1
|
Yu S, Wang P, Ye H, Tang H, Wang S, Wu Z, Pei C, Lu J, Li H. Transition Metal Dichalcogenides Nanoscrolls: Preparation and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2433. [PMID: 37686941 PMCID: PMC10490124 DOI: 10.3390/nano13172433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) nanosheets have shown extensive applications due to their excellent physical and chemical properties. However, the low light absorption efficiency limits their application in optoelectronics. By rolling up 2D TMDCs nanosheets, the one-dimensional (1D) TMDCs nanoscrolls are formed with spiral tubular structure, tunable interlayer spacing, and opening ends. Due to the increased thickness of the scroll structure, the light absorption is enhanced. Meanwhile, the rapid electron transportation is confined along the 1D structure. Therefore, the TMDCs nanoscrolls show improved optoelectronic performance compared to 2D nanosheets. In addition, the high specific surface area and active edge site from the bending strain of the basal plane make them promising materials for catalytic reaction. Thus, the TMDCs nanoscrolls have attracted intensive attention in recent years. In this review, the structure of TMDCs nanoscrolls is first demonstrated and followed by various preparation methods of the TMDCs nanoscrolls. Afterwards, the applications of TMDCs nanoscrolls in the fields of photodetection, hydrogen evolution reaction, and gas sensing are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Lin P, Zhang Y, Cui Z, Xiong R, Wen C, Wu B, Lin Q, Sa B. Influence of Al-O and Al-C Clusters on Defects in Graphene Nanosheets Derived from Coal-Tar Pitch via Al 4C 3 Precursor. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7312. [PMID: 36295377 PMCID: PMC9608267 DOI: 10.3390/ma15207312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
By treating Al4C3 as the precursor and growth environment, graphene nanosheets (GNs) can efficiently be derived from coal-tar pitch, which has the advantages of simple preparation process, high product quality, green environmental protection, low equipment requirements and low preparation cost. However, the defects in the prepared GNs have not been well understood. In order to optimize the preparation process, based on density functional theory calculations, the influence mechanism of Al-O and Al-C clusters on defects in GNs derived from coal-tar pitch via Al4C3 precursor has been systematically investigated. With minute quantities of oxygen-containing defects, Al-O and Al-C clusters have been realized in the prepared GNs from X-ray photoelectron spectroscopy analysis. Therefore, the influences of Al-O and Al-C clusters on graphene with vacancy defects and oxygen-containing defects are systematically explored from theoretical energy, electron localization function and charge transfer analysis. It is noted that the remaining Al-O and Al-C clusters in GNs are inevitably from the thermodynamics point of view. On the other hand, the existence of defects is beneficial for the further adsorption of Al-O and Al-C clusters in GNs.
Collapse
Affiliation(s)
- Peng Lin
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yinggan Zhang
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhou Cui
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Rui Xiong
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Cuilian Wen
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Bo Wu
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qilang Lin
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Baisheng Sa
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
3
|
Liu Z, Navik R, Tan H, Xiang Q, Wahyudiono, Goto M, Ibarra RM, Zhao Y. Graphene-based materials prepared by supercritical fluid technology and its application in energy storage. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Zhu H, Wang Q, Zhang Y, Yin J. Supercritical CO2 microemulsion containing [Emim][Tf2N] coupled jet impact exfoliation of graphene and its application to supercapacitors. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Meziani MJ, Sheriff K, Parajuli P, Priego P, Bhattacharya S, Rao AM, Quimby JL, Qiao R, Wang P, Hwu SJ, Wang Z, Sun YP. Advances in Studies of Boron Nitride Nanosheets and Nanocomposites for Thermal Transport and Related Applications. Chemphyschem 2021; 23:e202100645. [PMID: 34626067 DOI: 10.1002/cphc.202100645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Indexed: 01/10/2023]
Abstract
Hexagonal boron nitride (h-BN) and exfoliated nanosheets (BNNs) not only resemble their carbon counterparts graphite and graphene nanosheets in structural configurations and many excellent materials characteristics, especially the ultra-high thermal conductivity, but also offer other unique properties such as being electrically insulating and extreme chemical stability and oxidation resistance even at elevated temperatures. In fact, BNNs as a special class of 2-D nanomaterials have been widely pursued for technological applications that are beyond the reach of their carbon counterparts. Highlighted in this article are significant recent advances in the development of more effective and efficient exfoliation techniques for high-quality BNNs, the understanding of their characteristic properties, and the use of BNNs in polymeric nanocomposites for thermally conductive yet electrically insulating materials and systems. Major challenges and opportunities for further advances in the relevant research field are also discussed.
Collapse
Affiliation(s)
- Mohammed J Meziani
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA.,Department of Natural Sciences, Northwest Missouri State University, Maryville, Missouri, 64468, USA
| | - Kirkland Sheriff
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Prakash Parajuli
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, South Carolina, 29634, USA
| | - Paul Priego
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Sriparna Bhattacharya
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, South Carolina, 29634, USA
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, South Carolina, 29634, USA
| | - Jesse L Quimby
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Rui Qiao
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Ping Wang
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Shiou-Jyh Hwu
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Zhengdong Wang
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| |
Collapse
|
6
|
Supercritically exfoliated Bi 2Se 3 nanosheets for enhanced photocatalytic hydrogen production by topological surface states over TiO 2. J Colloid Interface Sci 2021; 605:871-880. [PMID: 34371430 DOI: 10.1016/j.jcis.2021.07.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Owing to the unique electronic properties of layered materials, topological insulators have interestingly grabbed much attention in the field of photocatalytic water splitting. Nowadays, 2D layered materials were composited with semiconductor photocatalysts, encourage much as it provides enormous active sites and also significantly prevent photogenerated charge recombination. Especially, Bi2Se3 possesses exceptional properties like topologically preserved conducting surface states with bulk insulating behavior and high surface area, which provides unconventional electron dynamics, resulting in facile electron transport and effective charge separation to photocatalyst. So far, several methods have been attempted to synthesize few-layered Bi2Se3 nanosheets from its bulk crystals. Here, a unique attempt is made and succeeded to exfoliate bulk Bi2Se3 to few layered nanosheets via surfactant free supercritical fluid processing using N-Methyl-2-pyrrolidone (NMP) as an exfoliating agent, with a short reaction time of 15 min. The exfoliation of Bi2Se3 crystal was confirmed by several characterization techniques, such as XRD, SEM, Raman, and HR-TEM. Furthermore, different weight percentages of exfoliated Bi2Se3 sheets/anatase TiO2 nanoparticles were prepared and examined the photocatalytic activity using glycerol as a hole scavenger. Among them, 15 wt.% Bi2Se3 coupled TiO2 nanocomposite showed enormous hydrogen evolution rate of 84.9 mmol h-1g-1cat, which is 80 times higher than that of TiO2 nanoparticles. In addition, the photostability of the nanocomposite was also verified, where it retains 94% of activity even after 4 cycles of continuous experiments. The improved rate of H2 production was understood by theoretical calculations that topologically preserved conducting surface states of co-catalyst, Bi2Se3 nanosheets is supported to high mobile and scatter free electrons. It mediates the transport of electrons with TiO2 nanoparticles that helped the effective charge separation. Thus, it proves a promising candidate for photocatalytic hydrogen production.
Collapse
|
7
|
Barry E, Burns R, Chen W, De Hoe GX, De Oca JMM, de Pablo JJ, Dombrowski J, Elam JW, Felts AM, Galli G, Hack J, He Q, He X, Hoenig E, Iscen A, Kash B, Kung HH, Lewis NHC, Liu C, Ma X, Mane A, Martinson ABF, Mulfort KL, Murphy J, Mølhave K, Nealey P, Qiao Y, Rozyyev V, Schatz GC, Sibener SJ, Talapin D, Tiede DM, Tirrell MV, Tokmakoff A, Voth GA, Wang Z, Ye Z, Yesibolati M, Zaluzec NJ, Darling SB. Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chem Rev 2021; 121:9450-9501. [PMID: 34213328 DOI: 10.1021/acs.chemrev.1c00069] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.
Collapse
Affiliation(s)
- Edward Barry
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Raelyn Burns
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Wei Chen
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Guilhem X De Hoe
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Joan Manuel Montes De Oca
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Juan J de Pablo
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - James Dombrowski
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Jeffrey W Elam
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Alanna M Felts
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Giulia Galli
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - John Hack
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Qiming He
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Xiang He
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Eli Hoenig
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Aysenur Iscen
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Benjamin Kash
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Harold H Kung
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Nicholas H C Lewis
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Chong Liu
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Xinyou Ma
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Anil Mane
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Alex B F Martinson
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Karen L Mulfort
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Julia Murphy
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Kristian Mølhave
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, Kgs. Lyngby, Lyngby, Hovedstaden 2800, DK Denmark
| | - Paul Nealey
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Yijun Qiao
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Vepa Rozyyev
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - George C Schatz
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Steven J Sibener
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Dmitri Talapin
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - David M Tiede
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Matthew V Tirrell
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Andrei Tokmakoff
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Gregory A Voth
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Zhongyang Wang
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Zifan Ye
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Murat Yesibolati
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, Kgs. Lyngby, Lyngby, Hovedstaden 2800, DK Denmark
| | - Nestor J Zaluzec
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Photon Sciences Directorate, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Seth B Darling
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| |
Collapse
|
8
|
Hoang Huy VP, Ahn YN, Hur J. Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1517. [PMID: 34201136 PMCID: PMC8229149 DOI: 10.3390/nano11061517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
The generation of renewable energy is a promising solution to counter the rapid increase in energy consumption. Nevertheless, the availability of renewable resources (e.g., wind, solar, and tidal) is non-continuous and temporary in nature, posing new demands for the production of next-generation large-scale energy storage devices. Because of their low cost, highly abundant raw materials, high safety, and environmental friendliness, aqueous rechargeable multivalent metal-ion batteries (AMMIBs) have recently garnered immense attention. However, several challenges hamper the development of AMMIBs, including their narrow electrochemical stability, poor ion diffusion kinetics, and electrode instability. Transition metal dichalcogenides (TMDs) have been extensively investigated for applications in energy storage devices because of their distinct chemical and physical properties. The wide interlayer distance of layered TMDs is an appealing property for ion diffusion and intercalation. This review focuses on the most recent advances in TMDs as cathode materials for aqueous rechargeable batteries based on multivalent charge carriers (Zn2+, Mg2+, and Al3+). Through this review, the key aspects of TMD materials for high-performance AMMIBs are highlighted. Furthermore, additional suggestions and strategies for the development of improved TMDs are discussed to inspire new research directions.
Collapse
Affiliation(s)
| | | | - Jaehyun Hur
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Gyeonggi, Korea; (V.P.H.H.); (Y.N.A.)
| |
Collapse
|
9
|
Abstract
Boron nitride quantum dots (BNQDs) have gained increasing attention for their versatile fluorescent, optoelectronic, chemical, and biochemical properties. During the past few years, significant progress has been demonstrated, started from theoretical modeling to actual application. Many interesting properties and applications have been reported, such as excitation-dependent emission (and, in some cases, non-excitation dependent), chemical functionalization, bioimaging, phototherapy, photocatalysis, chemical, and biological sensing. An overview of this early-stage research development of BNQDs is presented in this article. We have prepared un-bias assessments on various synthesis methods, property analysis, and applications of BNQDs here, and provided our perspective on the development of these emerging nanomaterials for years to come.
Collapse
|
10
|
Ramal-Sanchez M, Fontana A, Valbonetti L, Ordinelli A, Bernabò N, Barboni B. Graphene and Reproduction: A Love-Hate Relationship. NANOMATERIALS 2021; 11:nano11020547. [PMID: 33671591 PMCID: PMC7926437 DOI: 10.3390/nano11020547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
Since its discovery, graphene and its multiple derivatives have been extensively used in many fields and with different applications, even in biomedicine. Numerous efforts have been made to elucidate the potential toxicity derived from their use, giving rise to an adequate number of publications with varied results. On this basis, the study of the reproductive function constitutes a good tool to evaluate not only the toxic effects derived from the use of these materials directly on the individual, but also the potential toxicity passed on to the offspring. By providing a detailed scientometric analysis, the present review provides an updated overview gathering all the research studies focused on the use of graphene and graphene-based materials in the reproductive field, highlighting the consequences and effects reported to date from experiments performed in vivo and in vitro and in different animal species (from Archea to mammals). Special attention is given to the oxidized form of graphene, graphene oxide, which has been recently investigated for its ability to increase the in vitro fertilization outcomes. Thus, the potential use of graphene oxide against infertility is hypothesized here, probably by engineering the spermatozoa and thus manipulating them in a safer and more efficient way.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- Correspondence:
| | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- National Research Council (IBCN), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, 00015 Rome, Italy
| | | | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- National Research Council (IBCN), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, 00015 Rome, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
| |
Collapse
|
11
|
Hassan K, Nine MJ, Tung TT, Stanley N, Yap PL, Rastin H, Yu L, Losic D. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. NANOSCALE 2020; 12:19007-19042. [PMID: 32945332 DOI: 10.1039/d0nr04933f] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Graphene and related 2D materials offer an ideal platform for next generation disruptive technologies and in particular the potential to produce printed electronic devices with low cost and high throughput. Interest in the use of 2D materials to create functional inks has exponentially increased in recent years with the development of new ink formulations linked with effective printing techniques, including screen, gravure, inkjet and extrusion-based printing towards low-cost device manufacturing. Exfoliated, solution-processed 2D materials formulated into inks permits additive patterning onto both rigid and conformable substrates for printed device design with high-speed, large-scale and cost-effective manufacturing. Each printing technique has some sort of clear advantages over others that requires characteristic ink formulations according to their individual operational principles. Among them, the extrusion-based 3D printing technique has attracted heightened interest due to its ability to create three-dimensional (3D) architectures with increased surface area facilitating the design of a new generation of 3D devices suitable for a wide variety of applications. There still remain several challenges in the development of 2D material ink technologies for extrusion printing which must be resolved prior to their translation into large-scale device production. This comprehensive review presents the current progress on ink formulations with 2D materials and their broad practical applications for printed energy storage devices and sensors. Finally, an outline of the challenges and outlook for extrusion-based 3D printing inks and their place in the future printed devices ecosystem is presented.
Collapse
Affiliation(s)
- Kamrul Hassan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Md Julker Nine
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Nathan Stanley
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hadi Rastin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
12
|
Wang QB, Yin JZ, Xu QQ, Zhi JT. Insightful Understanding of Shear-Assisted Supercritical CO 2 Exfoliation for Fabricating Graphene Nanosheets through the Combination of Kinetics and Process Parameters. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qi-Bo Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jian-Zhong Yin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qin-Qin Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jia-Tao Zhi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
13
|
Le TH, Oh Y, Kim H, Yoon H. Exfoliation of 2D Materials for Energy and Environmental Applications. Chemistry 2020; 26:6360-6401. [PMID: 32162404 DOI: 10.1002/chem.202000223] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/20/2022]
Abstract
The fascinating properties of single-layer graphene isolated by mechanical exfoliation have inspired extensive research efforts toward two-dimensional (2D) materials. Layered compounds serve as precursors for atomically thin 2D materials (briefly, 2D nanomaterials) owing to their strong intraplane chemical bonding but weak interplane van der Waals interactions. There are newly emerging 2D materials beyond graphene, and it is becoming increasingly important to develop cost-effective, scalable methods for producing 2D nanomaterials with controlled microstructures and properties. The variety of developed synthetic techniques can be categorized into two classes: bottom-up and top-down approaches. Of top-down approaches, the exfoliation of bulk 2D materials into single or few layers is the most common. This review highlights chemical and physical exfoliation methods that allow for the production of 2D nanomaterials in large quantities. In addition, remarkable examples of utilizing exfoliated 2D nanomaterials in energy and environmental applications are introduced.
Collapse
Affiliation(s)
- Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Yuree Oh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyungwoo Kim
- Alan G. MacDiarmid Energy Research &, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.,Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research &, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.,Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
14
|
Cai L, Hou S, Wei X, Tan G, Peng Z, Yan Y, Wang L, Lei D, Wu Y, Liu Z. Exfoliation and stabilization mechanism of graphene in carbon dioxide expanded organic solvents: molecular dynamics simulations. Phys Chem Chem Phys 2020; 22:2061-2072. [PMID: 31904067 DOI: 10.1039/c9cp05924e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CO2 expanded organic solvents possess significant advantages in liquid-phase exfoliation to obtain monolayer/few-layer graphene from graphite. Further insights into the mechanism of graphene exfoliation in such solvents are essential to explore liquid-phase dispersion of graphene as a more potent alternative to chemical vapor deposition. In this study, dynamic processes of exfoliation and stabilization of graphene in CO2-N,N-dimethylformamide (DMF), CO2-N-methylpyrrolidone (NMP), CO2-dimethyl sulfoxide (DMSO), and CO2-ethanol (EtOH) were investigated using molecular dynamics simulations. The origin of the effect of each solvent on graphene exfoliation was analyzed quantitatively through potential mean force simulations. It has been found that the organic solvent in a CO2 expanded solvent should be chosen with proper surface tension, and there exist two different graphene exfoliation processes in the effective solvents, which can be described as "burger dissociation" and "extrusion-taking away" processes, respectively. In the former process, a characteristic "super-burger-like" conformation with a semi-exfoliated structure was formed, which was the deciding factor to obtain high ratio of monolayer/few-layer graphene in dispersion product. A theoretical explanation has also been provided at the molecular level to the earlier experimental phenomena. A predicted simulation of the CO2-3,3'-iminobis(N,N-dimethylpropylamine) (DMPA) system is also calculated. This investigation helps to avoid incompatible CO2 expanded organic solvents employed in the experimental studies and provides theoretical clues to understand the mechanism of exfoliation and stabilization of graphene in such solvents.
Collapse
Affiliation(s)
- Lu Cai
- School of Materials Science and Engineering, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China.
| | - Sensheng Hou
- School of Materials Science and Engineering, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China.
| | - Xiangyu Wei
- School of Materials Science and Engineering, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China.
| | - Guangsu Tan
- School of Materials Science and Engineering, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China.
| | - Zhengwei Peng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yujiao Yan
- School of Materials Science and Engineering, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China.
| | - Lei Wang
- School of Materials Science and Engineering, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China.
| | - De Lei
- School of Materials Science and Engineering, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China.
| | - Yanguang Wu
- School of Materials Science and Engineering, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China.
| | - Zhitian Liu
- School of Materials Science and Engineering, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, Hubei, P. R. China.
| |
Collapse
|
15
|
Moumaneix L, Parra JG, Fontana S, Lapicque F, Hérold C. Investigation of and mechanism proposal for solvothermal reaction between sodium and 1-(2-hydroxyethyl)piperidine as the first step towards nitrogen-doped graphenic foam synthesis. NEW J CHEM 2020. [DOI: 10.1039/d0nj02716b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvothermal reaction involving 1-(2-hydroxyethyl)piperidine and sodium: a promising step in the synthesis of high surface area N-doped graphenic materials.
Collapse
Affiliation(s)
- Lilian Moumaneix
- Institut Jean Lamour
- CNRS – Université de Lorraine
- 54011 Nancy
- France
| | | | | | - François Lapicque
- Laboratoire Réactions et Génie des procédés
- CNRS – Université de Lorraine
- ENSIC
- 54000 Nancy
- France
| | - Claire Hérold
- Institut Jean Lamour
- CNRS – Université de Lorraine
- 54011 Nancy
- France
| |
Collapse
|
16
|
Lixi Y, Jinwu W. Dissipation enhancement effect from titania semiconductor modulation of graphene-based electromagnetic absorbing composites. RSC Adv 2020; 10:44571-44583. [PMID: 35517179 PMCID: PMC9058639 DOI: 10.1039/d0ra08557j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/19/2020] [Indexed: 12/02/2022] Open
Abstract
A scheme of semiconductor modulation of electromagnetic (EM) absorbing materials is proposed. Homogeneous composites as ideal media are obtained by uniformly mixing fillers using supercritical fluid (SCF) processing. Based on the ideal media, titania modulation design prediction of surface shield materials is confirmed for the EM composites of graphene nanosheets and manganese oxides. A low ratio of titania between 10 percent and 50 percent gives rise to dissipation enhancement in the absorbers. Simulation of the involved cases displays the EM fields in the composite absorbers, demonstrating EM energy loss in the absorbers. Frequency modulation using titania improves the electromagnetic compatibility (EMC) of the absorbing materials in the X and Ku bands. Rapid exfoliation and full premixing of the components by SCF contribute to the modulation scheme confirmation with uniform media. Semiconductor titania modulation of EM-absorbing composites is effective. Eddy current occupying contribution to EMC absorbers with semiconductor modulation due to uniformity from SCF-assisted mixing.![]()
Collapse
Affiliation(s)
- Yi Lixi
- School of Aircraft Engineering
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Wu Jinwu
- School of Aircraft Engineering
- Nanchang Hangkong University
- Nanchang 330063
- China
| |
Collapse
|
17
|
Gu X, Zhao Y, Sun K, Vieira CLZ, Jia Z, Cui C, Wang Z, Walsh A, Huang S. Method of ultrasound-assisted liquid-phase exfoliation to prepare graphene. ULTRASONICS SONOCHEMISTRY 2019; 58:104630. [PMID: 31450336 DOI: 10.1016/j.ultsonch.2019.104630] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
Graphene is a two-dimensional material with unique structure and excellent properties. After first being successfully prepared in 2004, it rapidly became a research hotspot in the fields of materials, chemistry, physics, and engineering. Currently, there are many methods for preparing graphene, such as ball milling method, chemical oxidation-reduction, chemical vapor deposition, and liquid-phase exfoliation. Among these methods, liquid-phase exfoliation is the most important preparation method. In this paper, ultrasound-assisted liquid-phase exfoliation is systematically studied. The output power and frequency of the ultrasonic crusher used in the experiment are 100 W and 20 kHz, respectively. Results show that ultrasonic waves can affect the size and thickness distribution of graphene sheets; ultrasound-assisted deoxycholic acid sodium aqueous solution has a good exfoliation effect. In addition, the effects of the 3 liquid-phase systems on preparing graphene are studied, including organic solvent system, aqueous surfactant system, and ionic liquids system; the improvement efforts for ultrasound-assisted liquid-phase exfoliation method are discussed including the exploration of new solvents and optimization of exfoliation process. The application of auxiliary agent-assisted liquid-phase exfoliation method is also discussed.
Collapse
Affiliation(s)
- Xiaoguang Gu
- School of Business, Nanjing University, Nanjing 210093, China; Intelligent Manufacturing Big Data Platform (Zhengzhou) R&D Center, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Yue Zhao
- College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, China.
| | - Kai Sun
- College of Innovative and Practice, Liaoning Technical University, Fuxin 123000, Liaoning, China
| | - Carolina L Z Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02135, USA
| | - Zhijuan Jia
- School of Information Science and Technology, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Chi Cui
- School of Information Science and Technology, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Zhenjun Wang
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Annika Walsh
- The University of Arizona, Tucson, AZ 85721, USA
| | - Shaodan Huang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02135, USA.
| |
Collapse
|
18
|
Liu L, Chen Y, Dang F, Liu Y, Tian X, Chen X. Synergistic effect of supercritical CO 2 and organic solvent on exfoliation of graphene: experiment and atomistic simulation studies. Phys Chem Chem Phys 2019; 21:22149-22157. [PMID: 31573003 DOI: 10.1039/c9cp03654g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, experiments and molecular dynamics (MD) simulations are carried out to explore the synergistic effect of supercritical CO2 (scCO2) and organic solvent on intercalation and exfoliation of graphene. Experimental characterizations via transmission electron microscopy, atomic force microscopy and Raman spectroscopy indicate that by combining scCO2 and organic solvent (N-methylpyrrolidone, NMP), few-layer graphene is successfully exfoliated from graphite, among which over 30% is 1-4 layers, and 55% is 5-8 layers. Systematic experiments have shown that compared with pure scCO2 or NMP, the mixed scCO2 and NMP can significantly increase the amount of graphene and the rate of few-layer graphene, and the optimum volume fraction of NMP is 25%. Parallel MD simulations indicate that the scCO2 molecules first diffuse into the interlayer of graphite, and then the larger NMP molecules insert as wedges and further expand interlayer spacing, promoting intercalation and exfoliation. The iteration of scCO2 diffusion and the NMP wedge can generate positive feedback to improve the exfoliation productivity and efficiency. This work explores the synergistic effect of scCO2 and NMP on the exfoliation of graphene, which may provide useful insights for exfoliation of other two dimensional materials.
Collapse
Affiliation(s)
- Lixi Liu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | | | | | | |
Collapse
|
19
|
Sun Z, Fan Q, Zhang M, Liu S, Tao H, Texter J. Supercritical Fluid-Facilitated Exfoliation and Processing of 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901084. [PMID: 31572648 PMCID: PMC6760473 DOI: 10.1002/advs.201901084] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Since the first intercalation of layered silicates by using supercritical CO2 as a processing medium, considerable efforts have been dedicated to intercalating and exfoliating layered two-dimensional (2D) materials in various supercritical fluids (SCFs) to yield single- and few-layer nanosheets. Here, recent work in this area is highlighted. Motivating factors for enhancing exfoliation efficiency and product quality in SCFs, mechanisms for exfoliation and dispersion in SCFs, as well as general metrics applied to assess quality and processability of exfoliated 2D materials are critically discussed. Further, advances in formation and application of 2D material-based composites with assistance from SCFs are presented. These discussions address chemical transformations accompanying SCF processing such as doping, covalent surface modification, and heterostructure formation. Promising features, challenges, and routes to expanding SCF processing techniques are described.
Collapse
Affiliation(s)
- Zhenyu Sun
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Qun Fan
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Mingli Zhang
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Shizhen Liu
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Hengcong Tao
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - John Texter
- School of Engineering TechnologyEastern Michigan UniversityYpsilantiMI48197USA
| |
Collapse
|
20
|
Raheem AA, Thangasamy P, Sathish M, Praveen C. Supercritical water assisted preparation of recyclable gold nanoparticles and their catalytic utility in cross-coupling reactions under sustainable conditions. NANOSCALE ADVANCES 2019; 1:3177-3191. [PMID: 36133589 PMCID: PMC9418514 DOI: 10.1039/c9na00240e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/26/2019] [Indexed: 06/16/2023]
Abstract
Preparation of gold nanoparticles (AuNPs) in environmentally friendly water without using any reducing agents under supercritical conditions is demonstrated. PXRD, XPS, FE-SEM and HR-TEM analysis confirmed the formation of phase-pure and crystalline AuNPs of the size of ∼10-30 nm. The catalytic potential of AuNPs was manifested through a generalized green procedure that could accommodate both Sonogashira as well as Suzuki coupling under aqueous conditions at low catalytic loading (0.1 mol%). The AuNP catalyst was found to be recuperated after the reaction and reused for up to six catalytic cycles with no leaching out of gold species as confirmed through ICP-OES analysis. With no confinement of AuNP catalysis to cross-coupling reaction, synthetic extension to one-flask preparation of π-conjugated semiconductors (4 examples) and their optoelectronic properties were also investigated. Other significant features of the present work include short reaction time, site-selectivity, wide substrate scope, high conversion, good chemical yields and applicability in gram-scale synthesis. Overall, the results of this paper signify an operationally sustainable supercritical fluid processing method for the synthesis of AuNPs and their catalytic application towards cross-coupling reactions in green media.
Collapse
Affiliation(s)
- Abbasriyaludeen Abdul Raheem
- Materials Electrochemistry Division, Central Electrochemical Research Institute (CSIR Laboratory) Alagappapuram Karaikudi-630003 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| | - Pitchai Thangasamy
- Materials Electrochemistry Division, Central Electrochemical Research Institute (CSIR Laboratory) Alagappapuram Karaikudi-630003 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| | - Marappan Sathish
- Materials Electrochemistry Division, Central Electrochemical Research Institute (CSIR Laboratory) Alagappapuram Karaikudi-630003 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| | - Chandrasekar Praveen
- Materials Electrochemistry Division, Central Electrochemical Research Institute (CSIR Laboratory) Alagappapuram Karaikudi-630003 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| |
Collapse
|
21
|
Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. NANOMATERIALS 2018; 8:nano8110942. [PMID: 30445778 PMCID: PMC6265730 DOI: 10.3390/nano8110942] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023]
Abstract
Graphene, a two-dimensional (2D) carbon nanomaterial, has attracted worldwide attention owing to its fascinating properties. One of critical bottlenecks on some important classes of applications, such as printed electronics, conductive coatings, and composite fillers, is the lack of industrial-scale methods to produce high-quality graphene in the form of liquid suspensions, inks, or dispersions. Since 2008, when liquid-phase exfoliation (LPE) of graphene via sonication was initiated, huge progress has been made in the past decade. This review highlights the latest progress on the successful preparation of graphene in various media, including organic solvents, ionic liquids, water/polymer or surfactant solutions, and some other green dispersants. The techniques of LPE, namely sonication, high-shear mixing, and microfluidization are reviewed subsequently. Moreover, several typical devices of high-shear mixing and exfoliation mechanisms are introduced in detail. Finally, we give perspectives on future research directions for the development of green exfoliation media and efficient techniques for producing high-quality graphene. This systematic exploratory study of LPE will potentially pave the way for the scalable production of graphene, which can be also applied to produce other 2D layered materials, such as BN, MoS2, WS2, etc.
Collapse
|
22
|
Wang W, Gai Y, Song N, Xiao D, Tan H, Zhao Y. Highly Efficient Production of Graphene by an Ultrasound Coupled with a Shear Mixer in Supercritical CO 2. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wucong Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yanzhe Gai
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Ningning Song
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Ding Xiao
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Huijun Tan
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
23
|
Liu W, Xu Q. CO 2 -Assisted Conversion of Crystal Two-Dimensional Molybdenum Oxide to Amorphism with Plasmon Resonances. Chemistry 2018; 24:13693-13700. [PMID: 29676819 DOI: 10.1002/chem.201801055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/12/2018] [Indexed: 11/08/2022]
Abstract
Localized surface plasmon resonances (LSPRs) of ultra-thin two-dimensional (2D) nanomaterials have opened up a new regime in plasmonics in the last several years. 2D plasmonic materials are currently concentrated on the crystal structure, with amorphous materials hardly being reported because of their limited preparation methods rather than undesired plasmonic properties. Taking molybdenum oxides as an example, herein, we elaborate the 2D amorphous plasmons prepared with the assistance of supercritical CO2 . In brief, we examine the reported characteristic plasmonic properties of molybdenum oxides, and applications of supercritical CO2 in formations of 2D layer materials as well as introduced phase and disorder engineering based on our research. Furthermore, we propose our perspective on the development of 2D plasmons, especially for amorphous layer materials in the future.
Collapse
Affiliation(s)
- Wei Liu
- College of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qun Xu
- College of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
24
|
Wang Y, Chen Z, Wu Z, Li Y, Yang W, Li Y. High-Efficiency Production of Graphene by Supercritical CO 2 Exfoliation with Rapid Expansion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7797-7804. [PMID: 29924617 DOI: 10.1021/acs.langmuir.8b01030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, direct nonequilibrium molecular dynamics simulations based on the density-functional tight-binding potential were performed to investigate the mechanism of graphite exfoliation by supercritical CO2 in the depressurization process. We found that the graphite peeling rate and the graphene yield depended on the number of inserted CO2 molecules in our simulations, and the appropriate pressure or density of CO2 is a prerequisite to achieve graphite exfoliation. Our theoretical results proposed that the graphite peeling occurred till the pressure or the density of CO2 was larger than 12.2 MPa or 0.21 g/cm3. This is confirmed by the experimental observations. Furthermore, we declared that the essential effect of the pressure or density of CO2 was attributed to the competition between the van der Waals attraction in the graphite interlayer and repulsion of CO2 and graphite, which resulted from the steric hinder effect. The current theoretical observations provide potential scientific evidence to control graphite exfoliation by supercritical CO2.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Zhuo Chen
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Changping, Beijing 102249 , P. R. China
| | - Zhijian Wu
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Yun Li
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Changping, Beijing 102249 , P. R. China
| | - Wang Yang
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Changping, Beijing 102249 , P. R. China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Changping, Beijing 102249 , P. R. China
| |
Collapse
|
25
|
Stafford J, Patapas A, Uzo N, Matar OK, Petit C. Towards scale-up of graphene production via nonoxidizing liquid exfoliation methods. AIChE J 2018. [DOI: 10.1002/aic.16174] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jason Stafford
- Dept. of Chemical Engineering; Imperial College London; Kensington London SW7 2AZ U.K
| | - Andrius Patapas
- Dept. of Chemical Engineering; Imperial College London; Kensington London SW7 2AZ U.K
| | - Nwachukwu Uzo
- Dept. of Chemical Engineering; Imperial College London; Kensington London SW7 2AZ U.K
| | - Omar K. Matar
- Dept. of Chemical Engineering; Imperial College London; Kensington London SW7 2AZ U.K
| | - Camille Petit
- Dept. of Chemical Engineering; Imperial College London; Kensington London SW7 2AZ U.K
| |
Collapse
|
26
|
Gai Y, Wang W, Xiao D, Zhao Y. Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: Simulation and experiment. ULTRASONICS SONOCHEMISTRY 2018; 41:181-188. [PMID: 29137742 DOI: 10.1016/j.ultsonch.2017.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Ultrasound coupled with supercritical CO2 has become an important method for exfoliation of graphene, but behind which a peeling mechanism is unclear. In this work, CFD simulation and experiment were both investigated to elucidate the mechanism and the effects of the process parameters on the exfoliation yield. The experiments and the CFD simulation were conducted under pressure ranging from 8MPa to 16MPa, the ultrasonic power ranging from 12W to 240W and the frequency of 20kHz. The numerical analysis of fluid flow patterns and pressure distributions revealed that the fluid shear stress and the periodical pressure fluctuation generated by ultrasound were primary factors in exfoliating graphene. The distribution of the fluid shear stress decided the effective exfoliation area, which, in turn, affected the yield. The effective area increased from 5.339cm3 to 8.074cm3 with increasing ultrasonic power from 12W to 240W, corresponding to the yield increasing from 5.2% to 21.5%. The pressure fluctuation would cause the expansion of the interlayers of graphite. The degree of the expansion increased with the increase of the operating pressure but decreased beyond 12MPa. Thus, the maximum yield was obtained at 12MPa. The cavitation might be generated by ultrasound in supercritical CO2. But it is too weak to exfoliate graphite into graphene. These results provide a strategy in optimizing and scaling up the ultrasound-assisted supercritical CO2 technique for producing graphene.
Collapse
Affiliation(s)
- Yanzhe Gai
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wucong Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ding Xiao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
27
|
Tao H, Zhang Y, Gao Y, Sun Z, Yan C, Texter J. Scalable exfoliation and dispersion of two-dimensional materials - an update. Phys Chem Chem Phys 2018; 19:921-960. [PMID: 27976772 DOI: 10.1039/c6cp06813h] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The preparation of dispersions of single- and few-sheet 2D materials in various solvents, as well as the characterization methods applied to such dispersions, is critically reviewed. Motivating factors for producing single- and few-sheet dispersions of 2D materials in liquids are briefly discussed. Many practical applications are expected for such materials that do not require high purity formulations and tight control of donor and acceptor concentrations, as required in conventional Fab processing of semiconductor chips. Approaches and challenges encountered in exfoliating 2D materials in liquids are reviewed. Ultrasonication, mechanical shearing, and electrochemical processing approaches are discussed, and their respective limitations and promising features are critiqued. Supercritical and more conventional liquid and solvent processing are then discussed in detail. The effects of various types of stabilizers, including surfactants and other amphiphiles, as well as polymers, including homopolymeric electrolytes, nonionic polymers, and nanolatexes, are discussed. Consideration of apparent successes of stabilizer-free dispersions indicates that extensive exfoliation in the absence of dispersing aids results from processing-induced surface modifications that promote stabilization of 2D material/solvent interactions. Also apparent paradoxes in "pristineness" and optical extinctions in dispersions suggest that there is much we do not yet quantitatively understand about the surface chemistry of these materials. Another paradox, emanating from modeling dilute solvent-only exfoliation by sonication using polar components of solubility parameters and surface tension for pristine graphene with no polar structural component, is addressed. This apparent paradox appears to be resolved by realizing that the reactivity of graphene to addition reactions of solvent radicals produced by sonolysis is accompanied by unintended polar surface modifications that promote attractive interactions with solvent. This hypothesis serves to define important theoretical and experimental studies that are needed. We conclude that the greatest promise for high volume and high concentration processing lies in applying methods that have not yet been extensively reported, particularly wet comminution processing using small grinding media of various types.
Collapse
Affiliation(s)
- Hengcong Tao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuqin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yunnan Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chao Yan
- School of Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - John Texter
- School of Engineering Technology, Eastern Michigan University, Ypsilanti, MI 48197, USA.
| |
Collapse
|
28
|
Tian X, Li Y, Chen Z, Li Q, Hou L, Wu J, Tang Y, Li Y. Shear-Assisted Production of Few-Layer Boron Nitride Nanosheets by Supercritical CO 2 Exfoliation and Its Use for Thermally Conductive Epoxy Composites. Sci Rep 2017; 7:17794. [PMID: 29259272 PMCID: PMC5736726 DOI: 10.1038/s41598-017-18149-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/05/2017] [Indexed: 11/09/2022] Open
Abstract
Boron nitride nanosheets (BNNS) hold the similar two-dimensional structure as graphene and unique properties complementary to graphene, which makes it attractive in application ranging from electronics to energy storage. The exfoliation of boron nitride (BN) still remains challenge and hinders the applications of BNNS. In this work, the preparation of BNNS has been realized by a shear-assisted supercritical CO2 exfoliation process, during which supercritical CO2 intercalates and diffuses between boron nitride layers, and then the exfoliation of BN layers is obtained in the rapid depressurization process by overcoming the van der Waals forces. Our results indicate that the bulk boron nitride has been successfully exfoliated into thin nanosheets with an average 6 layers. It is found that the produced BNNS is well-dispersed in isopropyl alcohol (IPA) with a higher extinction coefficient compared with the bulk BN. Moreover, the BNNS/epoxy composite used as thermal interface materials has been prepared. The introduction of BNNS results in a 313% enhancement in thermal conductivity. Our results demonstrate that BNNS produced by supercritical CO2 exfoliation show great potential applications for heat dissipation of high efficiency electronics.
Collapse
Affiliation(s)
- Xiaojuan Tian
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249, P. R. China
| | - Yun Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249, P. R. China
| | - Zhuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249, P. R. China
| | - Qi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249, P. R. China
| | - Liqiang Hou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249, P. R. China
| | - Jiaye Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249, P. R. China
| | - Yushu Tang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249, P. R. China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249, P. R. China.
| |
Collapse
|
29
|
Enhanced Reduction of Few-Layer Graphene Oxide via Supercritical Water Gasification of Glycerol. NANOMATERIALS 2017; 7:nano7120447. [PMID: 29240720 PMCID: PMC5746937 DOI: 10.3390/nano7120447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 11/16/2022]
Abstract
A sustainable and effective method for de-oxygenation of few-layer graphene oxide (FLGO) by glycerol gasification in supercritical water (SCW) is described. In this manner, reduction of FLGO and valorization of glycerol, in turn catalyzed by FLGO, are achieved simultaneously. The addition of glycerol enhanced FLGO oxygen removal by up to 59% due to the in situ hydrogen generation as compared to the use of SCW only. Physicochemical characterization of the reduced FLGO (rFLGO) showed a high restoration of the sp2-conjugated carbon network. FLGO sheets with a starting C/O ratio of 2.5 are reduced by SCW gasification of glycerol to rFLGO with a C/O ratio of 28.2, above those reported for hydrazine-based methods. Additionally, simultaneous glycerol gasification resulted in the concurrent production of H2, CO, CH4 and valuable hydrocarbons such as alkylated and non-alkylated long chain hydrocarbon (C12–C31), polycyclic aromatic hydrocarbons (PAH), and phthalate, phenol, cresol and furan based compounds.
Collapse
|
30
|
Wang MS, Cheng Y, Zhao L, Gautam UK, Golberg D. Graphene Ingestion and Regrowth on "Carbon-Starved" Metal Electrodes. ACS NANO 2017; 11:10575-10582. [PMID: 28953352 DOI: 10.1021/acsnano.7b06078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The interaction between graphene and various metals plays a central role in future carbon-based device and synthesis technologies. Herein, three different types of metal nanoelectrodes (W, Ni, Au) were employed to in situ study the graphene-metal interfacial kinetic behaviors in a high-resolution transmission electron microscope. The three metals exhibit distinctly different interactions with graphene when driven by a heating current. Tungsten tips, the most carbon-starved ones, can ingest a graphene sheet continuously; nickel tips, less carbon starved, typically "eat" graphene only by taking a "bite" from its edge; gold, however, is nonactive with graphene at all, even in its molten state. The ingested graphene atoms finally precipitate as freshly formed graphitic shells encapsulating the catalytic W and Ni electrodes. Particularly, we propose a periodic extension/thickening graphene growth scenario by atomic-scale observation of this process on W electrodes, where the propagation of the underlying tungsten carbide (WC) dominates the growth dynamics. This work uncovers the complexity of carbon diffusion/segregation processes at different graphene/metal interfaces that would severely degrade the device performance and stability. Besides, it also provides a detailed and insightful understanding of the sp2 carbon catalytic growth, which is vital in developing efficient and practical graphene synthetic routes.
Collapse
Affiliation(s)
- Ming-Sheng Wang
- Department of Materials Science and Engineering, College of Materials, Xiamen University , Xiamen, Fujian 361005, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen, Fujian 361005, China
| | - Yong Cheng
- Department of Materials Science and Engineering, College of Materials, Xiamen University , Xiamen, Fujian 361005, China
| | - Longze Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen, Fujian 361005, China
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali , Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Dmitri Golberg
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) , 2 George Street, Gardens Point, Brisbane, QLD 4000, Australia
| |
Collapse
|
31
|
Enhanced electrical properties of graphite/ABS composites prepared via supercritical CO2 processing. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-1956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Ma H, Shen Z, Yi M, Ben S, Liang S, Liu L, Zhang Y, Zhang X, Ma S. Direct exfoliation of graphite in water with addition of ammonia solution. J Colloid Interface Sci 2017; 503:68-75. [DOI: 10.1016/j.jcis.2017.04.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/18/2017] [Accepted: 04/22/2017] [Indexed: 10/19/2022]
|
33
|
Gao H, Xue C, Hu G, Zhu K. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO 2/H 2O medium. ULTRASONICS SONOCHEMISTRY 2017; 37:120-127. [PMID: 28427614 DOI: 10.1016/j.ultsonch.2017.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 05/13/2023]
Abstract
In this research, three kinds of graphene quantum dots (GQDs)-pristine graphene quantum dots (PGQDs), expanded graphene quantum dots (EGQDs) and graphene oxide quantum dots (GOQDs)-were produced from natural graphite, expanded graphite, and oxide graphite respectively in an ultrasound-assisted supercritical CO2 (scCO2)/H2O system. The effects of aqueous solution content ratio, system pressure, and ultrasonic power on the yields of different kinds of GQDs were investigated. According to these experiment results, the combination of the intense knocking force generated from high-pressure acoustic cavitation in a scCO2/H2O system and the superior penetration ability of scCO2 was considered to be the key to the successful exfoliation of such tiny pieces from bulk graphite. An interesting result was found that, contrary to common experience, the yield of PGQDs from natural graphite was much higher than that of GOQDs from graphite oxide. Based on the experimental analysis, the larger interlayer resistance of natural graphite, which hindered the insertion of scCO2 molecules, and the hydrophobic property of natural graphite surface, which made the planar more susceptible to the attack of ultrasonic collapsing bubbles, were deduced to be the two main reasons for this result. The differences in characteristics among the three kinds of GQDs were also studied and compared in this research. In our opinion, this low-cost and time-saving method may provide an alternative green route for the production of various kinds of GQDs, especially PGQDs.
Collapse
Affiliation(s)
- Hanyang Gao
- School of Mechanical Engineering, Hangzhou Dianzi University, Xiasha Higher Education Zone, 310018 Hangzhou, Zhejiang Province, China
| | - Chen Xue
- School of Mechanical and Power Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | - Guoxin Hu
- School of Mechanical and Power Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China.
| | - Kunxu Zhu
- School of Mechanical and Power Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| |
Collapse
|
34
|
Thangasamy P, Partheeban T, Sudanthiramoorthy S, Sathish M. Enhanced Superhydrophobic Performance of BN-MoS 2 Heterostructure Prepared via a Rapid, One-Pot Supercritical Fluid Processing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6159-6166. [PMID: 28554204 DOI: 10.1021/acs.langmuir.7b00483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fabrication of highly crystalline BN-MoS2 heterostructure with >95% yield was demonstrated using one-pot supercritical fluid processing within 30 min. The existence of 20-50 layers of BN-MoS2 in the prepared heterostructure was confirmed by AFM analysis. The HR-TEM imaging and mapping analysis revealed the well-melded BN and MoS2 nanosheets in the heterostructure. The drastic reduction in XRD line intensities corresponding to the (002) plane and broadening of the peaks for the BN system over MoS2 indicated the effective exfoliation and lateral size reduction in BN nanosheets during SCF processing. Also, the exfoliated MoS2 nanosheets are preferentially exposed rather than BN nanosheets; consequently, the MoS2 nanosheets sturdily covered BN nanosheets in the heterostructure. The exfoliated BN and MoS2 nanosheets with nanoscale roughness make the surface highly hydrophobic in nature. As a result, the BN-MoS2 heterostructure showed superior superhydrophobic performance with high water contact angle of 165.9°, which is much higher than the value reported in the literature.
Collapse
Affiliation(s)
- Pitchai Thangasamy
- Functional Materials Division, CSIR-Central Electrochemical Research Institute , Karaikudi-630 003, Tamil Nadu, India
| | - Thamodaran Partheeban
- Functional Materials Division, CSIR-Central Electrochemical Research Institute , Karaikudi-630 003, Tamil Nadu, India
| | - Subramanian Sudanthiramoorthy
- Functional Materials Division, CSIR-Central Electrochemical Research Institute , Karaikudi-630 003, Tamil Nadu, India
| | - Marappan Sathish
- Functional Materials Division, CSIR-Central Electrochemical Research Institute , Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
35
|
Tomai T, Ishiguro S, Tamura N, Nakayasu Y, Honma I. Structure-Based Selective Adsorption of Graphene on a Gel Surface: Toward Improving the Quality of Graphene Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5406-5411. [PMID: 28509556 DOI: 10.1021/acs.langmuir.7b00254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Top-down graphene production via exfoliation from graphite produces a mass of graphene with structural variation in terms of the number of layers, sheet size, edge type, and defect density. All of these characteristics affect its electronic structure. To develop useful applications of graphene, structural separation of graphene is necessary. In this study, we investigate the adsorption behavior of different types of graphene fragments using a multicolumn gel chromatography system with a view to developing an efficient method for separating high-quality graphene. The graphene was dispersed in an aqueous sodium dodecyl sulfate (SDS) surfactant solution and flown through allyl-dextran-based gel columns connected in series. In the chromatographic operation, we observed that the small-sized or oxidized graphene fragments tended to bind to the gel and the relatively large-sized graphene with a low oxygen content eluted from the gel column. In this system, the adsorbed SDS molecules on the graphitic surface prevented graphitic materials from binding to the gel and the oxygen functional groups on the graphene oxide or at the abundant edge of small-sized graphene hindered SDS adsorption. We hypothesize that the reduced SDS adsorption density results in the preferential adsorption of small-sized or oxidized graphene fragments on the gel. This type of chromatographic separation is a cost-effective and scalable method for sorting nanomaterials. The structural separation of graphene based on the adsorption priority found in this study will improve the quality of graphene nanosheets on an industrial scale.
Collapse
Affiliation(s)
- Takaaki Tomai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
| | - Shunichi Ishiguro
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
| | - Naoki Tamura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
| | - Yuta Nakayasu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
| | - Itaru Honma
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
36
|
Chen Z, Miao H, Wu J, Tang Y, Yang W, Hou L, Yang F, Tian X, Zhang L, Li Y. Scalable Production of Hydrophilic Graphene Nanosheets via in Situ Ball-Milling-Assisted Supercritical CO2 Exfoliation. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00594] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhuo Chen
- State Key Laboratory of Heavy
Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
| | - Huadi Miao
- State Key Laboratory of Heavy
Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
| | - Jiaye Wu
- State Key Laboratory of Heavy
Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
| | - Yushu Tang
- State Key Laboratory of Heavy
Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
| | - Wang Yang
- State Key Laboratory of Heavy
Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
| | - Liqiang Hou
- State Key Laboratory of Heavy
Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
| | - Fan Yang
- State Key Laboratory of Heavy
Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
| | - Xiaojuan Tian
- State Key Laboratory of Heavy
Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
| | - Liqiang Zhang
- State Key Laboratory of Heavy
Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
| | - Yongfeng Li
- State Key Laboratory of Heavy
Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
| |
Collapse
|
37
|
Truong QD, Kempaiah Devaraju M, Nakayasu Y, Tamura N, Sasaki Y, Tomai T, Honma I. Exfoliated MoS 2 and MoSe 2 Nanosheets by a Supercritical Fluid Process for a Hybrid Mg-Li-Ion Battery. ACS OMEGA 2017; 2:2360-2367. [PMID: 31457585 PMCID: PMC6640930 DOI: 10.1021/acsomega.7b00379] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/15/2017] [Indexed: 05/29/2023]
Abstract
The ultrathin two-dimensional nanosheets of layered transition-metal dichalcogenides (TMDs) have attracted great interest as an important class of materials for fundamental research and technological applications. Solution-phase processes are highly desirable to produce a large amount of TMD nanosheets for applications in energy conversion and energy storage such as catalysis, electronics, rechargeable batteries, and capacitors. Here, we report a rapid exfoliation by supercritical fluid processing for the production of MoS2 and MoSe2 nanosheets. Atomic-resolution high-angle annular dark-field imaging reveals high-quality exfoliated MoS2 and MoSe2 nanosheets with hexagonal structures, which retain their 2H stacking sequence. The obtained nanosheets were tested for their electrochemical performance in a hybrid Mg-Li-ion battery as a proof of functionality. The MoS2 and MoSe2 nanosheets exhibited the specific capacities of 81 and 55 mA h g-1, respectively, at a current rate of 20 mA g-1.
Collapse
Affiliation(s)
- Quang Duc Truong
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira,
2-1-1, Aobaku, Sendai 980-8577, Japan
| | - Murukanahally Kempaiah Devaraju
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira,
2-1-1, Aobaku, Sendai 980-8577, Japan
| | - Yuta Nakayasu
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira,
2-1-1, Aobaku, Sendai 980-8577, Japan
| | - Naoki Tamura
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira,
2-1-1, Aobaku, Sendai 980-8577, Japan
| | - Yoshikazu Sasaki
- Field
Solution Division, JEOL Ltd., 1156 Nakagamicho, Akishima, Tokyo 196-0022, Japan
| | - Takaaki Tomai
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira,
2-1-1, Aobaku, Sendai 980-8577, Japan
| | - Itaru Honma
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira,
2-1-1, Aobaku, Sendai 980-8577, Japan
| |
Collapse
|
38
|
Zhang T, Liu J, Wang C, Leng X, Xiao Y, Fu L. Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosens Bioelectron 2017; 89:28-42. [DOI: 10.1016/j.bios.2016.06.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
|
39
|
Supercritical fluid preparation of Pt, Ru and Ni/graphene nanocomposites and their application as selective catalysts in the partial hydrogenation of limonene. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Thangasamy P, Selvakumar K, Sathish M, Kumar SMS, Thangamuthu R. Anchoring of ultrafine Co3O4 nanoparticles on MWCNTs using supercritical fluid processing and its performance evaluation towards electrocatalytic oxygen reduction reaction. Catal Sci Technol 2017. [DOI: 10.1039/c6cy02611g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anchoring ultrafine Co3O4 nanoparticles on MWCNTs using a supercritical fluid showed high ORR performance.
Collapse
Affiliation(s)
| | - Karuppiah Selvakumar
- Electrochemical Materials Science Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi – 630003
- India
| | | | | | - Rangasamy Thangamuthu
- Electrochemical Materials Science Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi – 630003
- India
| |
Collapse
|
41
|
Thangasamy P, Maruthapandian V, Saraswathy V, Sathish M. Supercritical fluid processing for the synthesis of NiS2 nanostructures as efficient electrocatalysts for electrochemical oxygen evolution reactions. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01103b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile supercritical fluid process was demonstrated for the synthesis of cubic NiS2 nanostructures for efficient electrochemical oxygen evolution reactions.
Collapse
Affiliation(s)
- Pitchai Thangasamy
- Academy of Scientific and Innovative Research
- Karaikudi-630 003
- India
- Functional Materials Division
- CSIR-Central Electrochemical Research Institute
| | - Viruthasalam Maruthapandian
- Academy of Scientific and Innovative Research
- Karaikudi-630 003
- India
- Corrosion and Materials Protection Division
- CSIR-Central Electrochemical Research Institute
| | - Velu Saraswathy
- Academy of Scientific and Innovative Research
- Karaikudi-630 003
- India
- Corrosion and Materials Protection Division
- CSIR-Central Electrochemical Research Institute
| | - Marappan Sathish
- Academy of Scientific and Innovative Research
- Karaikudi-630 003
- India
- Functional Materials Division
- CSIR-Central Electrochemical Research Institute
| |
Collapse
|
42
|
Thangasamy P, Ilayaraja N, Jeyakumar D, Sathish M. Electrochemical cycling and beyond: unrevealed activation of MoO3 for electrochemical hydrogen evolution reactions. Chem Commun (Camb) 2017; 53:2245-2248. [DOI: 10.1039/c6cc09187c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical cycling-induced reduction of α-MoO3 to monoclinic molybdenum dioxide and molybdenum sub-oxides with excellent electrochemical HER activity has been demonstrated.
Collapse
Affiliation(s)
- Pitchai Thangasamy
- Functional Materials Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi – 630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Nagarajan Ilayaraja
- Functional Materials Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi – 630 003
- India
| | - Duraisamy Jeyakumar
- Functional Materials Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi – 630 003
- India
| | - Marappan Sathish
- Functional Materials Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi – 630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
43
|
Xu X, Cai L, Zheng X, Xu Q. Molecular dynamics simulations of solvent-exfoliation and stabilization of graphene with the assistance of compressed carbon dioxide and pyrene–polyethylene glycol. Phys Chem Chem Phys 2017; 19:16062-16070. [DOI: 10.1039/c7cp01277b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the solvent-exfoliation and stabilization of graphene with cpCO2and pyrene–polyethylene glycol from molecular dynamics simulations.
Collapse
Affiliation(s)
- Xiaodan Xu
- College of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- P. R. China
| | - Lu Cai
- School of Materials Science and Engineering
- Wuhan Institute of Technology
- Wuhan 430073
- P. R. China
| | - Xiaoli Zheng
- College of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- P. R. China
| | - Qun Xu
- College of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- P. R. China
| |
Collapse
|
44
|
Sasikala SP, Huang K, Giroire B, Prabhakaran P, Henry L, Penicaud A, Poulin P, Aymonier C. Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30964-30971. [PMID: 27762542 DOI: 10.1021/acsami.6b10570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the exfoliation of graphite and simultaneous N doping of graphene by two methods: supercritical ammonia treatment and liquid-phase exfoliation with NH4OH. While the supercritical ammonia allowed N doping at a level of 6.4 atom % in 2 h, the liquid-phase exfoliation with NH4OH allowed N doping at a level of 2.7 atom % in 6 h. The N doped graphene obtained via the supercritical ammonia route had few layers (<5) and showed large lateral flake size (∼8 μm) and low defect density (ID/IG < 0.6) in spite of their high level of N doping. This work is the first demonstration of supercritical ammonia as an exfoliation agent and N doping precursor for graphene. Notably, the N doped graphene showed electrocatalytic activity toward oxygen reduction reaction with high durability and good methanol tolerance compared to those of commercial Pt/C catalyst.
Collapse
Affiliation(s)
| | | | | | - Prem Prabhakaran
- Department of Advanced Materials, Hannam University , Daejeon 305-811, South Korea
| | | | | | | | | |
Collapse
|
45
|
Thangasamy P, Santhanam M, Sathish M. Supercritical Fluid Facilitated Disintegration of Hexagonal Boron Nitride Nanosheets to Quantum Dots and Its Application in Cells Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18647-51. [PMID: 27391298 DOI: 10.1021/acsami.6b04614] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Preparation of quantum dots (QDs) and exfoliation of two-dimensional layered materials have gathered significant attention in recent days. Though, there are number of attempts have been reported, facile and efficient methodology is yet to be explored. Here, we demonstrate supercritical fluid processing approach for rapid and facile synthesis of blue luminescent BN QDs from layered bulk material via in situ exfoliation followed by disintegration. The microscopic and AFM analysis confirmed the few layer BN QDs formation. The strong luminescent behavior of BN QDs is utilized to stain Gram-negative bacterial cells specifically in the presence of Gram-positive bacterial cells.
Collapse
Affiliation(s)
- Pitchai Thangasamy
- Functional Materials Division, ‡Academy of Scientific and Innovative Research (AcSIR), and §Corrosion and Material Protection Division, CSIR-Central Electrochemical Research Institute , Karaikudi 630 003, India
| | - Manikandan Santhanam
- Functional Materials Division, ‡Academy of Scientific and Innovative Research (AcSIR), and §Corrosion and Material Protection Division, CSIR-Central Electrochemical Research Institute , Karaikudi 630 003, India
| | - Marappan Sathish
- Functional Materials Division, ‡Academy of Scientific and Innovative Research (AcSIR), and §Corrosion and Material Protection Division, CSIR-Central Electrochemical Research Institute , Karaikudi 630 003, India
| |
Collapse
|
46
|
Sasikala SP, Henry L, Yesilbag Tonga G, Huang K, Das R, Giroire B, Marre S, Rotello VM, Penicaud A, Poulin P, Aymonier C. High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids. ACS NANO 2016; 10:5293-5303. [PMID: 27135862 DOI: 10.1021/acsnano.6b01298] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper rationalizes the green and scalable synthesis of graphenic materials of different aspect ratios using anthracite coal as a single source material under different supercritical environments. Single layer, monodisperse graphene oxide quantum dots (GQDs) are obtained at high yield (55 wt %) from anthracite coal in supercritical water. The obtained GQDs are ∼3 nm in lateral size and display a high fluorescence quantum yield of 28%. They show high cell viability and are readily used for imaging cancer cells. In an analogous experiment, high aspect ratio graphenic materials with ribbon-like morphology (GRs) are synthesized from the same source material in supercritical ethanol at a yield of 6.4 wt %. A thin film of GRs with 68% transparency shows a surface resistance of 9.3 kΩ/sq. This is apparently the demonstration of anthracite coal as a source for electrically conductive graphenic materials.
Collapse
Affiliation(s)
| | - Lucile Henry
- CNRS, University of Bordeaux, ICMCB , UPR 9048, Pessac 33600, France
| | - Gulen Yesilbag Tonga
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Kai Huang
- Centre de Recherche Paul Pascal, CNRS, University of Bordeaux , Pessac 33600, France
| | - Riddha Das
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Baptiste Giroire
- CNRS, University of Bordeaux, ICMCB , UPR 9048, Pessac 33600, France
| | - Samuel Marre
- CNRS, University of Bordeaux, ICMCB , UPR 9048, Pessac 33600, France
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Alain Penicaud
- Centre de Recherche Paul Pascal, CNRS, University of Bordeaux , Pessac 33600, France
| | - Philippe Poulin
- Centre de Recherche Paul Pascal, CNRS, University of Bordeaux , Pessac 33600, France
| | - Cyril Aymonier
- CNRS, University of Bordeaux, ICMCB , UPR 9048, Pessac 33600, France
| |
Collapse
|
47
|
Padmajan Sasikala S, Poulin P, Aymonier C. Prospects of Supercritical Fluids in Realizing Graphene-Based Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2663-91. [PMID: 26879938 DOI: 10.1002/adma.201504436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/21/2015] [Indexed: 05/08/2023]
Abstract
Supercritical-fluids science and technology predate all the approaches that are currently established for graphene production by several decades in advanced materials design. However, it has only recently been proposed as a plausible approach for graphene processing. Since then, supercritical fluids have emerged into contention as an alternative to existing technologies because of their scalability and versatility in processing graphene materials, which include composites, aerogels, and foams. Here, an overview is presented of such materials prepared through supercritical fluids from an advanced materials science standpoint, with a discussion on their fundamental properties and technological applications. The benefits of supercritical-fluid processing over conventional liquid-phase processing are presented. The benefits include not only better performances for advanced applications but also environmental issues associated with the synthesis process. Nevertheless, the limitations of supercritical-fluid processing are also stressed, along with challenges that are still faced toward the achievement of the great expectations from graphene materials.
Collapse
Affiliation(s)
| | - Philippe Poulin
- CNRS, University of Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR8641, F-33600, PESSAC, France
| | - Cyril Aymonier
- CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600, PESSAC, France
| |
Collapse
|
48
|
Qi Y, Xu Q, Wang Y, Yan B, Ren Y, Chen Z. CO₂-Induced Phase Engineering: Protocol for Enhanced Photoelectrocatalytic Performance of 2D MoS₂ Nanosheets. ACS NANO 2016; 10:2903-2909. [PMID: 26840941 DOI: 10.1021/acsnano.6b00001] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molybdenum disulfide (MoS2) is a promising non-precious-metal catalyst, but its performance is limited by the density of active sites and poor electrical transport. Its metallic 1T phase possesses higher photoelectrocatalytic activity. Thus, how to efficiently increase the concentration of the 1T phase in the exfoliated two-dimensiaonal (2D) MoS2 nanosheets is an important premise. In this work, we propose a strategy to prepare a 2D heterostructure of MoS2 nanosheets using supercritical CO2-induced phase engineering to form metallic 1T-MoS2. Theoretical calculations and experimental results demonstrate that the introduced CO2 in the 2H-MoS2 host can prompt the transformation of partial 2H-MoS2 lattices into 1T-MoS2. Moreover, the electrical coupling and synergistic effect between 2H and 1T phases can greatly facilitate the efficient electron transfer from the active sites of MoS2, which significantly improves the photocatalytic performance.
Collapse
Affiliation(s)
- Yuhang Qi
- College of Materials Science and Engineering, Zhengzhou University , Zhengzhou 450052, China
| | - Qun Xu
- College of Materials Science and Engineering, Zhengzhou University , Zhengzhou 450052, China
| | - Yun Wang
- Centre for Clean Environment and Energy and Griffith School of Environment, Griffith University , Nathan, QLD 4111, Australia
| | - Bo Yan
- College of Materials Science and Engineering, Zhengzhou University , Zhengzhou 450052, China
| | - Yumei Ren
- College of Materials Science and Engineering, Zhengzhou University , Zhengzhou 450052, China
| | - Zhimin Chen
- College of Materials Science and Engineering, Zhengzhou University , Zhengzhou 450052, China
| |
Collapse
|
49
|
Yi L, Hu G, Li H. Against Overcharring Design of Flame-Retardant Electromagnetic Absorbing Composites with Graphene Nanosheets and Manganese Oxides in Modified Epoxy Resin. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b02778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lixi Yi
- School of Mechanical & Power Engineering, Shanghai Jiaotong University, Shanghai 200240, China
- Beijing UCAS Space Technology Co., Ltd. & Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China
| | - Guoxin Hu
- School of Mechanical & Power Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hua Li
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
50
|
Optimization of graphene production by exfoliation of graphite in supercritical ethanol: A response surface methodology approach. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.08.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|