six-step glycosylations using seven independent building blocks and sequential removal of acyl- and benzyl ether-type protecting groups. The coupling of seven building blocks requires only four chemoselective activitable leaving groups of glycosyl donors. Both the glycosylation and deprotection reactions can be achieved utilizing a parallel manual synthesizer.
Collapse
Affiliation(s)
- Hiroshi Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Ratner D, Plante O, Seeberger P. A Linear Synthesis of Branched High-Mannose Oligosaccharides from the HIV-1 Viral Surface Envelope Glycoprotein gp120. European J Org Chem 2002. [DOI: 10.1002/1099-0690(200203)2002:5<826::aid-ejoc826>3.0.co;2-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Bonilla J, Muñoz-Ponce J, Nieto P, Cid M, Khiar N, Martín-Lomas M. Synthesis and Structure of 1-D-6-O-(2-Amino-2-deoxy-α- and -β-D-gluco- and -galactopyranosyl)-3-O-methyl-D-chiro-inositol. European J Org Chem 2002. [DOI: 10.1002/1099-0690(200203)2002:5<889::aid-ejoc889>3.0.co;2-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Ley SV, Baeschlin DK, Dixon DJ, Foster AC, Ince SJ, Priepke HW, Reynolds DJ. 1,2-diacetals: a new opportunity for organic synthesis. Chem Rev 2001; 101:53-80. [PMID: 11712194 DOI: 10.1021/cr990101j] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S V Ley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | | | | | | | | | | | | |
Collapse
|
42
|
Koeller KM, Wong CH. Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chem Rev 2000; 100:4465-94. [PMID: 11749355 DOI: 10.1021/cr990297n] [Citation(s) in RCA: 350] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K M Koeller
- Department of Chemistry, The Scripps Research Institute and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037
| | | |
Collapse
|
43
|
Iodine, a versatile reagent in carbohydrate chemistry. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1874-5296(00)80015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Randell KD, Johnston BD, Lee EE, Pinto B. Synthesis of oligosaccharide fragments of the glycosylinositolphospholipid of Trypanosoma cruzi: a new selenoglycoside glycosyl donor for the preparation of 4-thiogalactofuranosyl analogues. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0957-4166(99)00498-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Rapid assembly of oligosaccharides: 1,2-diacetal-mediated reactivity tuning in the coupling of glycosyl fluorides. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0957-4166(99)00519-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
|
47
|
Novel tandem “ene-ISMS” methodology. Efficient and versatile assembly of a pseudomonic acid C analogue. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(99)00996-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Baeschlin DK, Chaperon AR, Charbonneau V, Green LG, Ley SV, Lücking U, Walther E. Effiziente Synthese von Oligosacchariden: Totalsynthese eines Glycosylphosphatidyl‐ inosit‐Ankers aus
Trypanosoma brucei. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19981217)110:24<3609::aid-ange3609>3.0.co;2-#] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel K. Baeschlin
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (Großbritannien), Fax: (+44) 1223‐336442
| | - André R. Chaperon
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (Großbritannien), Fax: (+44) 1223‐336442
| | - Virginie Charbonneau
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (Großbritannien), Fax: (+44) 1223‐336442
| | - Luke G. Green
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (Großbritannien), Fax: (+44) 1223‐336442
| | - Steven V. Ley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (Großbritannien), Fax: (+44) 1223‐336442
| | - Ulrich Lücking
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (Großbritannien), Fax: (+44) 1223‐336442
| | - Eric Walther
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (Großbritannien), Fax: (+44) 1223‐336442
| |
Collapse
|
49
|
Hirooka M, Koto S. Dehydrative Glycosylation by Diethylaminosulfur Trifluoride (DAST)–Tin(II) Trifluoromethanesulfonate–Tetrabutylammonium Perchlorate–Triethylamine System. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1998. [DOI: 10.1246/bcsj.71.2893] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Mehta S, Pinto B. Tris(4-bromophenyl)aminium hexachloroantimonate-mediated glycosylations of selenoglycosides and thioglycosides. Evidence for single electron transfer?11This paper is dedicated, with respect and gratitude, to the memory of Margaret A. Clark. Carbohydr Res 1998. [DOI: 10.1016/s0008-6215(98)00163-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|