1
|
Hove PR, Magunda F, de Mello Marques MA, Islam MN, Harton MR, Jackson M, Belisle JT. Identification and functional analysis of a galactosyltransferase capable of cholesterol glycolipid formation in the Lyme disease spirochete Borrelia burgdorferi. PLoS One 2021; 16:e0252214. [PMID: 34061884 PMCID: PMC8168883 DOI: 10.1371/journal.pone.0252214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/11/2021] [Indexed: 01/22/2023] Open
Abstract
Borrelia burgdorferi (Bb), the etiological agent of Lyme disease, produces a series of simple glycolipids where diacylglycerol and cholesterol serve as the precursor. The cholesterol-based glycolipids, cholesteryl 6-O-acyl-β-D-galactopyranoside (ACGal) and cholesteryl-β-D-galactopyranoside (CGal) are immunogenic and proposed to contribute to the pathogenesis of Lyme disease. Detailed studies of CGal and ACGal in Bb have been hampered by a lack of knowledge of their underlying biosynthetic processes. The genome of Bb encodes four putative glycosyltransferases, and only one of these, BB0572, was predicted to be an inverting family 2 glycosyltransferase (GT2 enzyme) capable of using UDP-galactose as a substrate and forming a β-glycosidic bond. Comparison of the 42 kDa BB0572 amino acid sequence from Bb with other Borrelia spp demonstrates that this protein is highly conserved. To establish BB0572 as the galactosyltransferase capable of cholesterol glycolipid formation in Bb, the protein was produced as a recombinant product in Escherichia coli and tested in a cell-free assay with 14C-cholesterol and UDP-galactose as the substrates. This experiment resulted in a radiolabeled lipid that migrated with the cholesterol glycolipid standard of CGal when evaluated by thin layer chromatography. Additionally, mutation in the predicted active site of BB0572 resulted in a recombinant protein that was unable to catalyze the formation of the cholesterol glycolipid. These data characterize BB0572 as a putative cholesterol galactosyltransferase. This provides the first step in understanding how Bb cholesterol glycolipids are formed and will allow investigations into their involvement in pathogen transmission and disease development.
Collapse
Affiliation(s)
- Petronella R. Hove
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| | - Forgivemore Magunda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| | - Maria Angela de Mello Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| | - M. Nurul Islam
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| | - Marisa R. Harton
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| | - Mary Jackson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| |
Collapse
|
2
|
Structure, metabolism and biological functions of steryl glycosides in mammals. Biochem J 2021; 477:4243-4261. [PMID: 33186452 PMCID: PMC7666875 DOI: 10.1042/bcj20200532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022]
Abstract
Steryl glycosides (SGs) are sterols glycosylated at their 3β-hydroxy group. They are widely distributed in plants, algae, and fungi, but are relatively rare in bacteria and animals. Glycosylation of sterols, resulting in important components of the cell membrane SGs, alters their biophysical properties and confers resistance against stress by freezing or heat shock to cells. Besides, many biological functions in animals have been suggested from the observations of SG administration. Recently, cholesteryl glucosides synthesized via the transglycosidation by glucocerebrosidases (GBAs) were found in the central nervous system of animals. Identification of patients with congenital mutations in GBA genes or availability of respective animal models will enable investigation of the function of such endogenously synthesized cholesteryl glycosides by genetic approaches. In addition, mechanisms of the host immune responses against pathogenic bacterial SGs have partially been resolved. This review is focused on the biological functions of SGs in mammals taking into consideration their therapeutic applications in the future.
Collapse
|
3
|
Jaroentomeechai T, Taw MN, Li M, Aquino A, Agashe N, Chung S, Jewett MC, DeLisa MP. Cell-Free Synthetic Glycobiology: Designing and Engineering Glycomolecules Outside of Living Cells. Front Chem 2020; 8:645. [PMID: 32850660 PMCID: PMC7403607 DOI: 10.3389/fchem.2020.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycans and glycosylated biomolecules are directly involved in almost every biological process as well as the etiology of most major diseases. Hence, glycoscience knowledge is essential to efforts aimed at addressing fundamental challenges in understanding and improving human health, protecting the environment and enhancing energy security, and developing renewable and sustainable resources that can serve as the source of next-generation materials. While much progress has been made, there remains an urgent need for new tools that can overexpress structurally uniform glycans and glycoconjugates in the quantities needed for characterization and that can be used to mechanistically dissect the enzymatic reactions and multi-enzyme assembly lines that promote their construction. To address this technology gap, cell-free synthetic glycobiology has emerged as a simplified and highly modular framework to investigate, prototype, and engineer pathways for glycan biosynthesis and biomolecule glycosylation outside the confines of living cells. From nucleotide sugars to complex glycoproteins, we summarize here recent efforts that harness the power of cell-free approaches to design, build, test, and utilize glyco-enzyme reaction networks that produce desired glycomolecules in a predictable and controllable manner. We also highlight novel cell-free methods for shedding light on poorly understood aspects of diverse glycosylation processes and engineering these processes toward desired outcomes. Taken together, cell-free synthetic glycobiology represents a promising set of tools and techniques for accelerating basic glycoscience research (e.g., deciphering the "glycan code") and its application (e.g., biomanufacturing high-value glycomolecules on demand).
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - May N. Taw
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Mingji Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Alicia Aquino
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Ninad Agashe
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Sean Chung
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Vudhgiri S, Koude D, Veeragoni DK, Misra S, Prasad R, Jala RCR. Synthesis and biological evaluation of 5-fatty-acylamido-1, 3, 4-thiadiazole-2-thioglycosides. Bioorg Med Chem Lett 2017; 27:3370-3373. [DOI: 10.1016/j.bmcl.2017.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/17/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022]
|
5
|
Mansour S, Tocheva AS, Cave-Ayland C, Machelett MM, Sander B, Lissin NM, Molloy PE, Baird MS, Stübs G, Schröder NWJ, Schumann RR, Rademann J, Postle AD, Jakobsen BK, Marshall BG, Gosain R, Elkington PT, Elliott T, Skylaris CK, Essex JW, Tews I, Gadola SD. Cholesteryl esters stabilize human CD1c conformations for recognition by self-reactive T cells. Proc Natl Acad Sci U S A 2016; 113:E1266-75. [PMID: 26884207 PMCID: PMC4780616 DOI: 10.1073/pnas.1519246113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cluster of differentiation 1c (CD1c)-dependent self-reactive T cells are abundant in human blood, but self-antigens presented by CD1c to the T-cell receptors of these cells are poorly understood. Here we present a crystal structure of CD1c determined at 2.4 Å revealing an extended ligand binding potential of the antigen groove and a substantially different conformation compared with known CD1c structures. Computational simulations exploring different occupancy states of the groove reenacted these different CD1c conformations and suggested cholesteryl esters (CE) and acylated steryl glycosides (ASG) as new ligand classes for CD1c. Confirming this, we show that binding of CE and ASG to CD1c enables the binding of human CD1c self-reactive T-cell receptors. Hence, human CD1c adopts different conformations dependent on ligand occupancy of its groove, with CE and ASG stabilizing CD1c conformations that provide a footprint for binding of CD1c self-reactive T-cell receptors.
Collapse
Affiliation(s)
- Salah Mansour
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom;
| | - Anna S Tocheva
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Chris Cave-Ayland
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Moritz M Machelett
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom; Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Barbara Sander
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | - Peter E Molloy
- Immunocore Limited, Abingdon, Oxon OX14 4RY, United Kingdom
| | - Mark S Baird
- School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Gunthard Stübs
- Institute for Community Medicine, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Nicolas W J Schröder
- Institute for Pathology, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Ralf R Schumann
- Institute for Microbiology and Hygiene, Charité University Medical Center, 10117 Berlin, Germany
| | - Jörg Rademann
- Division of Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anthony D Postle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | - Ben G Marshall
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Rajendra Gosain
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Paul T Elkington
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Tim Elliott
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom; Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Chris-Kriton Skylaris
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom; School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jonathan W Essex
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom; School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Ivo Tews
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom; Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Stephan D Gadola
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom; Novartis Institutes of Biomedical Research, 4058 Basel, Switzerland
| |
Collapse
|
6
|
Synthesis of dihydrosterculic acid-based monoglucosyl diacylglycerol and its analogues and their biological evaluation. Eur J Med Chem 2016; 109:134-45. [DOI: 10.1016/j.ejmech.2015.12.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/02/2015] [Accepted: 12/24/2015] [Indexed: 11/13/2022]
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
8
|
Recent progress in the field of glycoconjugates. Carbohydr Res 2015; 402:124-32. [DOI: 10.1016/j.carres.2014.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/07/2014] [Accepted: 10/10/2014] [Indexed: 01/13/2023]
|
9
|
Hosta-Rigau L, Zhang Y, Teo BM, Postma A, Städler B. Cholesterol--a biological compound as a building block in bionanotechnology. NANOSCALE 2013; 5:89-109. [PMID: 23172231 DOI: 10.1039/c2nr32923a] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cholesterol is a molecule with many tasks in nature but also a long history in science. This feature article highlights the contribution of this small compound to bionanotechnology. We discuss relevant chemical aspects in this context followed by an overview of its self-assembly capabilities both as a free molecule and when conjugated to a polymer. Further, cholesterol in the context of liposomes is reviewed and its impact ranging from biosensing to drug delivery is outlined. Cholesterol is and will be an indispensable player in bionanotechnology, contributing to the progress of this potent field of research.
Collapse
|
10
|
Lyme disease vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Twibanire JDK, Omran RP, Grindley TB. Facile Synthesis of a Library of Lyme Disease Glycolipid Antigens. Org Lett 2012; 14:3909-11. [DOI: 10.1021/ol301697c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jean-d’Amour K. Twibanire
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, NS, Canada B3H 4R2
| | - Raha Parvizi Omran
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, NS, Canada B3H 4R2
| | - T. Bruce Grindley
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, NS, Canada B3H 4R2
| |
Collapse
|
12
|
Liang C, Ding Y, Kim JA, Yang SY, Boo HJ, Kang HK, Nguyen MC, Kim YH. Polyacetylenes from Panax stipuleanatus and their Cytotoxic Effects on Human Cancer Cells. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.9.3513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Morelli L, Poletti L, Lay L. Carbohydrates and Immunology: Synthetic Oligosaccharide Antigens for Vaccine Formulation. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100296] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Morelli
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Laura Poletti
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Luigi Lay
- Dipartimento di Chimica Organica e Industriale, CISI and ISTM‐CNR, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
14
|
Stübs G, Fingerle V, Zähringer U, Schumann RR, Rademann J, Schröder NWJ. Acylated cholesteryl galactosides are ubiquitous glycolipid antigens among Borrelia burgdorferi sensu lato. ACTA ACUST UNITED AC 2011; 63:140-3. [PMID: 21635569 DOI: 10.1111/j.1574-695x.2011.00827.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lyme disease (LD) is the most common tick-borne disease in the Northern hemisphere. It is caused by Borrelia burgdorferi sensu lato, in particular, B. burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii. However, other genospecies have been implicated as causative factors of LD as well. Borrelia burgdorferi exhibits numerous immunogenic lipoproteins, but due to strong heterogeneity, the use of these proteins for serodiagnosis and vaccination is hampered. We and others have identified acylated cholesteryl galactosides (ACGal) as a novel glycolipid present in B. burgdorferi sensu stricto, B. afzelii, and B. garinii. ACGal is a strong antigen and the majority of patients display anti-ACGal antibodies in the chronic stages of LD. However, it is unknown whether ACGal is present in other presumably pathogenic B. burgdorferi genospecies. Therefore, we performed an analysis of the total lipid extracts of a wide spectrum of genospecies of B. burgdorferi sensu lato using thin-layer chromatography as well as Western blot and dot-blot assays. We show that ACGal is present in substantial quantities in all B. burgdorferi genospecies tested. Therefore, this molecule might improve the serological detection of rarely pathogenic genospecies, and may be used as a protective vaccine regardless of the prevailing genospecies.
Collapse
Affiliation(s)
- Gunthard Stübs
- Institute of Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin
| | | | | | | | | | | |
Collapse
|
15
|
Prevention of Lyme Disease: Promising Research or Sisyphean Task? Arch Immunol Ther Exp (Warsz) 2011; 59:261-75. [DOI: 10.1007/s00005-011-0128-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/02/2011] [Indexed: 11/26/2022]
|
16
|
|
17
|
Schuijt TJ, Hovius JW, van der Poll T, van Dam AP, Fikrig E. Lyme borreliosis vaccination: the facts, the challenge, the future. Trends Parasitol 2010; 27:40-7. [PMID: 20594913 DOI: 10.1016/j.pt.2010.06.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 11/26/2022]
Abstract
Lyme disease, or Lyme borreliosis, the most prevalent arthropod-borne disease in the Western world, is caused by spirochetes belonging to the Borrelia burgdorferi sensu lato group and is predominantly transmitted through Ixodes ticks. There is currently no vaccine available to prevent Lyme borreliosis in humans. Borrelia outer membrane proteins are reviewed which have been investigated as vaccine candidates. In addition, several tick proteins are discussed, on which anti-tick vaccines have been based, or are interesting future candidates, to prevent transmission of the spirochete from the tick vector to the mammalian host. Finally, novel vaccination strategies to prevent Lyme borreliosis are proposed, based on multiple Borrelia antigens, tick antigens or a combination of both Borrelia as well as tick antigens.
Collapse
Affiliation(s)
- T J Schuijt
- Academic Medical Center, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|