1
|
Yadav M, Singh VP. A review on benzoselenazoles: synthetic methodologies and potential biological applications. Org Biomol Chem 2025; 23:3712-3740. [PMID: 40152071 DOI: 10.1039/d4ob01897d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Among the various heterocyclic organoselenium compounds, a new class of benzoselenazoles has received great attention due to their chemical properties and biological applications. The ever-growing interest in the five-membered benzoselenazole heterocycles amongst chemists has made commendable impact. These heterocycles are a prominent class of organic molecules that have emerged as potential therapeutic agents for the treatment of a wide range of diseases. Substantial progress has been made in elucidating the complex chemical properties of these heterocycles. Moreover, they have garnered significant importance in a wide range of biological applications. However, despite their biological activities, research on benzoselenazoles remains relatively limited, emphasising the need for further exploration in this area. Hence, considering the importance of benzoselenazoles, this comprehensive review compiles various synthetic procedures, highlighting the recent advances in their synthesis that have been disclosed in the literature. This review would offer chemists an array of information that will assist them in the development of more affordable and effective synthesis processes for benzoselenazoles. Therefore, it is believed that this review would provide relevant context on these achievements and will inspire synthetic organic chemists to use these effective technologies of such heterocycles for the future treatment of diseases caused by oxidative stress. The biological and pharmacological properties of these organoselenium heterocycles, which include their antioxidant, antitumor, and antibacterial activities and their application in Alzheimer's disease treatment and as pancreatic lipase inhibitors, are thoroughly summarized. Finally, this review provides some perspectives on the challenges and future directions in the development of benzoselenazoles as heterocyclic organoselenium compounds.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| |
Collapse
|
2
|
Yadav M, Sodhi N, Sethi P, Mundlia P, Singh SP, Barnwal RP, Khajuria A, Singh G, Baschieri A, Amorati R, Sahakyan AD, Singh VP. Radical-Trapping and Hydroperoxide-Decomposing Benzoselenazole Antioxidants with Potential Biological Applications against Oxidative Stress. Chembiochem 2025; 26:e202400954. [PMID: 39904735 DOI: 10.1002/cbic.202400954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
The synthesis of phenolic benzoselenazoles has been described. These were synthesized from their corresponding diselenides and aldehydes using acetic acid as a catalyst. All compounds have been tested for glutathione peroxidase (GPx)-like antioxidant activity in thiophenol assay. Radical-trapping antioxidant (RTA) activity of benzoselenazoles towards ROO⋅ radicals has been studied for the inhibition of autoxidation of cumene in chlorobenzene from the O2-consumption during the inhibited period. Compound 13 c was found to inhibit azo-initiated oxidation of cumene with a stoichiometric factor (n) ≃2.2. This study also suggested some insights into the substitution-dependent activity of anilides over phenols as effective radical-trapping antioxidants. Moreover, the zone of inhibition study corroborated the antimicrobial potential of benzoselenazole antioxidants against Bacillus subtilis (B. subtilis) and Pseudomonas aeruginosa (P. aeruginosa). Anti-biofilm activities were portrayed against the production of biofilms by B. subtilis and P. aeruginosa. MDA-MB-231 cell line was selected for triple-negative breast carcinoma for in vitro cytotoxicity of all antioxidants using the MTT assay. Additionally, the interaction patterns of antioxidants with target proteins of B. subtilis and P. aeruginosa were demonstrated using molecular docking study. Molecular dynamics simulations were deployed to investigate the structural dynamics and the stability of the complex.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh, 160 014, India
| | - Nikhil Sodhi
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh, 160 014, India
| | - Palak Sethi
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh, 160 014, India
| | - Poonam Mundlia
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160 014, India
| | - Suraj P Singh
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160 014, India
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160 014, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Sector-14, Chandigarh, 160 014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Sector-14, Chandigarh, 160 014, India
| | - Andrea Baschieri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, 40129, Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 83, 40129, Bologna, Italy
| | - Adrine D Sahakyan
- A. B. Nalbandyan Institute of Chemical Physics, National Academy of Sciences, 5/2 P Sevak str., Yerevan, 0014, Republic of Armenia
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh, 160 014, India
| |
Collapse
|
3
|
Baschieri A, Jin Z, Amorati R, Vasa K, Baroncelli A, Menichetti S, Viglianisi C. Kinetic study of the reaction of thiophene-tocopherols with peroxyl radicals enlightenings the role of O˙⋯S noncovalent interactions in H-atom transfer. Org Biomol Chem 2024; 22:5965-5976. [PMID: 38984438 DOI: 10.1039/d4ob00944d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Three new α-tocopherol thiophene derivatives were efficiently synthesized, characterized and used for the first time as chain-breaking antioxidants for the inhibition of the autoxidation of reference oxidizable substrates. The rate constant of the reaction with alkylperoxyl (ROO˙) radicals and the stoichiometry of radical trapping (n) for the thiophene-tocopherol compounds were determined by measuring the oxygen consumption during the autoxidation of styrene or isopropylbenzene, using a differential pressure transducer. The measurement of the reaction with ROO˙ radicals in an apolar solvent at 30 °C showed inhibition rate constants (kinh) in the order of 104 M-1 s-1. To rationalise the kinetic results, the effect of the thiophene ring on the H-atom donation by O-H groups of the functionalized tocopherols was investigated by theoretical calculations. The importance of noncovalent interactions (including an unusual O˙⋯S bond) for the stability of the conformers has been shown, and the O-H bond dissociation enthalpy (BDE(OH)) of these derivatives was determined. Finally, the photophysical properties of these new compounds were investigated to understand if the addition of thiophene groups changes the absorption or emission spectra of the tocopherol skeleton for their possible application as luminescent molecular probes.
Collapse
Affiliation(s)
- Andrea Baschieri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| | - Zongxin Jin
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Kristian Vasa
- Department of Chemistry "Ugo Schiff" - DICUS, University of Florence, Via Della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Allegra Baroncelli
- Department of Chemistry "Ugo Schiff" - DICUS, University of Florence, Via Della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Stefano Menichetti
- Department of Chemistry "Ugo Schiff" - DICUS, University of Florence, Via Della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Caterina Viglianisi
- Department of Chemistry "Ugo Schiff" - DICUS, University of Florence, Via Della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
4
|
Groslambert L, Cornaton Y, Ditte M, Aubert E, Pale P, Tkatchenko A, Djukic JP, Mamane V. Affinity of Telluronium Chalcogen Bond Donors for Lewis Bases in Solution: A Critical Experimental-Theoretical Joint Study. Chemistry 2024; 30:e202302933. [PMID: 37970753 DOI: 10.1002/chem.202302933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Telluronium salts [Ar2 MeTe]X were synthesized, and their Lewis acidic properties towards a number of Lewis bases were addressed in solution by physical and theoretical means. Structural X-ray diffraction analysis of 21 different salts revealed the electrophilicity of the Te centers in their interactions with anions. Telluroniums' propensity to form Lewis pairs was investigated with OPPh3 . Diffusion-ordered NMR spectroscopy suggested that telluroniums can bind up to three OPPh3 molecules. Isotherm titration calorimetry showed that the related heats of association in 1,2-dichloroethane depend on the electronic properties of the substituents of the aryl moiety and on the nature of the counterion. The enthalpies of first association of OPPh3 span -0.5 to -5 kcal mol-1 . Study of the affinity of telluroniums for OPPh3 by state-of-the-art DFT and ab-initio methods revealed the dominant Coulombic and dispersion interactions as well as an entropic effect favoring association in solution. Intermolecular orbital interactions between [Ar2 MeTe]+ cations and OPPh3 are deemed insufficient on their own to ensure the cohesion of [Ar2 MeTe ⋅ Bn ]+ complexes in solution (B=Lewis base). Comparison of Grimme's and Tkatchenko's DFT-D4/MBD-vdW thermodynamics of formation of higher [Ar2 MeTe ⋅ Bn ]+ complexes revealed significant molecular size-dependent divergence of the two methodologies, with MBD yielding better agreement with experiment.
Collapse
Affiliation(s)
- Loïc Groslambert
- LASYROC, UMR 7177 CNRS, University of Strasbourg, 1 Rue Blaise Pascal, F-67000, Strasbourg, France
| | - Yann Cornaton
- LCSOM, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, F-67000, Strasbourg, France
| | - Matej Ditte
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg
| | | | - Patrick Pale
- LASYROC, UMR 7177 CNRS, University of Strasbourg, 1 Rue Blaise Pascal, F-67000, Strasbourg, France
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg
| | - Jean-Pierre Djukic
- LCSOM, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, F-67000, Strasbourg, France
| | - Victor Mamane
- LASYROC, UMR 7177 CNRS, University of Strasbourg, 1 Rue Blaise Pascal, F-67000, Strasbourg, France
| |
Collapse
|
5
|
Valgimigli L. Lipid Peroxidation and Antioxidant Protection. Biomolecules 2023; 13:1291. [PMID: 37759691 PMCID: PMC10526874 DOI: 10.3390/biom13091291] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid peroxidation (LP) is the most important type of oxidative-radical damage in biological systems, owing to its interplay with ferroptosis and to its role in secondary damage to other biomolecules, such as proteins. The chemistry of LP and its biological consequences are reviewed with focus on the kinetics of the various processes, which helps understand the mechanisms and efficacy of antioxidant strategies. The main types of antioxidants are discussed in terms of structure-activity rationalization, with focus on mechanism and kinetics, as well as on their potential role in modulating ferroptosis. Phenols, pyri(mi)dinols, antioxidants based on heavy chalcogens (Se and Te), diarylamines, ascorbate and others are addressed, along with the latest unconventional antioxidant strategies based on the double-sided role of the superoxide/hydroperoxyl radical system.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
6
|
Carreon-Gonzalez M, Alvarez-Idaboy JR. The Synergy between Glutathione and Phenols-Phenolic Antioxidants Repair Glutathione: Closing the Virtuous Circle-A Theoretical Insight. Antioxidants (Basel) 2023; 12:antiox12051125. [PMID: 37237991 DOI: 10.3390/antiox12051125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) and phenols are well-known antioxidants, and previous research has suggested that their combination can enhance antioxidant activity. In this study, we used Quantum Chemistry and computational kinetics to investigate how this synergy occurs and elucidate the underlying reaction mechanisms. Our results showed that phenolic antioxidants could repair GSH through sequential proton loss electron transfer (SPLET) in aqueous media, with rate constants ranging from 3.21 × 106 M-1 s-1 for catechol to 6.65 × 108 M-1 s-1 for piceatannol, and through proton-coupled electron transfer (PCET) in lipid media with rate constants ranging from 8.64 × 106 M-1 s-1 for catechol to 5.53 × 107 M-1 s-1 for piceatannol. Previously it was found that superoxide radical anion (O2•-) can repair phenols, thereby completing the synergistic circle. These findings shed light on the mechanism underlying the beneficial effects of combining GSH and phenols as antioxidants.
Collapse
Affiliation(s)
- Mirzam Carreon-Gonzalez
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Juan Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Kumar M, Sharma D, Singh VP. Modulation of the chain-breaking antioxidant activity of phenolic organochalcogens with various co-antioxidants at various pH values. Org Biomol Chem 2023; 21:1316-1327. [PMID: 36648399 DOI: 10.1039/d2ob01988d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phenolic organochalcogen chain-breaking antioxidants, i.e. 6-bromo-8 (hexadecyltellanyl)-3,3-dimethyl-1,5-dihydro-[1,3]dioxepino[5,6-c]pyridin-9-ol and 2-methyl-2,3-dihydrobenzo[b]selenophene-5-ol, have been investigated in a two-phase (chlorobenzene/water) lipid peroxidation model system as potent inhibitors of lipid peroxyl radicals with various co-antioxidants at various pH values. The pH has a significant effect on the chain-breaking antioxidant activities of phenolic organochalcogens. The key chain-breaking mechanism profile was attributed to the first oxygen atom transfer from the lipid peroxyl radicals to the Se/Te atom, followed by hydrogen atom transfer in a solvent cage from the nearby phenolic group to the resulting alkoxyl radical. Finally, regeneration of organochalcogen antioxidants could take place in the presence of aqueous-soluble co-antioxidants. Also, in the presence of aqueous soluble N-acetylcysteine at pH 1-7, both antioxidants behaved as very good inhibitors of lipid peroxyl radicals. The role of aqueous soluble mild co-antioxidants in the regeneration studies of organochalcogen antioxidants has been investigated in a two-phase lipid peroxidation model system. The importance of the phase transfer catalyst has been explored in the inhibition studies of selenium containing antioxidants using an Fe(II) source. The overall pH-dependent antioxidant activities of organochalcogens depend on their hydrogen atom transfer ability, relative stability, and distribution in the aqueous/lipid phase.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| | - Deepika Sharma
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| |
Collapse
|
8
|
Mena LD, Baumgartner MT. Chalcogen Atoms as Electron Donors in Proton-Coupled Electron Transfer Reactions. J Am Chem Soc 2022; 144:15922-15927. [PMID: 36018719 DOI: 10.1021/jacs.2c05602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton-coupled electron transfer (PCET) reactions are crucial for the optimal functioning of a broad scope of chemical and biological processes. In this report, we present an unprecedented type of concerted PCET (cPCET), in which a chalcogen atom acts as the electron donor. The nature of this mechanism is key for understanding the reactivity of different radical-trapping antioxidants having heavy chalcogens (S, Se, or Te) in their structures. Moreover, this chalcogen-assisted cPCET is likely to be occurring in multiple systems of biological interest.
Collapse
Affiliation(s)
- Leandro D Mena
- QUIAMM-INBIOTEC-Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata B7600, Argentina
| | - María T Baumgartner
- INFIQC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000, Argentina
| |
Collapse
|
9
|
Klyushova LS, Kandalintseva NV, Grishanova AY. Antioxidant Activity of New Sulphur- and Selenium-Containing Analogues of Potassium Phenosan against H 2O 2-Induced Cytotoxicity in Tumour Cells. Curr Issues Mol Biol 2022; 44:3131-3145. [PMID: 35877440 PMCID: PMC9317250 DOI: 10.3390/cimb44070216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Among known phenolic antioxidants, the overwhelming majority of compounds have lipophilic properties and the number of known water-soluble compounds is very small. The list of hydrophilic phenolic antioxidants can be expanded via the synthesis of a structurally related series of polyfunctional compounds for further research on their biological activity in vitro. New sulphur- and selenium-containing analogues of antioxidant potassium phenosan were synthesised. In vitro cytotoxicity and cytostaticity as well as antioxidant activity against H2O2-induced cytotoxicity to human cell lines (HepG2, Hep-2 and MCF-7) were investigated by high-content analysis. A selenium-containing analogue showed higher biological activity than did a sulphur-containing one. As compared to the activity of potassium phenosan, the selenium-containing analogue had a cell line-dependent antioxidant effect against H2O2-induced cytotoxicity: comparable in HepG2 cells and greater in Hep-2 cells. The selenium-containing analogue significantly increased the death of MCF-7 cells at concentrations above 50 µM. The sulphur-containing analogue has lower biological activity as compared to potassium phenosan and the selenium-containing analogue.
Collapse
Affiliation(s)
- Lyubov S. Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, 2/12 Timakova Str., 630060 Novosibirsk, Russia;
| | - Natalya V. Kandalintseva
- Department of Chemistry, Novosibirsk State Pedagogical University, 28 Vilyuyskaya Str., 630126 Novosibirsk, Russia;
| | - Alevtina Y. Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, 2/12 Timakova Str., 630060 Novosibirsk, Russia;
| |
Collapse
|
10
|
Alfieri ML, Cariola A, Panzella L, Napolitano A, d'Ischia M, Valgimigli L, Crescenzi O. Disentangling the Puzzling Regiochemistry of Thiol Addition to o-Quinones. J Org Chem 2022; 87:4580-4589. [PMID: 35266705 PMCID: PMC8981336 DOI: 10.1021/acs.joc.1c02911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
The addition of thiol
compounds to o-quinones,
as exemplified by the biologically relevant conjugation of cysteine
to dopaquinone, displays an anomalous 1,6-type regiochemistry compared
to the usual 1,4-nucleophilic addition, for example, by amines, which
has so far eluded intensive investigations. By means of an integrated
experimental and computational approach, herein, we provide evidence
that the addition of glutathione, cysteine, or benzenethiol to 4-methyl-o-benzoquinone, modeling dopaquinone, proceeds by a free
radical chain mechanism triggered by the addition of thiyl radicals
to the o-quinone. In support of this conclusion,
DFT calculations consistently predicted the correct regiochemistry
only for the proposed thiyl radical-quinone addition pathway. These
results would prompt a revision of the commonly accepted mechanisms
for thiol-o-quinone conjugation and stimulate further
work aimed at assessing the impact of the free radical processes in
biologically relevant thiol–quinone interactions.
Collapse
Affiliation(s)
- Maria L Alfieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy
| | - Alice Cariola
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via S. Giacomo 11, Bologna I-40126, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy
| | - Luca Valgimigli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via S. Giacomo 11, Bologna I-40126, Italy
| | - Orlando Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy
| |
Collapse
|
11
|
Alfieri ML, Panzella L, Amorati R, Cariola A, Valgimigli L, Napolitano A. Role of Sulphur and Heavier Chalcogens on the Antioxidant Power and Bioactivity of Natural Phenolic Compounds. Biomolecules 2022; 12:90. [PMID: 35053239 PMCID: PMC8774257 DOI: 10.3390/biom12010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The activity of natural phenols is primarily associated to their antioxidant potential, but is ultimately expressed in a variety of biological effects. Molecular scaffold manipulation of this large variety of compounds is a currently pursued approach to boost or modulate their properties. Insertion of S/Se/Te containing substituents on phenols may increase/decrease their H-donor/acceptor ability by electronic and stereo-electronic effects related to the site of substitution and geometrical constrains. Oxygen to sulphur/selenium isosteric replacement in resveratrol or ferulic acid leads to an increase in the radical scavenging activity with respect to the parent phenol. Several chalcogen-substituted phenols inspired by Vitamin E and flavonoids have been prepared, which in some cases prove to be chain-breaking antioxidants, far better than the natural counterparts. Conjugation of catechols with biological thiols (cysteine, glutathione, dihydrolipoic acid) is easily achieved by addition to the corresponding ortho-quinones. Noticeable examples of compounds with potentiated antioxidant activities are the human metabolite 5-S-cysteinyldopa, with high iron-induced lipid peroxidation inhibitory activity, due to strong iron (III) binding, 5-S-glutathionylpiceatannol a most effective inhibitor of nitrosation processes, and 5-S-lipoylhydroxytyrosol, and its polysulfides that proved valuable oxidative-stress protective agents in various cellular models. Different methodologies have been used for evaluation of the antioxidant power of these compounds against the parent compounds. These include kinetics of inhibition of lipid peroxidation alkylperoxyl radicals, common chemical assays of radical scavenging, inhibition of the OH• mediated hydroxylation/oxidation of model systems, ferric- or copper-reducing power, scavenging of nitrosating species. In addition, computational methods allowed researchers to determine the Bond Dissociation Enthalpy values of the OH groups of chalcogen modified phenolics and predict the best performing derivative. Finally, the activity of Se and Te containing compounds as mimic of glutathione peroxidase has been evaluated, together with other biological activities including anticancer action and (neuro)protective effects in various cellular models. These and other achievements are discussed and rationalized to guide future development in the field.
Collapse
Affiliation(s)
- Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| | - Riccardo Amorati
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Alice Cariola
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Luca Valgimigli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| |
Collapse
|
12
|
Kumar M, Singh VP. Synthesis and antioxidant activities of N-thiophenyl ebselenamines: a 77Se{ 1H} NMR mechanistic study. NEW J CHEM 2022. [DOI: 10.1039/d2nj01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of N-thiophenyl ebselenamines and selenenyl sulphides as efficient radical-trapping and hydroperoxide-decomposing antioxidants, respectively has been described.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Vijay P. Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| |
Collapse
|
13
|
Baschieri A, Amorati R. Methods to Determine Chain-Breaking Antioxidant Activity of Nanomaterials beyond DPPH •. A Review. Antioxidants (Basel) 2021; 10:1551. [PMID: 34679687 PMCID: PMC8533328 DOI: 10.3390/antiox10101551] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the progress made in recent years in understanding the mechanism of action of nanomaterials with antioxidant activity and in the chemical methods used to evaluate their activity. Nanomaterials represent one of the most recent frontiers in the research for improved antioxidants, but further development is hampered by a poor characterization of the ''antioxidant activity'' property and by using oversimplified chemical methods. Inhibited autoxidation experiments provide valuable information about the interaction with the most important radicals involved in the lipid oxidation, namely alkylperoxyl and hydroperoxyl radicals, and demonstrate unambiguously the ability to stop the oxidation of organic materials. It is proposed that autoxidation methods should always complement (and possibly replace) the use of assays based on the quenching of stable radicals (such as DPPH• and ABTS•+). The mechanisms leading to the inhibition of the autoxidation (sacrificial and catalytic radical trapping antioxidant activity) are described in the context of nanoantioxidants. Guidelines for the selection of the appropriate testing conditions and of meaningful kinetic analysis are also given.
Collapse
Affiliation(s)
- Andrea Baschieri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (ISOF-CNR), Via P. Gobetti 101, 40129 Bologna, Italy;
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| |
Collapse
|
14
|
Guo Y, Pizzol R, Gabbanini S, Baschieri A, Amorati R, Valgimigli L. Absolute Antioxidant Activity of Five Phenol-Rich Essential Oils. Molecules 2021; 26:5237. [PMID: 34500670 PMCID: PMC8434318 DOI: 10.3390/molecules26175237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Essential oils (EOs) have promising antioxidant activities which are gaining interest as natural alternatives to synthetic antioxidants in the food and cosmetic industries. However, quantitative data on chain-breaking activity and on the kinetics of peroxyl radical trapping are missing. Five phenol-rich EOs were analyzed by GC-MS and studied by oxygen-uptake kinetics in inhibited controlled autoxidations of reference substrates (cumene and squalene). Terpene-rich Thymus vulgaris (thymol 4%; carvacrol 33.9%), Origanum vulgare, (thymol 0.4%; carvacrol 66.2%) and Satureja hortensis, (thymol 1.7%; carvacrol 46.6%), had apparent kinh (30 °C, PhCl) of (1.5 ± 0.3) × 104, (1.3 ± 0.1) × 104 and (1.1 ± 0.3) × 104 M-1s-1, respectively, while phenylpropanoid-rich Eugenia caryophyllus (eugenol 80.8%) and Cinnamomum zeylanicum, (eugenol 81.4%) showed apparent kinh (30 °C, PhCl) of (5.0 ± 0.1) × 103 and (4.9 ± 0.3) × 103 M-1s-1, respectively. All EOs already granted good antioxidant protection of cumene at a concentration of 1 ppm (1 mg/L), the duration being proportional to their phenolic content, which dictated their antioxidant behavior. They also afforded excellent protection of squalene after adjusting their concentration (100 mg/L) to account for the much higher oxidizability of this substrate. All investigated EOs had kinh comparable to synthetic butylated hydroxytoluene (BHT) were are eligible to replace it in the protection of food or cosmetic products.
Collapse
Affiliation(s)
- Yafang Guo
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (Y.G.); (R.P.); (R.A.)
| | - Romeo Pizzol
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (Y.G.); (R.P.); (R.A.)
| | - Simone Gabbanini
- Research & Development—BeC s.r.l., Via C. Monteverdi 49, 47122 Forlì, Italy;
| | - Andrea Baschieri
- The Institute of Organic Synthesis and Photoreactivity, Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy;
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (Y.G.); (R.P.); (R.A.)
| | - Luca Valgimigli
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (Y.G.); (R.P.); (R.A.)
| |
Collapse
|
15
|
Amorati R, Valgimigli L, Baschieri A, Guo Y, Mollica F, Menichetti S, Lupi M, Viglianisi C. SET and HAT/PCET acid-mediated oxidation processes in helical shaped fused bis-phenothiazines. Chemphyschem 2021; 22:1446-1454. [PMID: 34033195 PMCID: PMC8361695 DOI: 10.1002/cphc.202100387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Helical shaped fused bis-phenothiazines 1-9 have been prepared and their red-ox behaviour quantitatively studied. Helicene radical cations (Hel.+ ) can be obtained either by UV-irradiation in the presence of PhCl or by chemical oxidation. The latter process is extremely sensitive to the presence of acids in the medium with molecular oxygen becoming a good single electron transfer (SET) oxidant. The reaction of hydroxy substituted helicenes 5-9 with peroxyl radicals (ROO. ) occurs with a 'classical' HAT process giving HelO. radicals with kinetics depending upon the substitution pattern of the aromatic rings. In the presence of acetic acid, a fast medium-promoted proton-coupled electron transfer (PCET) process takes place with formation of HelO. radicals possibly also via a helicene radical cation intermediate. Remarkably, also helicenes 1-4, lacking phenoxyl groups, in the presence of acetic acid react with peroxyl radicals through a medium-promoted PCET mechanism with formation of the radical cations Hel.+ . Along with the synthesis, EPR studies of radicals and radical cations, BDE of Hel-OH group (BDEOH ), and kinetic constants (kinh ) of the reactions with ROO. species of helicenes 1-9 have been measured and calculated to afford a complete rationalization of the redox behaviour of these appealing chiral compounds.
Collapse
Affiliation(s)
- Riccardo Amorati
- Department of Chemistry “G. Ciamician”University of BolognaVia S. Giacomo 1140126BolognaItaly
| | - Luca Valgimigli
- Department of Chemistry “G. Ciamician”University of BolognaVia S. Giacomo 1140126BolognaItaly
| | - Andrea Baschieri
- Department of Chemistry “G. Ciamician”University of BolognaVia S. Giacomo 1140126BolognaItaly
| | - Yafang Guo
- Department of Chemistry “G. Ciamician”University of BolognaVia S. Giacomo 1140126BolognaItaly
| | - Fabio Mollica
- Department of Chemistry “G. Ciamician”University of BolognaVia S. Giacomo 1140126BolognaItaly
| | - Stefano Menichetti
- Department of Chemistry “U. Schiff”University of FlorenceVia Della Lastruccia 3–13, Sesto Fiorentino50019FirenzeItaly
| | - Michela Lupi
- Department of Chemistry “U. Schiff”University of FlorenceVia Della Lastruccia 3–13, Sesto Fiorentino50019FirenzeItaly
| | - Caterina Viglianisi
- Department of Chemistry “U. Schiff”University of FlorenceVia Della Lastruccia 3–13, Sesto Fiorentino50019FirenzeItaly
| |
Collapse
|
16
|
|
17
|
A physiological examination of the antioxidant ability of super tocopherol derivatives. Struct Chem 2020. [DOI: 10.1007/s11224-020-01585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Guo Y, Baschieri A, Amorati R, Valgimigli L. Synergic antioxidant activity of γ-terpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chem 2020; 345:128468. [PMID: 33341300 DOI: 10.1016/j.foodchem.2020.128468] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023]
Abstract
Antioxidant interactions of γ-terpinene with α-tocopherol mimic 2,2,5,7,8-pentamethyl-6-chromanol (PMHC) and caffeic acid phenethyl ester (CAPE), used as models, respectively, of mono- and poly-phenols were demonstrated by differential oximetry during the inhibited autoxidation of model substrates: stripped sunflower oil, squalene, and styrene. With all substrates, γ-terpinene acts synergistically regenerating the chain-breaking antioxidants PMHC and CAPE from their radicals, via the formation of hydroperoxyl radicals. The inhibition duration for mixtures PMHC/γ-terpinene and CAPE/γ-terpinene increased with γ-terpinene concentration, while rate constants for radical-trapping were unchanged by γ-terpinene, being 3.1 × 106 and 4.8 × 105 M-1s-1 for PMHC and CAPE in chlorobenzene (30 °C). Using 3,5-di-tert-butylcatechol and 3,5-di-tert-butyl-1,2-bezoquinone we demonstrate that γ-terpinene can reduce quinones to catechols enabling their antioxidant activity. The different synergy mechanism of γ-terpinene with mono- and poly-phenolic antioxidants is discussed and its relevance is proven in homogenous lipids using natural α-tocopherol and hydroxytyrosol as antioxidants, calling for further studies in heterogenous food products.
Collapse
Affiliation(s)
- Yafang Guo
- University of Bologna, Department of Chemistry "G. Ciamician", Via S. Giacomo 11, 40126 Bologna, Italy
| | - Andrea Baschieri
- University of Bologna, Department of Chemistry "G. Ciamician", Via S. Giacomo 11, 40126 Bologna, Italy
| | - Riccardo Amorati
- University of Bologna, Department of Chemistry "G. Ciamician", Via S. Giacomo 11, 40126 Bologna, Italy
| | - Luca Valgimigli
- University of Bologna, Department of Chemistry "G. Ciamician", Via S. Giacomo 11, 40126 Bologna, Italy.
| |
Collapse
|
19
|
Valgimigli L, Alfieri ML, Amorati R, Baschieri A, Crescenzi O, Napolitano A, d'Ischia M. Proton-Sensitive Free-Radical Dimer Evolution Is a Critical Control Point for the Synthesis of Δ 2,2'-Bibenzothiazines. J Org Chem 2020; 85:11440-11448. [PMID: 32842740 PMCID: PMC8011920 DOI: 10.1021/acs.joc.0c01520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The mechanism of the acid-dependent
interring dehydrogenation in
the conversion of the single-bonded 3-phenyl-2H-1,4-benzothiazine
dimer 2 to the Δ2,2′-bi(2H-1,4-benzothiazine) scaffold of red hair pigments
is disclosed herein. Integrated chemical oxidation and oxygen consumption
experiments, coupled with electron paramagnetic resonance (EPR) analyses
and DFT calculations, allowed the identification of a key diprotonated
free-radical intermediate, which was implicated in a remarkable oxygen-dependent
chain process via peroxyl radical formation and evolution to give
the Δ2,2′-bi(2H-1,4-benzothiazine) dimer 3 by interring dehydrogenation.
The critical requirement for strongly acidic conditions was rationalized
for the first time by the differential evolution channels of isomeric
peroxyl radical intermediates at the 2- versus 3-positions. These
results offer for the first time a rationale to expand the synthetic
scope of the double interring dehydrogenation pathway for the preparation
of novel symmetric double-bond bridged captodative heterocycles.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy
| | - Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples Federico II, Naples I-80126, Italy
| | - Riccardo Amorati
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy
| | - Andrea Baschieri
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy
| | - Orlando Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, Naples I-80126, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Naples I-80126, Italy
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Naples I-80126, Italy
| |
Collapse
|
20
|
Gupta A, Deka R, Srivastava K, Singh HB, Butcher RJ. Synthesis of Pd(II) complexes of unsymmetrical, hybrid selenoether and telluroether ligands: Isolation of tellura-palladacycles by fine tuning of intramolecular chalcogen bonding in hybrid telluroether ligands. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Viglianisi C, Menichetti S. Chain Breaking Antioxidant Activity of Heavy (S, Se, Te) Chalcogens Substituted Polyphenols. Antioxidants (Basel) 2019; 8:antiox8100487. [PMID: 31623080 PMCID: PMC6826409 DOI: 10.3390/antiox8100487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Polyphenols are probably the most important family of natural and synthetic chain-breaking antioxidants. Since long ago, chemists have studied how structural (bioinspired) modifications can improve the antioxidant activity of these compounds in terms of reaction rate with radical reactive oxygen species (ROS), catalytic character, multi-defence action, hydrophilicity/lipophilicity, biodistribution etc. In this framework, we will discuss the effect played on the overall antioxidant profile by the insertion of heavy chalcogens (S, Se and Te) in the phenolic skeleton.
Collapse
Affiliation(s)
- Caterina Viglianisi
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Stefano Menichetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
22
|
Baschieri A, Pizzol R, Guo Y, Amorati R, Valgimigli L. Calibration of Squalene, p-Cymene, and Sunflower Oil as Standard Oxidizable Substrates for Quantitative Antioxidant Testing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6902-6910. [PMID: 31132263 DOI: 10.1021/acs.jafc.9b01400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The autoxidation kinetics of stripped sunflower oil (SSO), squalene (SQ), and p-cymene ( p-C) initiated by 2,2'-azobis(isobutyronitrile) at 303 K were investigated under controlled conditions by differential oximetry in order to build reference model systems that are representative of the natural variability of oxidizable materials, for quantitative antioxidant testing. Rate constants for oxidative chain propagation ( kp) and chain termination (2 kt) and the oxidizability ( kp/√2 kt) were measured using 2,6-di- tert-butyl-4-methoxyphenol, 2,2,5,7,8-pentamethyl-6-chromanol, BHT, and 4-methoxyphenol as reference antioxidants. Measured values of kp (M-1 s-1)/2 kt (M-1 s-1)/oxidizability (M-1/2 s-1/2) at 303 K in chlorobenzene were 66.9/3.45 × 106/3.6 × 10-2, 68.0/7.40 × 106/2.5 × 10-2, and 0.83/2.87 × 106/4.9 × 10-4, respectively, for SSO, SQ, and p-C. Quercetin, magnolol, caffeic acid phenethyl ester, and 2,4,6-trimethylphenol were investigated to validate calibrations. The distinctive usefulness of the three substrates in testing antioxidants is discussed.
Collapse
Affiliation(s)
- Andrea Baschieri
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Romeo Pizzol
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Yafang Guo
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician" , University of Bologna , Via S. Giacomo 11 , 40126 Bologna , Italy
| |
Collapse
|
23
|
Pietrasiak E, Baxter AF, Jelier B, Santschi N, Togni A. Trifluoromethyl Derivatives of Benzooxatellurole. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ewa Pietrasiak
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of TechnologyETH Zürich Vladimir- Prelog-Weg 2 CH-8093 Zürich Switzerland
| | - Amanda F. Baxter
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of TechnologyETH Zürich Vladimir- Prelog-Weg 2 CH-8093 Zürich Switzerland
| | - Benson Jelier
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of TechnologyETH Zürich Vladimir- Prelog-Weg 2 CH-8093 Zürich Switzerland
| | - Nico Santschi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of TechnologyETH Zürich Vladimir- Prelog-Weg 2 CH-8093 Zürich Switzerland
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of TechnologyETH Zürich Vladimir- Prelog-Weg 2 CH-8093 Zürich Switzerland
| |
Collapse
|
24
|
Amorati R, Baschieri A, Valgimigli L. The role of sulfur and heavier chalcogens in the chemistry of antioxidants. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1602620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy
| | - Andrea Baschieri
- Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy
| | - Luca Valgimigli
- Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Kashyap C, Mazumder LJ, Rohman SS, Ullah SS, Guha AK. Re-visiting the Antioxidant Activity of Se- and Te- Carbohydrates: A Theoretical Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201803814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chayanika Kashyap
- Department of Chemistry; Cotton University, Panbazar, Guwahati, Assam; India-781001
| | | | - Shahnaz S. Rohman
- Department of Chemistry; Cotton University, Panbazar, Guwahati, Assam; India-781001
| | - Sabnam S. Ullah
- Department of Chemistry; Cotton University, Panbazar, Guwahati, Assam; India-781001
| | - Ankur Kanti Guha
- Department of Chemistry; Cotton University, Panbazar, Guwahati, Assam; India-781001
| |
Collapse
|
26
|
Marino T, Galano A, Mazzone G, Russo N, Alvarez-Idaboy JR. Chemical Insights into the Antioxidant Mechanisms of Alkylseleno and Alkyltelluro Phenols: Periodic Relatives Behaving Differently. Chemistry 2018; 24:8686-8691. [PMID: 29566293 DOI: 10.1002/chem.201800913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/20/2022]
Abstract
The possible antioxidant reaction mechanisms of recently synthesized and tested alkylseleno (telluro) phenols have been explored using density functional theory by considering two solvents physiologically relevant, water and pentylethanoate (PE). In addition, the possible pathway for the antioxidant regeneration with ascorbic acid has been investigated. Results show that selenium and tellurium systems follow different chemical behaviors. In particular, the alkylseleno phenol (ebselenol) antioxidant activity is justified through a sequential proton loss-electron-transfer mechanism in water media, whereas in PE the hydrogen-atom transfer process is favored. In the case of the tellurium derivative, the oxygen-transfer mechanism represents the preferential one. Furthermore, electronic properties have been analyzed to rationalize the different reactivity of the selenium- and tellurium-containing systems. To confirm the results, smaller but similar systems were also investigated. The calculated data support the different mechanism (Se vs. Te) proposals.
Collapse
Affiliation(s)
- Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende (CS), Italy
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, México DF, Mexico
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende (CS), Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Rende (CS), Italy
| | - Juan Raúl Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórifca, Universidad Nacional, Autónoma de México, México, DF, 04510, Mexico
| |
Collapse
|
27
|
Baschieri A, Del Secco B, Zaccheroni N, Valgimigli L, Amorati R. The Role of Onium Salts in the Pro-Oxidant Effect of Gold Nanoparticles in Lipophilic Environments. Chemistry 2018; 24:9113-9119. [PMID: 29689123 DOI: 10.1002/chem.201801110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Indexed: 01/11/2023]
Abstract
Metal nanoparticles are reported to be toxic due to the generation of free radicals at their surface. Relatively inert thiol-capped gold nanoparticles (AuNPs) have been reported to induce radical formation in the presence of hydroperoxides, which would conflict with their potential use as inert scaffolds for the design of novel nano-antioxidants. With the aim of clarifying this aspect, we investigated the pro-oxidant activity of dodecanethiol-capped AuNPs (∼5 nm diameter), prepared through the Brust-Schiffrin synthesis, by oxygen-uptake kinetic studies. The pro-oxidant activity was found to be proportional to the impurities of the transfer agent tetraoctylammonium bromide (TOAB) left from the synthesis and decreased on repeated washing of the nanoparticles. Under identical settings similar batches of AuNP (∼9 nm diameter) prepared through the Ulman method without onium salts showed no pro-oxidant behavior. The alternative onium phase-transfer agents Oct4 NBF4 (Oct=octyl), Hex4 NBF4 (Hex=hexyl), and Hex4 NPF6 were comparatively investigated and showed lower pro-oxidant activity depending on the counterion (Br- >PF6- >BF4- ).
Collapse
Affiliation(s)
- Andrea Baschieri
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126, Bologna, Italy
| | - Benedetta Del Secco
- Department of Chemistry "G. Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry "G. Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126, Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, 40126, Bologna, Italy
| |
Collapse
|
28
|
Amorati R, Valgimigli L. Methods To Measure the Antioxidant Activity of Phytochemicals and Plant Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3324-3329. [PMID: 29557653 DOI: 10.1021/acs.jafc.8b01079] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Measurement of antioxidant properties in plant-derived compounds requires appropriate methods that address the mechanism of antioxidant activity and focus on the kinetics of the reactions involving the antioxidants. Methods based on inhibited autoxidations are the most suited for chain-breaking antioxidants and for termination-enhancing antioxidants, while different specific studies are needed for preventive antioxidants. A selection of chemical testing methods is critically reviewed, highlighting their advantages and limitations and discussing their usefulness to investigate both pure molecules and raw extracts. The influence of the reaction medium on antioxidants' performance is also addressed.
Collapse
Affiliation(s)
- Riccardo Amorati
- University of Bologna , Department of Chemistry "G. Ciamician" , Via S. Giacomo 11 , 40126 Bologna , Italy
| | - Luca Valgimigli
- University of Bologna , Department of Chemistry "G. Ciamician" , Via S. Giacomo 11 , 40126 Bologna , Italy
| |
Collapse
|
29
|
Abstract
Nanomaterials represent one of the most promising frontiers in the research for improved antioxidants. Some nanomaterials, including organic (i.e. melanin, lignin) metal oxides (i.e. cerium oxide) or metal (i.e. gold, platinum) based nanoparticles, exhibit intrinsic redox activity that is often associated with radical trapping and/or with superoxide dismutase-like and catalase-like activities. Redox inactive nanomaterials can be transformed into antioxidants by grafting low molecular weight antioxidants on them. Herein, we propose a classification of nanoantioxidants based on their mechanism of action, and we review the chemical methods used to measure antioxidant activity by providing a rationale of the chemistry behind them.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, Bologna 40126, Italy.
| | | | | |
Collapse
|
30
|
Poon JF, Yan J, Jorner K, Ottosson H, Donau C, Singh VP, Gates PJ, Engman L. Substituent Effects in Chain-Breaking Aryltellurophenol Antioxidants. Chemistry 2018; 24:3520-3527. [DOI: 10.1002/chem.201704811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Jia-fei Poon
- Department of Chemistry, Biomedicinskt Centrum (BMC); Uppsala University, Box-576; 751 23 Uppsala Sweden
| | - Jiajie Yan
- Department of Chemistry, Biomedicinskt Centrum (BMC); Uppsala University, Box-576; 751 23 Uppsala Sweden
| | - Kjell Jorner
- Department of Chemistry, Ångström Laboratory; Uppsala University, Box-523; 751 20 Uppsala Sweden
| | - Henrik Ottosson
- Department of Chemistry, Ångström Laboratory; Uppsala University, Box-523; 751 20 Uppsala Sweden
| | - Carsten Donau
- Department of Chemistry, Biomedicinskt Centrum (BMC); Uppsala University, Box-576; 751 23 Uppsala Sweden
| | - Vijay P. Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry; Panjab University; Chandigarh 160 014 India
| | - Paul J. Gates
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Lars Engman
- Department of Chemistry, Biomedicinskt Centrum (BMC); Uppsala University, Box-576; 751 23 Uppsala Sweden
| |
Collapse
|
31
|
Goldani B, do Sacramento M, Lenardão EJ, Schumacher RF, Barcellos T, Alves D. Synthesis of symmetrical and unsymmetrical tellurides via silver catalysis. NEW J CHEM 2018. [DOI: 10.1039/c8nj01998c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The cross-coupling reaction of diaryl ditellurides with aryl boronic acids is described using AgNO3 as a catalyst.
Collapse
Affiliation(s)
- Bruna Goldani
- Laboratório de Síntese Orgânica Limpa
- LASOL
- CCQFA
- Universidade Federal de Pelotas
- UFPel
| | | | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa
- LASOL
- CCQFA
- Universidade Federal de Pelotas
- UFPel
| | | | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products, University of Caxias do Sul
- Caxias do Sul
- Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa
- LASOL
- CCQFA
- Universidade Federal de Pelotas
- UFPel
| |
Collapse
|
32
|
Singh VP, Yan J, Poon JF, Gates PJ, Butcher RJ, Engman L. Chain-Breaking Phenolic 2,3-Dihydrobenzo[b]selenophene Antioxidants: Proximity Effects and Regeneration Studies. Chemistry 2017; 23:15080-15088. [PMID: 28857289 DOI: 10.1002/chem.201702350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 11/07/2022]
Abstract
Phenolic 2,3-dihydrobenzo[b]selenophene antioxidants bearing an OH-group ortho (9), meta (10, 11) and para (8) to the Se were prepared by seleno-Claisen rearrangement/intramolecular hydroselenation. meta-Isomer (11) was studied by X-ray crystallography. The radical-trapping activity and regenerability of compounds 8-11 were evaluated using a two-phase system in which linoleic acid was undergoing peroxidation in the lipid phase while regeneration of the antioxidant by co-antioxidants (N-acetylcysteine, glutathione, dithiothreitol, ascorbic acid, tris(carboxyethyl)phosphine hydrochloride) was ongoing in the aqueous layer. Compound 9 quenched peroxyl radicals more efficiently than α-tocopherol. It also provided the most long-lasting antioxidant protection. With thiol co-antioxidants it could inhibit peroxidation for more than five-fold longer than the natural product. Regeneration was more efficient when the aqueous phase pH was slightly acidic. Since calculated O-H bond dissociation energies for 8-11 were substantially larger than for α-tocopherol, an antioxidant mechanism involving O-atom transfer from peroxyl to selenium was proposed. The resulting phenolic selenoxide/alkoxyl radical would then exchange a hydrogen atom in a solvent cage before antioxidant regeneration at the aqueous lipid interphase.
Collapse
Affiliation(s)
- Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh -, 160 014, India
- Department of Chemistry-BMC, Uppsala University, Box-576, 751 23, Uppsala, Sweden
| | - Jiajie Yan
- Department of Chemistry-BMC, Uppsala University, Box-576, 751 23, Uppsala, Sweden
| | - Jia-Fei Poon
- Department of Chemistry-BMC, Uppsala University, Box-576, 751 23, Uppsala, Sweden
| | | | - Ray J Butcher
- Department of Chemistry, Howard University, Washington, DC, 20059, USA
| | - Lars Engman
- Department of Chemistry-BMC, Uppsala University, Box-576, 751 23, Uppsala, Sweden
| |
Collapse
|
33
|
Baschieri A, Ajvazi MD, Tonfack JLF, Valgimigli L, Amorati R. Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chem 2017; 232:656-663. [DOI: 10.1016/j.foodchem.2017.04.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
|
34
|
Pietrasiak E, Togni A. Synthesis and Characterization of Fluorinated Hypervalent Tellurium Derivatives. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ewa Pietrasiak
- Department of Chemistry and
Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Antonio Togni
- Department of Chemistry and
Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
35
|
De Simone A, Bartolini M, Baschieri A, Apperley KYP, Chen HH, Guardigni M, Montanari S, Kobrlova T, Soukup O, Valgimigli L, Andrisano V, Keillor JW, Basso M, Milelli A. Hydroxy-substituted trans-cinnamoyl derivatives as multifunctional tools in the context of Alzheimer's disease. Eur J Med Chem 2017; 139:378-389. [PMID: 28810189 DOI: 10.1016/j.ejmech.2017.07.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/29/2017] [Accepted: 07/24/2017] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial pathology that requires multifaceted agents able to address its peculiar nature. In recent years, a plethora of proteins and biochemical pathways has been proposed as possible targets to counteract neurotoxicity. Although the complex scenario is not completely elucidated, close relationships are emerging among some of these actors. In particular, increasing evidence has shown that aggregation of amyloid beta (Aβ), glycogen synthase kinase 3β (GSK-3β) and oxidative stress are strictly interconnected and their concomitant modulation may have a positive and synergic effect in contrasting AD-related impairments. We designed compound 3 which demonstrated the ability to inhibit both GSK-3β (IC50 = 24.36 ± 0.01 μM) and Aβ42 self-aggregation (IC50 = 9.0 ± 1.4 μM), to chelate copper (II) and to act as exceptionally strong radical scavenger (kinh = 6.8 ± 0.5 · 105 M-1s-1) even in phosphate buffer at pH 7.4 (kinh = 3.2 ± 0.5 · 105 M-1s-1). Importantly, compound 3 showed high-predicted blood-brain barrier permeability, did not exert any significant cytotoxic effects in immature cortical neurons up to 50 μM and showed neuroprotective properties at micromolar concentration against toxic insult induced by glutamate.
Collapse
Affiliation(s)
- Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Baschieri
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Kim Y P Apperley
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Huan Huan Chen
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Melissa Guardigni
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Serena Montanari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Tereza Kobrlova
- Biomedical Research Center, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy.
| |
Collapse
|
36
|
Poon JF, Yan J, Singh VP, Gates PJ, Engman L. Regenerable Radical-Trapping Tellurobistocopherol Antioxidants. J Org Chem 2016; 81:12540-12544. [PMID: 27978753 DOI: 10.1021/acs.joc.6b02450] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tellurobistocopherols 9-11 were prepared by lithiation of the corresponding bromotocopherols, reaction with tellurium tetrachloride and reductive workup. Compounds 9-11 quenched linoleic-acid-derived peroxyl radicals much more efficiently than α-tocopherol in a chlorobenzene/water two-phase system. N-Acetylcysteine or tris(2-carboxylethyl)phosphine as co-antioxidants in the aqueous phase could regenerate the tellurobistocopherols and increase their inhibition times. Antioxidant 11 inhibited peroxidation for 7-fold longer than that recorded with α-tocopherol. Thiol consumption in the aqueous phase was monitored and found to be inversely related to the inhibition time.
Collapse
Affiliation(s)
- Jia-Fei Poon
- Department of Chemistry-BMC, Uppsala University , Box 576, SE-751 23 Uppsala, Sweden
| | - Jiajie Yan
- Department of Chemistry-BMC, Uppsala University , Box 576, SE-751 23 Uppsala, Sweden
| | - Vijay P Singh
- Department of Chemistry-BMC, Uppsala University , Box 576, SE-751 23 Uppsala, Sweden
| | - Paul J Gates
- School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Lars Engman
- Department of Chemistry-BMC, Uppsala University , Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
37
|
Design of chalcogen-containing norepinephrines: efficient GPx mimics and strong cytotoxic agents against HeLa cells. Future Med Chem 2016; 8:2185-2195. [PMID: 27845568 DOI: 10.4155/fmc-2016-0139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM Numerous chronic diseases exhibit multifactorial etiologies, so focusing on a single therapeutic target is usually an inadequate treatment; instead, multi-target drugs are preferred. Herein, a panel of phenolic thioureas and selenoureas were designed as new prototypes against multifactorial diseases concerning antioxidation and cytotoxicity, as a pro-oxidant environment is usually found in such diseases. RESULTS Selenoureas were excellent antiradical agents and biomimetic catalysts of glutathione peroxidase for the scavenging of H2O2. They were also potent and selective cytotoxic agents against cancer cells, in particular HeLa (IC50 2.77-6.13 μM), apoptosis being involved. Selenoureas also reduced oxidative stress in HeLa cells (IC50= 3.76 μM). CONCLUSION Phenolic selenoureas are promising lead structures for the development of drugs targeting multifactorial diseases like cancer.
Collapse
|
38
|
Menichetti S, Amorati R, Meoni V, Tofani L, Caminati G, Viglianisi C. Role of Noncovalent Sulfur···Oxygen Interactions in Phenoxyl Radical Stabilization: Synthesis of Super Tocopherol-like Antioxidants. Org Lett 2016; 18:5464-5467. [DOI: 10.1021/acs.orglett.6b02557] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefano Menichetti
- Department
of Chemistry “U. Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Riccardo Amorati
- Department
of Chemistry “Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy
| | - Valentina Meoni
- Department
of Chemistry “U. Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Tofani
- Department
of Chemistry “U. Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Gabriella Caminati
- Department
of Chemistry “U. Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Caterina Viglianisi
- Department
of Chemistry “U. Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
39
|
Poon JF, Yan J, Singh VP, Gates PJ, Engman L. Alkyltelluro Substitution Improves the Radical-Trapping Capacity of Aromatic Amines. Chemistry 2016; 22:12891-903. [DOI: 10.1002/chem.201602377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Jia-fei Poon
- Department of Chemistry-BMC; Uppsala University, Box-576; 751 23 Uppsala Sweden
| | - Jiajie Yan
- Department of Chemistry-BMC; Uppsala University, Box-576; 751 23 Uppsala Sweden
| | - Vijay P. Singh
- Department of Chemistry-BMC; Uppsala University, Box-576; 751 23 Uppsala Sweden
| | - Paul J. Gates
- University of Bristol; School of Chemistry; Bristol BS8 1TS UK
| | - Lars Engman
- Department of Chemistry-BMC; Uppsala University, Box-576; 751 23 Uppsala Sweden
| |
Collapse
|
40
|
Kumar S, Yan J, Poon JF, Singh VP, Lu X, Karlsson Ott M, Engman L, Kumar S. Multifunctional Antioxidants: Regenerable Radical-Trapping and Hydroperoxide-Decomposing Ebselenols. Angew Chem Int Ed Engl 2016; 55:3729-33. [DOI: 10.1002/anie.201510947] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/11/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Shailesh Kumar
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Bhopal- 462066 India
| | - Jiajie Yan
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Jia-fei Poon
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Vijay P. Singh
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Xi Lu
- Division of Applied Materials Science; Department of Engineering Sciences; Uppsala University; Sweden
| | - Marjam Karlsson Ott
- Division of Applied Materials Science; Department of Engineering Sciences; Uppsala University; Sweden
| | - Lars Engman
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Sangit Kumar
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Bhopal- 462066 India
| |
Collapse
|
41
|
Kumar S, Yan J, Poon JF, Singh VP, Lu X, Karlsson Ott M, Engman L, Kumar S. Multifunctional Antioxidants: Regenerable Radical-Trapping and Hydroperoxide-Decomposing Ebselenols. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shailesh Kumar
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Bhopal- 462066 India
| | - Jiajie Yan
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Jia-fei Poon
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Vijay P. Singh
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Xi Lu
- Division of Applied Materials Science; Department of Engineering Sciences; Uppsala University; Sweden
| | - Marjam Karlsson Ott
- Division of Applied Materials Science; Department of Engineering Sciences; Uppsala University; Sweden
| | - Lars Engman
- Department of Chemistry-BMC; Uppsala University; Box-576 75123 Uppsala Sweden
| | - Sangit Kumar
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Bhopal- 462066 India
| |
Collapse
|
42
|
Melone L, Tarsini P, Candiani G, Punta C. N-Hydroxyphthalimide catalysts as bioactive pro-oxidants. RSC Adv 2016. [DOI: 10.1039/c5ra26556h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
N-Hydroxyphthalimide organocatalysts bearing lipophilic moieties exhibit a cytotoxic action by promoting oxidative stress in cells.
Collapse
Affiliation(s)
- L. Melone
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”. Politecnico di Milano
- 20133 Milano
- Italy
- Università degli Studi e-Campus
- Como
| | - P. Tarsini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”. Politecnico di Milano
- 20133 Milano
- Italy
| | - G. Candiani
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”. Politecnico di Milano
- 20133 Milano
- Italy
| | - C. Punta
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”. Politecnico di Milano
- 20133 Milano
- Italy
| |
Collapse
|
43
|
|
44
|
Yan J, Poon JF, Singh VP, Gates P, Engman L. Regenerable Thiophenolic Radical-Trapping Antioxidants. Org Lett 2015; 17:6162-5. [PMID: 26651856 DOI: 10.1021/acs.orglett.5b03169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diphenyl disulfides carrying alkyltelluro groups in the o-, m-, and p-positions were prepared using ortho-lithiation and lithium halogen exchange reactions. The novel antioxidants showed only minimal inhibitory effect on the azo-initiated peroxidation of linoleic acid in chlorobenzene until reduced to the corresponding thiophenols by tris(2-carboxyethyl)phosphine (TCEP). The best in situ generated thiophenol (from 7c) under these conditions quenched peroxyl radicals more efficiently than α-tocopherol with an almost 3-fold increase in inhibition time.
Collapse
Affiliation(s)
- Jiajie Yan
- Uppsala University , Department of Chemistry - BMC, Box 576, SE-751 23 Uppsala, Sweden
| | - Jia-fei Poon
- Uppsala University , Department of Chemistry - BMC, Box 576, SE-751 23 Uppsala, Sweden
| | - Vijay P Singh
- Uppsala University , Department of Chemistry - BMC, Box 576, SE-751 23 Uppsala, Sweden
| | - Paul Gates
- University of Bristol , School of Chemistry, Bristol, BS8 1TS, United Kingdom
| | - Lars Engman
- Uppsala University , Department of Chemistry - BMC, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
45
|
Kolay S, Wadawale A, Nigam S, Kumar M, Majumder C, Das D, Jain VK. Platinum-Mediated Activation of Coordinated Organonitriles by Telluroethers in Tetrahydrofuran: Isolation, Structural Characterization, and Density Functional Theory Analysis of Intermediate Complexes. Inorg Chem 2015; 54:11741-50. [DOI: 10.1021/acs.inorgchem.5b02024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Siddhartha Kolay
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Amey Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sandeep Nigam
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Mukesh Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Chiranjib Majumder
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Dasarathi Das
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Vimal K. Jain
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
46
|
Amorati R, Zotova J, Baschieri A, Valgimigli L. Antioxidant Activity of Magnolol and Honokiol: Kinetic and Mechanistic Investigations of Their Reaction with Peroxyl Radicals. J Org Chem 2015; 80:10651-9. [PMID: 26447942 DOI: 10.1021/acs.joc.5b01772] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnolol and honokiol, the bioactive phytochemicals contained in Magnolia officinalis, are uncommon antioxidants bearing isomeric bisphenol cores substituted with allyl functions. We have elucidated the chemistry behind their antioxidant activity by experimental and computational methods. In the inhibited autoxidation of cumene and styrene at 303 K, magnolol trapped four peroxyl radicals, with a kinh of 6.1 × 10(4) M(-1) s(-1) in chlorobenzene and 6.0 × 10(3) M(-1) s(-1) in acetonitrile, and honokiol trapped two peroxyl radicals in chlorobenzene (kinh = 3.8 × 10(4) M(-1) s(-1)) and four peroxyl radicals in acetonitrile (kinh = 9.5 × 10(3) M(-1) s(-1)). Their different behavior arises from a combination of intramolecular hydrogen bonding among the reactive OH groups (in magnolol) and of the OH groups with the aromatic and allyl π-systems, as confirmed by FT-IR spectroscopy and DFT calculations. Comparison with structurally related 3,3',5,5'-tetramethylbiphenyl-4,4'-diol, 2-allylphenol, and 2-allylanisole allowed us to exclude that the antioxidant behavior of magnolol and honokiol is due to the allyl groups. The reaction of the allyl group with a peroxyl radical (C-H hydrogen abstraction) proceeds with rate constant of 1.1 M(-1) s(-1) at 303 K. Magnolol and honokiol radicals do not react with molecular oxygen and produce no superoxide radical under the typical settings of inhibited autoxidations.
Collapse
Affiliation(s)
- Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna , Via S. Giacomo 11, 40126 Bologna, Italy
| | - Julija Zotova
- Department of Chemistry "G. Ciamician", University of Bologna , Via S. Giacomo 11, 40126 Bologna, Italy
| | - Andrea Baschieri
- Department of Chemistry "G. Ciamician", University of Bologna , Via S. Giacomo 11, 40126 Bologna, Italy
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna , Via S. Giacomo 11, 40126 Bologna, Italy
| |
Collapse
|
47
|
Valgimigli L, Pratt DA. Maximizing the reactivity of phenolic and aminic radical-trapping antioxidants: just add nitrogen! Acc Chem Res 2015; 48:966-75. [PMID: 25839082 DOI: 10.1021/acs.accounts.5b00035] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrocarbon autoxidation, the archetype free radical chain reaction, challenges the longevity of both living organisms and petroleum-derived products. The most important strategy in slowing this process is via the intervention of radical-trapping antioxidants (RTAs), which are abundant in nature and included as additives to almost every petroleum-derived product as well as several other commercial products. Accordingly, a longstanding objective of many academic and industrial scientists has been the design and development of novel RTAs that can outperform natural and industrial standards, such as α-tocopherol, the most biologically active form of vitamin E, and dialkylated diphenylamines, respectively. Some time ago we recognized that attempts to maximize the reactivity of phenolic RTAs had largely failed because substitution of the phenolic ring with electron-donating groups to weaken the O-H bond and accelerate the rate of H atom transfer to radicals leads to compounds that are unstable in air. We surmised that incorporating nitrogen into the phenolic ring would render them more stable to one-electron oxidation, enabling their substitution with strong electron-donating groups. Guided by computational chemistry, we demonstrated that replacing the phenyl ring in very electron-rich phenols with either 3-pyridyl or 5-pyrimidyl rings leads to phenolic-like RTAs with good air stability and great reactivity. In fact, rate constants determined for the reactions of some compounds with peroxyl radicals were almost 2 orders of magnitude greater than those for α-tocopherol and implied that the reactions proceeded without an enthalpic barrier. Following extensive thermochemical and kinetic characterization, we took our studies of these compounds to more physiologically relevant media, such as lipid bilayers and human low density lipoproteins, where the heterocyclic analogues of vitamin E shone, displaying unparalleled abilities to inhibit lipid peroxidation and prompting their current investigation in animal models of degenerative disease. Moreover, we carried out studies of these compounds in several industrially relevant contexts and in particular demonstrated that they could be used synergistically with less reactive, less expensive, phenolic RTAs. More recently, our attention has turned to the application of these ideas to maximizing the reactivity of diarylamine RTAs that are common in additives to petroleum-derived products, such as lubricating oils, transmission and hydraulic fluids, and rubber. In doing so, we have developed the most reactive diarylamines ever reported. The 3-pyridyl- and 5-pyrimidyl-containing diarylamines are easily accessed using Pd- and/or Cu-catalyzed cross-coupling reactions, and display an ideal compromise between reactivity and stability. The most reactive compounds are characterized by rate constants for reactions with peroxyl radicals that are independent of temperature, implying that-as for the most reactive heterocyclic phenols-these reactions proceed without an enthalpic barrier. Unprecedented reactivity was also observed when hydrocarbon autoxidations were carried out at elevated temperatures, real-world conditions where diarylamines are uniquely effective because of a catalytic RTA activity that makes use of the hydrocarbon substrate as a sacrificial reductant. Our studies to date suggest that heterocyclic diarylamines have real potential to increase the longevity of petroleum-derived products in a variety of applications where diphenylamines are currently used.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry “G.
Ciamician”, University of Bologna, 40126 Bologna, Italy
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Derek A. Pratt
- Department of Chemistry “G.
Ciamician”, University of Bologna, 40126 Bologna, Italy
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
48
|
Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants. Free Radic Res 2015; 49:633-49. [DOI: 10.3109/10715762.2014.996146] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Zhang D, Cui X, Yang F, Zhang Q, Zhu Y, Wu Y. Palladium-catalyzed direct ortho C–O bond construction of azoxybenzenes with carboxylic acids and alcohols. Org Chem Front 2015. [DOI: 10.1039/c5qo00120j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pd(ii) catalyzed C–O bond formation of azoxybenzenes has been developed.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Xiuling Cui
- Department of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Fangfang Yang
- Department of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Qianqian Zhang
- Department of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yu Zhu
- Department of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yangjie Wu
- Department of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| |
Collapse
|
50
|
Tanini D, Panzella L, Amorati R, Capperucci A, Pizzo E, Napolitano A, Menichetti S, d'Ischia M. Resveratrol-based benzoselenophenes with an enhanced antioxidant and chain breaking capacity. Org Biomol Chem 2015; 13:5757-64. [DOI: 10.1039/c5ob00193e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One-pot selenenylation of resveratrol with Se(0) and SO2Cl2 leads to benzoselenophene derivatives with efficient Trolox-like antioxidant and chain breaking capacity.
Collapse
Affiliation(s)
- Damiano Tanini
- Department of Chemistry “Ugo Schiff”
- University of Florence
- I-50019 Sesto Fiorentino
- Italy
| | - Lucia Panzella
- Department of Chemical Sciences
- University of Naples “Federico II”
- I-80126 Naples
- Italy
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”
- University of Bologna
- I-40126 Bologna
- Italy
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff”
- University of Florence
- I-50019 Sesto Fiorentino
- Italy
| | - Elio Pizzo
- Department of Biology
- University of Naples “Federico II”
- I-80126 Naples
- Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences
- University of Naples “Federico II”
- I-80126 Naples
- Italy
| | - Stefano Menichetti
- Department of Chemistry “Ugo Schiff”
- University of Florence
- I-50019 Sesto Fiorentino
- Italy
| | - Marco d'Ischia
- Department of Chemical Sciences
- University of Naples “Federico II”
- I-80126 Naples
- Italy
| |
Collapse
|