1
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Barchi JJ, Strain CN. The effect of a methyl group on structure and function: Serine vs. threonine glycosylation and phosphorylation. Front Mol Biosci 2023; 10:1117850. [PMID: 36845552 PMCID: PMC9950641 DOI: 10.3389/fmolb.2023.1117850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
A variety of glycan structures cover the surface of all cells and are involved in myriad biological processes, including but not limited to, cell adhesion and communication, protein quality control, signal transduction and metabolism, while also being intimately involved in innate and adaptive immune functions. Immune surveillance and responses to foreign carbohydrate antigens, such as capsular polysaccharides on bacteria and surface protein glycosylation of viruses, are the basis of microbial clearance, and most antimicrobial vaccines target these structures. In addition, aberrant glycans on tumors called Tumor-Associated Carbohydrate Antigens (TACAs) elicit immune responses to cancer, and TACAs have been used in the design of many antitumor vaccine constructs. A majority of mammalian TACAs are derived from what are referred to as mucin-type O-linked glycans on cell-surface proteins and are linked to the protein backbone through the hydroxyl group of either serine or threonine residues. A small group of structural studies that have compared mono- and oligosaccharides attached to each of these residues have shown that there are distinct differences in conformational preferences assumed by glycans attached to either "unmethylated" serine or ß-methylated threonine. This suggests that the linkage point of antigenic glycans will affect their presentation to the immune system as well as to various carbohydrate binding molecules (e.g., lectins). This short review, followed by our hypothesis, will examine this possibility and extend the concept to the presentation of glycans on surfaces and in assay systems where recognition of glycans by proteins and other binding partners can be defined by different attachment points that allow for a range of conformational presentations.
Collapse
Affiliation(s)
| | - Caitlin N. Strain
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
3
|
Impaired O-Glycosylation at Consecutive Threonine TTX Motifs in Mucins Generates Conformationally Restricted Cancer Neoepitopes. Biochemistry 2020; 59:1221-1241. [PMID: 32155332 DOI: 10.1021/acs.biochem.0c00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoantibody signatures of circulating mucin fragments stem from cancer tissues, and microenvironments are promising biomarkers for cancer diagnosis and therapy. This study highlights dynamic epitopes generated by aberrantly truncated immature O-glycosylation at consecutive threonine motifs (TTX) found in mucins and intrinsically disordered proteins (IDPs). NMR analysis of synthetic mucin models having glycosylated TTX motifs and colonic MUC2 tandem repeats (TRs) containing TTP and TTL moieties unveils a general principle that O-glycosylation at TTX motifs generates a highly extended and rigid conformation in IDPs. We demonstrate that the specific conformation of glycosylated TTX motifs in MUC2 TRs is rationally rearranged by concerted motions of multiple dihedral angles and noncovalent interactions between the carbohydrate and peptide region. Importantly, this canonical conformation of glycosylated TTX motifs minimizes steric crowding of glycans attached to threonine residues, in which O-glycans possess restricted orientations permitting further sugar extension. An antiadhesive microarray displaying synthetic MUC2 derivatives elicited the presence of natural autoantibodies to MUC2 with impaired O-glycosylation at TTX motifs in sera of healthy volunteers and patients diagnosed with early stage colorectal cancer (CRC). Interestingly, autoantibody levels in sera of the late stage CRC patients were distinctly lower than those of early stage CRC and normal individuals, indicating that the anti-MUC2 humoral response to MUC2 neoepitopes correlates inversely with the CRC stage of patients. Our results uncovered the structural basis of the creation of dynamic epitopes by immature O-glycosylation at TTX motifs in mucins that facilitates the identification of high-potential targets for cancer diagnosis and therapy.
Collapse
|
4
|
Martínez-Sáez N, Peregrina JM, Corzana F. Principles of mucin structure: implications for the rational design of cancer vaccines derived from MUC1-glycopeptides. Chem Soc Rev 2018; 46:7154-7175. [PMID: 29022615 DOI: 10.1039/c6cs00858e] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer is currently one of the world's most serious public health problems. Significant efforts are being made to develop new strategies that can eradicate tumours selectively without detrimental effects to healthy cells. One promising approach is focused on the design of vaccines that contain partially glycosylated mucins in their formulation. Although some of these vaccines are in clinical trials, a lack of knowledge about the molecular basis that governs the antigen presentation, and the interactions between antigens and the elicited antibodies has limited their success thus far. This review focuses on the most significant milestones achieved to date in the conformational analysis of tumour-associated MUC1 derivatives both in solution and bound to antibodies. The effect that the carbohydrate scaffold has on the peptide backbone structure and the role of the sugar in molecular recognition by antibodies are emphasised. The outcomes summarised in this review may be a useful guide to develop new antigens for the design of cancer vaccines in the near future.
Collapse
Affiliation(s)
- Nuria Martínez-Sáez
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain.
| | | | | |
Collapse
|
5
|
Pett C, Cai H, Liu J, Palitzsch B, Schorlemer M, Hartmann S, Stergiou N, Lu M, Kunz H, Schmitt E, Westerlind U. Microarray Analysis of Antibodies Induced with Synthetic Antitumor Vaccines: Specificity against Diverse Mucin Core Structures. Chemistry 2017; 23:3875-3884. [PMID: 27957769 DOI: 10.1002/chem.201603921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 01/08/2023]
Abstract
Glycoprotein research is pivotal for vaccine development and biomarker discovery. Many successful methodologies for reliably increasing the antigenicity toward tumor-associated glycopeptide structures have been reported. Deeper insights into the quality and specificity of the raised polyclonal, humoral reactions are often not addressed, despite the fact that an immunological memory, which produces antibodies with cross-reactivity to epitopes exposed on healthy cells, may cause autoimmune diseases. In the current work, three MUC1 antitumor vaccine candidates conjugated with different immune stimulants are evaluated immunologically. For assessment of the influence of the immune stimulant on antibody recognition, a comprehensive library of mucin 1 glycopeptides (>100 entries) is synthesized and employed in antibody microarray profiling; these range from small tumor-associated glycans (TN , STN , and T-antigen structures) to heavily extended O-glycan core structures (type-1 and type-2 elongated core 1-3 tri-, tetra-, and hexasaccharides) glycosylated in variable density at the five different sites of the MUC1 tandem repeat. This is one of the most extensive glycopeptide libraries ever made through total synthesis. On tumor cells, the core 2 β-1,6-N-acetylglucosaminyltransferase-1 (C2GlcNAcT-1) is down-regulated, resulting in lower amounts of the branched core 2 structures, which favor formation of linear core 1 or core 3 structures, and in particular, truncated tumor-associated antigen structures. The core 2 structures are commonly found on healthy cells and the elucidation of antibody cross-reactivity to such epitopes may predict the tumor-selectivity and safety of synthetic vaccines. With the extended mucin core structures in hand, antibody cross-reactivity toward the branched core 2 glycopeptide epitopes is explored. It is observed that the induced antibodies recognize MUC1 peptides with very high glycosylation site specificity. The nature of the antibody response is characteristically different for antibodies directed to glycosylation sites in either the immune-dominant PDTR or the GSTA domain. All antibody sera show high reactivity to the tumor-associated saccharide structures on MUC1. Extensive glycosylation with branched core 2 structures, typically found on healthy cells, abolishes antibody recognition of the antisera and suggests that all vaccine conjugates preferentially induce a tumor-specific humoral immune response.
Collapse
Affiliation(s)
- Christian Pett
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Hui Cai
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Jia Liu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn Palitzsch
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Manuel Schorlemer
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Sebastian Hartmann
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Natascha Stergiou
- University Medical Center, Institute of Immunology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, Geb. 708, 55101, Mainz, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Horst Kunz
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Edgar Schmitt
- University Medical Center, Institute of Immunology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, Geb. 708, 55101, Mainz, Germany
| | - Ulrika Westerlind
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| |
Collapse
|
6
|
Ganneau C, Simenel C, Emptas E, Courtiol T, Coïc YM, Artaud C, Dériaud E, Bonhomme F, Delepierre M, Leclerc C, Lo-Man R, Bay S. Large-scale synthesis and structural analysis of a synthetic glycopeptide dendrimer as an anti-cancer vaccine candidate. Org Biomol Chem 2017; 15:114-123. [DOI: 10.1039/c6ob01931e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A complex glycopeptide was obtained in multigram as a fully synthetic anti-cancer vaccine for human use.
Collapse
|
7
|
Rangappa S, Artigas G, Miyoshi R, Yokoi Y, Hayakawa S, Garcia-Martin F, Hinou H, Nishimura SI. Effects of the multiple O-glycosylation states on antibody recognition of the immunodominant motif in MUC1 extracellular tandem repeats. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00100a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The conformational impact of the clusteredO-glycans strongly influences recognition by antibodies of the cancer-relevant epitope in the MUC1 extracellular tandem repeat domain.
Collapse
Affiliation(s)
- Shobith Rangappa
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Gerard Artigas
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Risho Miyoshi
- Medicinal Chemistry Pharmaceuticals Co., Ltd
- Sapporo 001-0021
- Japan
| | - Yasuhiro Yokoi
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shun Hayakawa
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Fayna Garcia-Martin
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| |
Collapse
|
8
|
Madariaga D, Martínez-Sáez N, Somovilla VJ, García-García L, Berbis MÁ, Valero-Gónzalez J, Martín-Santamaría S, Hurtado-Guerrero R, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Corzana F, Peregrina JM. Serine versus Threonine Glycosylation with α-O-GalNAc: Unexpected Selectivity in Their Molecular Recognition with Lectins. Chemistry 2014; 20:12616-27. [DOI: 10.1002/chem.201403700] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 12/17/2022]
|
9
|
Monney A, Nastri F, Albrecht M. Peptide-tethered monodentate and chelating histidylidene metal complexes: synthesis and application in catalytic hydrosilylation. Dalton Trans 2013; 42:5655-60. [PMID: 23440059 DOI: 10.1039/c3dt50424g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Nδ,Nε-dimethylated histidinium salt (His*) was tethered to oligopeptides and metallated to form Ir(III) and Rh(I) NHC complexes. Peptide-based histidylidene complexes containing only alanine, Ala-Ala-His*-[M] and Ala-Ala-Ala-His*-[M] were synthesised ([M] = Rh(cod)Cl, Ir(Cp*)Cl2), as well as oligopeptide complexes featuring a potentially chelating methionine and tyrosine residue, Met-Ala-Ala-His*-Rh(cod)Cl and Tyr-Ala-Ala-His*-Rh(cod)Cl. Chelation of the methionine-containing histidylidene ligand was induced by halide abstraction from the rhodium centre, while tyrosine remained non-coordinating under identical conditions. High catalytic activities in hydrosilylation were achieved with all peptide-based rhodium complexes. The cationic S(Met),C(His*)-bidentate peptide rhodium catalyst outperformed the monodentate neutral peptide complexes and constitutes one of the most efficient rhodium carbene catalysts for hydrosilylation, providing new opportunities for the use of peptides as N-heterocyclic carbene ligands in catalysis.
Collapse
Affiliation(s)
- Angèle Monney
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
10
|
Nuhn L, Hartmann S, Palitzsch B, Gerlitzki B, Schmitt E, Zentel R, Kunz H. Mit Glycopeptid-Antigenen und T-Zell-Epitopen verknüpfte wasserlösliche Polymere als potenzielle Antitumor-Vakzine. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Nuhn L, Hartmann S, Palitzsch B, Gerlitzki B, Schmitt E, Zentel R, Kunz H. Water-soluble polymers coupled with glycopeptide antigens and T-cell epitopes as potential antitumor vaccines. Angew Chem Int Ed Engl 2013; 52:10652-6. [PMID: 24038824 DOI: 10.1002/anie.201304212] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Indexed: 12/29/2022]
Abstract
Highly decorated: Tumor-associated MUC1 glycopeptide and tetanus toxoid T-cell epitope P2 can be attached to water-soluble poly(N-(2-hydroxypropyl)methacrylamide) carriers by orthogonal ligation techniques. Fully synthetic vaccine A with additional nanostructure-promoting domains induced antibodies that exhibit high affinity to tumor cells.
Collapse
Affiliation(s)
- Lutz Nuhn
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz (Germany)
| | | | | | | | | | | | | |
Collapse
|
12
|
Mazal D, Lo-Man R, Bay S, Pritsch O, Dériaud E, Ganneau C, Medeiros A, Ubillos L, Obal G, Berois N, Bollati-Fogolin M, Leclerc C, Osinaga E. Monoclonal antibodies toward different Tn-amino acid backbones display distinct recognition patterns on human cancer cells. Implications for effective immuno-targeting of cancer. Cancer Immunol Immunother 2013; 62:1107-22. [PMID: 23604173 PMCID: PMC11029704 DOI: 10.1007/s00262-013-1425-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/31/2013] [Indexed: 02/06/2023]
Abstract
The Tn antigen (GalNAcα-O-Ser/Thr) is a well-established tumor-associated marker which represents a good target for the design of anti-tumor vaccines. Several studies have established that the binding of some anti-Tn antibodies could be affected by the density of Tn determinant or/and by the amino acid residues neighboring O-glycosylation sites. In the present study, using synthetic Tn-based vaccines, we have generated a panel of anti-Tn monoclonal antibodies. Analysis of their binding to various synthetic glycopeptides, modifying the amino acid carrier of the GalNAc(*) (Ser* vs Thr*), showed subtle differences in their fine specificities. We found that the recognition of these glycopeptides by some of these MAbs was strongly affected by the Tn backbone, such as a S*S*S* specific MAb (15G9) which failed to recognize a S*T*T* or a T*T*T* structure. Different binding patterns of these antibodies were also observed in FACS and Western blot analysis using three human cancer cell lines (MCF-7, LS174T and Jurkat). Importantly, an immunohistochemical analysis of human tumors (72 breast cancer and 44 colon cancer) showed the existence of different recognition profiles among the five antibodies evaluated, demonstrating that the aglyconic part of the Tn structure (Ser vs Thr) plays a key role in the anti-Tn specificity for breast and colon cancer detection. This new structural feature of the Tn antigen could be of important clinical value, notably due to the increasing interest of this antigen in anticancer vaccine design as well as for the development of anti-Tn antibodies for in vivo diagnostic and therapeutic strategies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibody Specificity/immunology
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Biomarkers, Tumor
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Female
- Glycopeptides/chemistry
- Glycopeptides/immunology
- Glycopeptides/metabolism
- Humans
- Male
- Mice
- Middle Aged
- Neoplasm Staging
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Protein Binding/immunology
Collapse
Affiliation(s)
- Daniel Mazal
- Departamento de Anatomía Patológica y Citología del Hospital de la Mujer, Centro Hospitalario Pereira Rossell, Montevideo, Uruguay
| | - Richard Lo-Man
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1041 Paris, France
| | - Sylvie Bay
- Unité de Chimie des Biomolécules, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique UMR 3523, Paris, France
| | - Otto Pritsch
- Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la República, Avda Gral Flores 2125, 11800 Montevideo, Uruguay
- Unidad de Biofísica de Proteínas, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Edith Dériaud
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1041 Paris, France
| | - Christelle Ganneau
- Unité de Chimie des Biomolécules, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique UMR 3523, Paris, France
| | - Andrea Medeiros
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luis Ubillos
- Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la República, Avda Gral Flores 2125, 11800 Montevideo, Uruguay
| | - Gonzalo Obal
- Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la República, Avda Gral Flores 2125, 11800 Montevideo, Uruguay
- Unidad de Biofísica de Proteínas, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Claude Leclerc
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1041 Paris, France
| | - Eduardo Osinaga
- Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la República, Avda Gral Flores 2125, 11800 Montevideo, Uruguay
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
13
|
Rojas V, Carreras J, Corzana F, Avenoza A, Busto JH, Peregrina JM. Synthesis and conformational analysis of neoglycoconjugates derived from O- and S-glucose. Carbohydr Res 2013; 373:1-8. [PMID: 23545325 DOI: 10.1016/j.carres.2013.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Using olefin metathesis as a key step, four neoglycoconjugates incorporating α-O-glucose, α-S-glucose or β-S-glucose as a carbohydrate unit and L-serine or L-cysteine as an amino acid moiety have been synthesized. The four-atom carbon spacer allows the carbohydrate to explore a wide-ranging conformational space, which may have important implications for the molecular recognition of these molecules.
Collapse
Affiliation(s)
- Víctor Rojas
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, Logroño, La Rioja, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Matsushita T, Ohyabu N, Fujitani N, Naruchi K, Shimizu H, Hinou H, Nishimura SI. Site-specific conformational alteration induced by sialylation of MUC1 tandem repeating glycopeptides at an epitope region for the anti-KL-6 monoclonal antibody. Biochemistry 2013; 52:402-14. [PMID: 23259747 DOI: 10.1021/bi3013142] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein O-glycosylation is an essential step for controlling structure and biological functions of glycoproteins involving differentiation, cell adhesion, immune response, inflammation, and tumorigenesis and metastasis. This study provides evidence of site-specific structural alteration induced during multiple sialylation at Ser/Thr residues of the tandem repeats in human MUC1 glycoprotein. Systematic nuclear magnetic resonance (NMR) study revealed that sialylation of the MUC1 tandem repeating glycopeptide, Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala with core 2-type O-glycans at five potential glycosylation sites, afforded a specific conformational change at one of the most important cancer-relevant epitopes (Pro-Asp-Thr-Arg). This result indicates that disease-relevant epitope structures of human epithelial cell surface mucins can be altered both by the introduction of an inner GalNAc residue and by the distal sialylation in a peptide sequence-dependent manner. These data demonstrate the feasibility of NMR-based structural characterization of glycopeptides synthesized in a chemical and enzymatic manner in examining the conformational impact of the distal glycosylation at multiple O-glycosylation sites of mucin-like domains.
Collapse
Affiliation(s)
- Takahiko Matsushita
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Carbohydrate signatures on tumor cells have functional implications in tumor growth and metastasis and constitute valuable tools in cancer diagnosis and immunotherapy. Increasing data regarding the mechanisms by which they are recognized by the immune system are facilitating the design of more efficient immunotherapeutic protocols based on cancer-associated glycan structures. Recent molecular and proteomic studies revealed that carbohydrates are recognized, not only by B cells and antibodies, but also by cells from the innate arm of immunity, as well as by T cells, and are able to induce specific T-cell immunity and cytotoxicity. In this review, we discuss and update the different strategies targeting tumor-associated carbohydrate antigens that are being evaluated for antitumor immunotherapy, an approach that will be highly relevant, especially when combined with other strategies, in the future fight against cancer.
Collapse
Affiliation(s)
- Teresa Freire
- UdelaR, Facultad de Medicina, Dept. Inmunobiología, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Eduardo Osinaga
- UdelaR, Facultad de Medicina, Dept. Inmunobiología, Gral. Flores 2125, 11800, Montevideo, Uruguay
- Institut Pasteur Montevideo, Laboratorio de Glicobiología e Inmunología tumoral, Mataojo 2020, 11400, Montevideo, Uruguay
| |
Collapse
|
16
|
Gaidzik N, Kaiser A, Kowalczyk D, Westerlind U, Gerlitzki B, Sinn HP, Schmitt E, Kunz H. Synthetic Antitumor Vaccines Containing MUC1 Glycopeptides with Two Immunodominant Domains-Induction of a Strong Immune Response against Breast Tumor Tissues. Angew Chem Int Ed Engl 2011; 50:9977-81. [DOI: 10.1002/anie.201104529] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Indexed: 11/11/2022]
|
17
|
Gaidzik N, Kaiser A, Kowalczyk D, Westerlind U, Gerlitzki B, Sinn HP, Schmitt E, Kunz H. Synthetische Antitumor-Vakzine aus MUC1-Glycopeptiden mit zwei immundominanten Domänen - Induktion einer starken Immunreaktion gegen Brusttumorgewebe. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104529] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Hashimoto R, Fujitani N, Takegawa Y, Kurogochi M, Matsushita T, Naruchi K, Ohyabu N, Hinou H, Gao XD, Manri N, Satake H, Kaneko A, Sakamoto T, Nishimura SI. An Efficient Approach for the Characterization of Mucin-Type Glycopeptides: The Effect of O-Glycosylation on the Conformation of Synthetic Mucin Peptides. Chemistry 2011; 17:2393-404. [DOI: 10.1002/chem.201002754] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Indexed: 01/19/2023]
|
19
|
Barb AW, Borgert AJ, Liu M, Barany G, Live D. Intramolecular glycan-protein interactions in glycoproteins. Methods Enzymol 2010; 478:365-88. [PMID: 20816490 DOI: 10.1016/s0076-6879(10)78018-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycoproteins are a major class of glycoconjugates displaying a variety of mutual interactions between glycan and protein moieties that ultimately affect molecular organization. Modulation of the pendant glycan structures is important in tuning the functions of glycoproteins. Here we discuss structural aspects and some of the challenges to studying intramolecular interactions between carbohydrate and protein elements in several forms of O-linked as well as N-linked glycoproteins. These illustrate the importance of the relationship of context to function in protein glycosylation.
Collapse
Affiliation(s)
- Adam W Barb
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | | | | | | |
Collapse
|
20
|
Fernández-Tejada A, Corzana F, Busto JH, Jiménez-Osés G, Jiménez-Barbero J, Avenoza A, Peregrina JM. Insights into the geometrical features underlying beta-O-GlcNAc glycosylation: water pockets drastically modulate the interactions between the carbohydrate and the peptide backbone. Chemistry 2009; 15:7297-301. [PMID: 19544521 DOI: 10.1002/chem.200901204] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alberto Fernández-Tejada
- Departamento de Química, Universidad de La Rioja, UA-CSIC. Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | | | | | | | | | | | | |
Collapse
|