1
|
Lütjohann C, Näther C, Lindhorst TK. Ready chemistry with a rare sugar: Altrobioside synthesis and analysis of conformational characteristics. Carbohydr Res 2024; 544:109228. [PMID: 39153326 DOI: 10.1016/j.carres.2024.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
We describe the synthesis of the full set of the so far unknown methyl altrobiosides and the initial analysis of the conformational dynamic which occurs in some of the synthesized compounds. d-Altrose chemistry has largely been neglected as it is a rare sugar and has first to be synthesized from glucose or mannose, respectively. Nevertheless, d-altrose is particularly interesting as the energy barrier between the complementary chair conformations is rather low and therefore dynamic mixtures of conformers might occur. We describe the ready synthesis of the selectively protected altrosyl acceptors for the glycosidation from d-mannose and the altrosyl-trichloroacetimidate as useful glycosyl donor to achieve the (1 → 2), (1 → 3), (1 → 4), and (1 → 6)-α-linked altrobiosides. The diastereomeric α- and β-O-(d-altropyranosyl)-trichloroacetimidates adopt different ring conformations as analyzed by NMR and VCD spectroscopy. Also, the pyranose ring conformations of the obtained altrobiosides apparently differ from a regular 4C1 chair according to NMR analysis and are influenced by the regiochemistry of the interglycosidic linkage.
Collapse
Affiliation(s)
- Clemens Lütjohann
- Christiana Albertina University of Kiel, Otto Diels Institute of Organic Chemistry, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Christian Näther
- Christiana Albertina University of Kiel, Institute of Inorganic Chemistry, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Thisbe K Lindhorst
- Christiana Albertina University of Kiel, Otto Diels Institute of Organic Chemistry, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany.
| |
Collapse
|
2
|
Friedrich LM, Hartke B, Lindhorst TK. Advancing Optoglycomics: Two Orthogonal Azobenzene Glycoside Antennas in One Glycocluster-Synthesis, Switching Cycles, Kinetics and Molecular Dynamics. Chemistry 2024; 30:e202402125. [PMID: 39037782 DOI: 10.1002/chem.202402125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Carbohydrate recognition is essential for numerous biological processes and is governed by various factors within the supramolecular environment of the cell. Photoswitchable glycoconjugates have proven as valuable tools for the investigation and modulation of carbohydrate recognition as they allow to control the relative orientation of sugar ligands by light. In order to advance the possibilities of such an "optoglycomics" approach for the glycosciences, we have synthesized a biantennary glycocluster in which two glycoazobenzene antennas are conjugated to the 3- and 6-position of a scaffold glycoside. Orthogonal isomerization of the photoswitchable units was made possible by the different conjugation of the azobenzene moieties via an oxygen and a sulfur atom, respectively, and the ortho-fluorination of one of the azobenzene units. This design enabled a switching cycle comprising the EE, EZ and the ZZ isomer. This is the first example of an orthogonally photoswitchable glycocluster. The full analysis of its photochromic properties included the investigation of the isolated glycoazobenzene antennas allowing the comparison of the intra- versus the intermolecular orthogonal photoswitching. The kinetics of the thermal relaxation were analyzed in detail. A molecular dynamics study shows that indeed, the relative orientation of the glycoantennas and the distances between the terminal sugar ligands significantly vary depending on the isomeric state, as intended.
Collapse
Affiliation(s)
- Leon M Friedrich
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Bernd Hartke
- Institute for Physical Chemistry, Christiana Albertina University of Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| |
Collapse
|
3
|
Dashti Y, Errington J. Chemistry and biology of specialized metabolites produced by Actinomadura. Nat Prod Rep 2024; 41:370-401. [PMID: 38099919 PMCID: PMC10951976 DOI: 10.1039/d3np00047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/21/2024]
Abstract
Covering: up to the end of 2022In recent years rare Actinobacteria have become increasingly recognised as a rich source of novel bioactive metabolites. Actinomadura are Gram-positive bacteria that occupy a wide range of ecological niches. This review highlights about 230 secondary metabolites produced by Actinomadura spp., reported until the end of 2022, including their bioactivities and selected biosynthetic pathways. Notably, the bioactive compounds produced by Actinomadura spp. demonstrate a wide range of activities, including antimicrobial, antitumor and anticoccidial effects, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| | - Jeff Errington
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| |
Collapse
|
4
|
Milanesi F, Unione L, Ardá A, Nativi C, Jiménez-Barbero J, Roelens S, Francesconi O. Biomimetic Tweezers for N-Glycans: Selective Recognition of the Core GlcNAc 2 Disaccharide of the Sialylglycopeptide SGP. Chemistry 2023; 29:e202203591. [PMID: 36597924 DOI: 10.1002/chem.202203591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
In recent years, glycomics have shown how pervasive the role of carbohydrates in biological systems is and how chemical tools are essential to investigate glycan function and modulate carbohydrate-mediated processes. Biomimetic receptors for carbohydrates can carry out this task but, although significant affinities and selectivities toward simple saccharides have been achieved, targeting complex glycoconjugates remains a goal yet unattained. In this work we report the unprecedented recognition of a complex biantennary sialylglycopeptide (SGP) by a tweezers-shaped biomimetic receptor, which selectively binds to the core GlcNAc2 disaccharide of the N-glycan with an affinity of 170 μM. Because of the simple structure and the remarkable binding ability, this biomimetic receptor can represent a versatile tool for glycoscience, opening the way to useful applications.
Collapse
Affiliation(s)
- Francesco Milanesi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy.,Magnetic Resonance Center CERM, University of Florence, Via L. Sacconi 6, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain.,Department of Organic Chemistry, II Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940, Leioa, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
5
|
Nakagawa Y, Oya Y, Ojika M, Igarashi Y, Ito Y. Chemical modification of pradimicin A to suppress aggregation without impairing D-mannose-binding and antifungal activities. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S. Lectins and lectibodies: potential promising antiviral agents. Cell Mol Biol Lett 2022; 27:37. [PMID: 35562647 PMCID: PMC9100318 DOI: 10.1186/s11658-022-00338-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
In nature, lectins are widely dispersed proteins that selectively recognize and bind to carbohydrates and glycoconjugates via reversible bonds at specific binding sites. Many viral diseases have been treated with lectins due to their wide range of structures, specificity for carbohydrates, and ability to bind carbohydrates. Through hemagglutination assays, these proteins can be detected interacting with various carbohydrates on the surface of cells and viral envelopes. This review discusses the most robust lectins and their rationally engineered versions, such as lectibodies, as antiviral proteins. Fusion of lectin and antibody’s crystallizable fragment (Fc) of immunoglobulin G (IgG) produces a molecule called a “lectibody” that can act as a carbohydrate-targeting antibody. Lectibodies can not only bind to the surface glycoproteins via their lectins and neutralize and clear viruses or infected cells by viruses but also perform Fc-mediated antibody effector functions. These functions include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cell-mediated phagocytosis (ADCP). In addition to entering host cells, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein S1 binds to angiotensin-converting enzyme 2 (ACE2) and downregulates it and type I interferons in a way that may lead to lung disease. The SARS-CoV-2 spike protein S1 and human immunodeficiency virus (HIV) envelope are heavily glycosylated, which could make them a major target for developing vaccines, diagnostic tests, and therapeutic drugs. Lectibodies can lead to neutralization and clearance of viruses and cells infected by viruses by binding to glycans located on the envelope surface (e.g., the heavily glycosylated SARS-CoV-2 spike protein).
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Morteza Heydari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,American Association of Kidney Patients, Tampa, FL, USA
| | - Ibrahim Arman
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Arezoo Sadoughi
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parisa Sahami
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Safiyeh Aghazadeh
- Division of Biochemistry, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, 5756151818, Iran.
| |
Collapse
|
7
|
Miyanishi W, Ojika M, Akase D, Aida M, Igarashi Y, Ito Y, Nakagawa Y. d-Mannose binding, aggregation property, and antifungal activity of amide derivatives of pradimicin A. Bioorg Med Chem 2022; 55:116590. [PMID: 34973516 DOI: 10.1016/j.bmc.2021.116590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
Pradimicin A (PRM-A) and its derivatives comprise a unique family of antibiotics that show antifungal, antiviral, and antiparasitic activities through binding to d-mannose (Man)-containing glycans of pathogenic species. Despite their great potential as drug leads with an exceptional antipathogenic action, therapeutic application of PRMs has been severely limited by their tendency to form water-insoluble aggregates. Recently, we found that attachment of 2-aminoethanol to the carboxy group of PRM-A via amide linkage significantly suppressed the aggregation. Here, we prepared additional amide derivatives (2-8) of PRM-A to examine the possibility that the amide formation of PRM-A could suppress its aggregation propensity. Sedimentation assay and isothermal titration calorimetry experiment confirmed that all amide derivatives can bind Man without significant aggregation. Among them, hydroxamic acid derivative (4) showed the most potent Man-binding activity, which was suggested to be derived from the anion formation of the hydroxamic acid moiety by molecular modeling. Derivative 4 also exhibited significant antifungal activity comparable to that of PRM-A. These results collectively indicate that amide formation of PRM-A is the promising strategy to develop less aggregative derivatives, and 4 could serve as a lead compound for exploring the therapeutic application of PRM-A.
Collapse
Affiliation(s)
- Wataru Miyanishi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Dai Akase
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Office of Research and Academia-Government-Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
8
|
NAKAGAWA Y, ITO Y. Mannose-binding analysis and biological application of pradimicins. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:15-29. [PMID: 35013028 PMCID: PMC8795531 DOI: 10.2183/pjab.98.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Pradimicins (PRMs) are an exceptional family of natural products that specifically bind d-mannose (Man). In the past decade, their scientific significance has increased greatly, with the emergence of biological roles of Man-containing glycans. However, research into the use of PRMs has been severely limited by their inherent tendency to form water-insoluble aggregates. Recently, we have established a derivatization strategy to suppress PRM aggregation, providing an opportunity for practical application of PRMs in glycobiological research. This article first outlines the challenges in studying Man-binding mechanisms and structural modifications of PRMs, and then describes our approach to address them. We also present our recent attempts toward the development of PRM-based research tools.
Collapse
Affiliation(s)
- Yu NAKAGAWA
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yukishige ITO
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
9
|
Thakur K, Shlain MA, Marianski M, Braunschweig AB. Regiochemical Effects on the Carbohydrate Binding and Selectivity of Flexible Synthetic Carbohydrate Receptors with Indole and Quinoline Heterocyclic Groups. European J Org Chem 2021; 2021:5262-5274. [PMID: 35694139 PMCID: PMC9186342 DOI: 10.1002/ejoc.202100763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 08/07/2023]
Abstract
Synthetic carbohydrate receptors (SCRs) that bind cell-surface carbohydrates could be used for disease detection, drug-delivery, and therapeutics, or for the site-selective modification of complex carbohydrates but their potential has not been realized because of remaining challenges associated with binding affinity and substrate selectivity. We have reported recently a series of flexible SCRs based upon a biaryl core with four pendant heterocyclic groups that bind glycans selectively through noncovalent interactions. Here we continue to explore the role of heterocycles on substrate selectivity by expanding our library to include a series of indole and quinoline heterocycles that vary in their regiochemistry of attachment to the biaryl core. The binding of these SCRs to a series of biologically-relevant carbohydrates was studied by 1H NMR titrations in CD2Cl2 and density-functional theory calculations. We find SCR030, SCR034 and SCR037 are selective, SCR031, SCR032, and SCR039 are strong binders, and SCR033, SCR035, SCR036, and SCR038 are promiscuous and bind weakly. Computational analysis reveals the importance of C-H⋯π and H-bonding interactions in defining the binding properties of these new receptors. By combining these data with those obtained from our previous studies on this class of flexible SCRs, we develop a series of design rules that account for the binding of all SCRs of this class and anticipate the binding of future, not-yet imagined tetrapodal SCRs.
Collapse
Affiliation(s)
- Khushabu Thakur
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
| | - Milan A Shlain
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
| | - Mateusz Marianski
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
- The PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
- The PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
| | - Adam B Braunschweig
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
- The PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
- The PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
| |
Collapse
|
10
|
Nakagawa Y, Kakihara S, Tsuzuki K, Ojika M, Igarashi Y, Ito Y. A Pradimicin-Based Staining Dye for Glycoprotein Detection. JOURNAL OF NATURAL PRODUCTS 2021; 84:2496-2501. [PMID: 34524799 DOI: 10.1021/acs.jnatprod.1c00506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pradimicin A (PRM-A) and related compounds constitute an exceptional family of natural pigments that show Ca2+-dependent recognition of d-mannose (Man). Although these compounds hold great promise as research tools in glycobiology, their practical application has been severely limited by their inherent tendency to form water-insoluble aggregates. Here, we demonstrate that the 2-hydroxyethylamide derivative (PRM-EA) of PRM-A shows little aggregation in neutral aqueous media and retains binding specificity for Man. We also show that PRM-EA stains glycoproteins in dot blot assays, whereas PRM-A fails to do so, owing to severe aggregation. Significantly, PRM-EA is sensitive to glycoproteins carrying high mannose-type and hybrid-type N-linked glycans, but not to those carrying complex-type N-linked glycans. Such staining selectivity has never been observed in conventional dyes, suggesting that PRM-EA could serve as a unique staining agent for the selective detection of glycoproteins with terminal Man residues.
Collapse
Affiliation(s)
- Yu Nakagawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shintaro Kakihara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kazue Tsuzuki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
11
|
Schaapkens X, Bobylev EO, Reek JNH, Mooibroek TJ. A [Pd 2L 4] 4+ cage complex for n-octyl-β-d-glycoside recognition. Org Biomol Chem 2021; 18:4734-4738. [PMID: 32608444 DOI: 10.1039/d0ob01081b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cage complex [Pd294]4+ (3') binds n-octyl glycosides in DCM/DMSO (9 : 1) solution with Ka ≈ 51 M-1 for n-Oct-β-d-Glc and Ka ≈ 29 M-1 for n-Oct-β-d-Gal.
Collapse
Affiliation(s)
- Xander Schaapkens
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Eduard O Bobylev
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Joost N H Reek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Tiddo J Mooibroek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Bravo MF, Lema MA, Marianski M, Braunschweig AB. Flexible Synthetic Carbohydrate Receptors as Inhibitors of Viral Attachment. Biochemistry 2020; 60:999-1018. [PMID: 33094998 DOI: 10.1021/acs.biochem.0c00732] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Carbohydrate-receptor interactions are often involved in the docking of viruses to host cells, and this docking is a necessary step in the virus life cycle that precedes infection and, ultimately, replication. Despite the conserved structures of the glycans involved in docking, they are still considered "undruggable", meaning these glycans are beyond the scope of conventional pharmacological strategies. Recent advances in the development of synthetic carbohydrate receptors (SCRs), small molecules that bind carbohydrates, could bring carbohydrate-receptor interactions within the purview of druggable targets. Here we discuss the role of carbohydrate-receptor interactions in viral infection, the evolution of SCRs, and recent results demonstrating their ability to prevent viral infections in vitro. Common SCR design strategies based on boronic ester formation, metal chelation, and noncovalent interactions are discussed. The benefits of incorporating the idiosyncrasies of natural glycan-binding proteins-including flexibility, cooperativity, and multivalency-into SCR design to achieve nonglucosidic specificity are shown. These studies into SCR design and binding could lead to new strategies for mitigating the grave threat to human health posed by enveloped viruses, which are heavily glycosylated viroids that are the cause of some of the most pressing and untreatable diseases, including HIV, Dengue, Zika, influenza, and SARS-CoV-2.
Collapse
Affiliation(s)
- M Fernando Bravo
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, New York 10031, United States.,Department of Chemistry and Biochemistry, Hunter College, New York, New York 10065, United States.,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Manuel A Lema
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, New York 10031, United States.,Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031, United States
| | - Mateusz Marianski
- Department of Chemistry and Biochemistry, Hunter College, New York, New York 10065, United States.,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,The PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Adam B Braunschweig
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, New York 10031, United States.,Department of Chemistry and Biochemistry, Hunter College, New York, New York 10065, United States.,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.,The PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
13
|
Bravo MF, Palanichamy K, Shlain MA, Schiro F, Naeem Y, Marianski M, Braunschweig AB. Synthesis and Binding of Mannose‐Specific Synthetic Carbohydrate Receptors. Chemistry 2020; 26:11782-11795. [DOI: 10.1002/chem.202000481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/15/2020] [Indexed: 12/16/2022]
Affiliation(s)
- M. Fernando Bravo
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
- The PhD Program in Chemistry The Graduate Center of the, City University of New York 365 5th Ave New York NY 10016 USA
| | - Kalanidhi Palanichamy
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Milan A. Shlain
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Frank Schiro
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Yasir Naeem
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
| | - Mateusz Marianski
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
- The PhD Program in Chemistry The Graduate Center of the, City University of New York 365 5th Ave New York NY 10016 USA
- The PhD Program in Biochemistry The Graduate Center of the, City University of New York 365 5th Ave New York NY 10016 USA
| | - Adam B. Braunschweig
- Advanced Science Research Center at the Graduate Center City University of New York 85 St Nicholas Terrace New York NY 10031 USA
- Department of Chemistry and Biochemistry Hunter College 695 Park Ave New York NY 10065 USA
- The PhD Program in Chemistry The Graduate Center of the, City University of New York 365 5th Ave New York NY 10016 USA
- The PhD Program in Biochemistry The Graduate Center of the, City University of New York 365 5th Ave New York NY 10016 USA
| |
Collapse
|
14
|
Xu F, Liang Y, Ren J, Wang S, Zhan J. Discovery of a novel analogue of FR901533 and the corresponding biosynthetic gene cluster from Streptosporangium roseum No. 79089. Appl Microbiol Biotechnol 2020; 104:7131-7142. [DOI: 10.1007/s00253-020-10765-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
|
15
|
Nakagawa Y. Paving the Way for Practical Use of Sugar-Binding Natural Products as Lectin Mimics in Glycobiological Research. Chembiochem 2020; 21:1567-1572. [PMID: 32012428 DOI: 10.1002/cbic.201900781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 12/17/2022]
Abstract
Pradimicins (PRMs) constitute an exceptional class of natural products that show Ca2+ -dependent recognition of d-mannose (Man). In addition to therapeutic uses as antifungal drugs, the application of PRMs as lectin mimics for glycobiological research has been attracting considerable interest, since the emerging biological roles of Man-containing glycans have been highlighted. However, only a few attempts have been made to use PRMs for glycobiological purposes. The limited use of PRMs is primarily due to the early assumption that the readily modifiable carboxyl group of PRMs is involved in Ca2+ binding, and thus, not available to prepare research tools. Recently, this assumption has been disproved by structural elucidation of the Ca2+ complex of PRMs, which paves the way for designing carboxyl group modified derivatives of PRMs for research use. This article outlines studies related to Ca2+ -mediated Man binding of PRMs and discusses their application for glycobiology.
Collapse
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
16
|
|
17
|
Almeida LCD, Bauermeister A, Rezende-Teixeira P, Santos EAD, Moraes LABD, Machado-Neto JA, Costa-Lotufo LV. Pradimicin-IRD exhibits antineoplastic effects by inducing DNA damage in colon cancer cells. Biochem Pharmacol 2019; 168:38-47. [PMID: 31228463 DOI: 10.1016/j.bcp.2019.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
DNA-damaging agents are widely used in cancer therapy; however, their use is limited by dose-related toxicities, as well as the development of drug resistance. Drug discovery is essential to overcome these limitations and offer novel therapeutic options. In a previous study by our research group, pradimicin-IRD-a new polycyclic antibiotic produced by the actinobacteria Amycolatopsis sp.-displayed antimicrobial and potential anticancer activities. In the present study, cytotoxic activity was further confirmed in a panel of five colon cancer, including those with mutation in TP53 and KRAS, the most common ones observed in cancer colon patients. While all tested colon cancer cells were sensitive to pradimicin-IRD treatment with IC50 in micromolar range, non-tumor fibroblasts were significantly less sensitive (p < 0.05). The cellular and molecular mechanism of action of pradimicin-IRD was then investigated in the colorectal cancer cell line HCT 116. Pradimicin-IRD presented antitumor effects occurring after at least 6 h of exposure. Pradimicin-IRD induced statistically significant DNA damage (γH2AX and p21), apoptosis (PARP1 and caspase 3 cleavage) and cell cycle arrest (reduced Rb phosphorylation, cyclin A and cyclin B expression) markers. In accordance with these results, pradimicin-IRD increased cell populations in the subG1 and G0/G1 phases of the cell cycle. Additionally, mass spectrometry analysis indicated that pradimicin-IRD interacted with the DNA double strand. In summary, pradimicin-IRD exhibits multiple antineoplastic activities-including DNA damage, cell cycle arrest, reduction of clonal growth and apoptosis-in the HCT 116 cell line. Furthermore, pradimicin-IRD displays a TP53-independent regulation of p21 expression in HCT 116 TP53-/-, HT-29, SW480, and Caco-2 cells. This exploratory study identified novel targets for pradimicin-IRD and provided insights for its potential anticancer activity as a DNA-damaging agent.
Collapse
Affiliation(s)
- Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anelize Bauermeister
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Brazil
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Evelyne Alves Dos Santos
- Department of Cell Biology and Development, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Nakagawa Y, Doi T, Takegoshi K, Sugahara T, Akase D, Aida M, Tsuzuki K, Watanabe Y, Tomura T, Ojika M, Igarashi Y, Hashizume D, Ito Y. Molecular Basis of Mannose Recognition by Pradimicins and their Application to Microbial Cell Surface Imaging. Cell Chem Biol 2019; 26:950-959.e8. [PMID: 31031141 DOI: 10.1016/j.chembiol.2019.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/23/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
Naturally occurring pradimicins (PRMs) show specific recognition of d-mannose (d-Man) in aqueous media, which has never been achieved by artificial small molecules. Although the Ca2+-mediated dimerization of PRMs is essential for their d-Man binding, the dimeric structure has yet to be elucidated, leaving the question open as to how PRMs recognize d-Man. Thus, we herein report the structural elucidation of the dimer by a combination of X-ray crystallography and solid-state NMR spectroscopy. Coupled with our previous knowledge regarding the d-Man binding geometry of PRMs, elucidation of the dimer allowed reliable estimation of the mode of d-Man binding. Based on the binding model, we further developed an azide-functionalized PRM derivative (PRM-Azide) with d-Man binding specificity. Notably, PRM-Azide stained Candida rugosa cells having mannans on their cell surface through conjugation with the tetramethylrhodamine fluorophore. The present study provides the practical demonstration that PRMs can serve as lectin mimics for use in glycobiological studies.
Collapse
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Takashi Doi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - K Takegoshi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takahiro Sugahara
- Center for Quantum Life Sciences, and Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Dai Akase
- Center for Quantum Life Sciences, and Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Center for Quantum Life Sciences, and Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Kazue Tsuzuki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasunori Watanabe
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tomohiko Tomura
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
19
|
Francesconi O, Martinucci M, Badii L, Nativi C, Roelens S. A Biomimetic Synthetic Receptor Selectively Recognising Fucose in Water. Chemistry 2018; 24:6828-6836. [DOI: 10.1002/chem.201800390] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| | - Marco Martinucci
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| | - Lorenzo Badii
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| | - Cristina Nativi
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| | - Stefano Roelens
- Department of Chemistry and INSTM; University of Florence, Polo Scientifico e Tecnologico; 50019 Sesto Fiorentino Firenze Italy
| |
Collapse
|
20
|
Ge JT, Li YY, Tian J, Liao RZ, Dong H. Synthesis of Deoxyglycosides by Desulfurization under UV Light. J Org Chem 2017; 82:7008-7014. [DOI: 10.1021/acs.joc.7b00896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jian-Tao Ge
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P.R. China
| | - Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P.R. China
| | - Jun Tian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P.R. China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P.R. China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P.R. China
| |
Collapse
|
21
|
Ríos P, Mooibroek TJ, Carter TS, Williams C, Wilson MR, Crump MP, Davis AP. Enantioselective carbohydrate recognition by synthetic lectins in water. Chem Sci 2017; 8:4056-4061. [PMID: 28626561 PMCID: PMC5465552 DOI: 10.1039/c6sc05399h] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/28/2017] [Indexed: 12/17/2022] Open
Abstract
Carbohydrate receptors with a chiral framework have been generated by combining a tetra-aminopyrene and a C3-symmetrical triamine via isophthalamide spacers bearing water-solubilising groups. These "synthetic lectins" are the first to show enantiodiscrimination in aqueous solution, binding N-acetylglucosamine (GlcNAc) with 16 : 1 enantioselectivity. They also show exceptional affinities. GlcNAc is bound with Ka up to 1280 M-1, more than twice that measured for previous synthetic lectins, and three times the value for wheat germ agglutinin, the lectin traditionally employed to bind GlcNAc in glycobiological research. Glucose is bound with Ka = 250 M-1, again higher than previous synthetic lectins. The results suggest that chirality can improve complementarity to carbohydrate substrates and may thus be advantageous in synthetic lectin design.
Collapse
Affiliation(s)
- Pablo Ríos
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Tiddo J Mooibroek
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Tom S Carter
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Christopher Williams
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Miriam R Wilson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Matthew P Crump
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| | - Anthony P Davis
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK . ;
| |
Collapse
|
22
|
Doi T, Nakagawa Y, Takegoshi K. Solid-State Nuclear Magnetic Resonance Analysis Reveals a Possible Calcium Binding Site of Pradimicin A. Biochemistry 2017; 56:468-472. [DOI: 10.1021/acs.biochem.6b01300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Takashi Doi
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa
Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yu Nakagawa
- Department
of Applied Molecular Biosciences, Graduate School of Bioagricultural
Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - K. Takegoshi
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa
Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
23
|
Traboni S, Bedini E, Iadonisi A. Orthogonal protection of saccharide polyols through solvent-free one-pot sequences based on regioselective silylations. Beilstein J Org Chem 2016; 12:2748-2756. [PMID: 28144345 PMCID: PMC5238545 DOI: 10.3762/bjoc.12.271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/30/2016] [Indexed: 11/23/2022] Open
Abstract
tert-Butyldimethylsilyl (TBDMS) and tert-butyldiphenylsilyl (TBDPS) are alcohol protecting groups widely employed in organic synthesis in view of their compatibility with a wide range of conditions. Their regioselective installation on polyols generally requires lengthy reactions and the use of high boiling solvents. In the first part of this paper we demonstrate that regioselective silylation of sugar polyols can be conducted in short times with the requisite silyl chloride and a very limited excess of pyridine (2-3 equivalents). Under these conditions, that can be regarded as solvent-free conditions in view of the insolubility of the polyol substrates, the reactions are faster than in most examples reported in the literature, and can even be further accelerated with a catalytic amount of tetrabutylammonium bromide (TBAB). The strategy proved also useful for either the selective TBDMS protection of secondary alcohols or the fast per-O-trimethylsilylation of saccharide polyols. In the second part of the paper the scope of the silylation approach was significantly extended with the development of unprecedented "one-pot" and "solvent-free" sequences allowing the regioselective silylation/alkylation (or the reverse sequence) of saccharide polyols in short times. The developed methodologies represent a very useful and experimentally simple tool for the straightforward access to saccharide building-blocks useful in organic synthesis.
Collapse
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| |
Collapse
|
24
|
Carter TS, Mooibroek TJ, Stewart PFN, Crump MP, Galan MC, Davis AP. Platform Synthetic Lectins for Divalent Carbohydrate Recognition in Water. Angew Chem Int Ed Engl 2016; 55:9311-5. [PMID: 27312071 PMCID: PMC5006853 DOI: 10.1002/anie.201603082] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 12/14/2022]
Abstract
Biomimetic carbohydrate receptors ("synthetic lectins") have potential as agents for biological research and medicine. However, although effective strategies are available for "all-equatorial" carbohydrates (glucose, etc.), the recognition of other types of saccharide under natural (aqueous) conditions is less well developed. Herein we report a new approach based on a pyrene platform with polar arches extending from aryl substituents. The receptors are compatible with axially substituted carbohydrates, and also feature two identical binding sites, thus mimicking the multivalency observed for natural lectins. A variant with negative charges forms 1:2 host/guest complexes with aminosugars, with K1 >3000 m(-1) for axially substituted mannosamine, whereas a positively charged version binds the important α-sialyl unit with K1 ≈1300 m(-1) .
Collapse
Affiliation(s)
- Tom S Carter
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Tiddo J Mooibroek
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Patrick F N Stewart
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
25
|
Carter TS, Mooibroek TJ, Stewart PFN, Crump MP, Galan MC, Davis AP. Platform Synthetic Lectins for Divalent Carbohydrate Recognition in Water. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tom S. Carter
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Tiddo J. Mooibroek
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Matthew P. Crump
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | - M. Carmen Galan
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Anthony P. Davis
- School of ChemistryUniversity of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
26
|
|
27
|
Nakagawa Y, Watanabe Y, Igarashi Y, Ito Y, Ojika M. Pradimicin A, a D-mannose-binding antibiotic, binds pyranosides of L-fucose and L-galactose in a calcium-sensitive manner. Bioorg Med Chem Lett 2015; 25:2963-6. [PMID: 26045034 DOI: 10.1016/j.bmcl.2015.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
Abstract
Pradimicin A (PRM-A) is a unique antibiotic with a lectin-like ability to bind D-mannose (D-Man) in the presence of Ca(2+) ion. Although accumulated evidences suggest that PRM-A recognizes the 2-, 3-, and 4-hydroxyl groups of D-Man, BMY-28864, an artificial PRM-A derivative, was shown not to bind L-fucose (L-Fuc) and L-galactose (lLGal), both of which share the characteristic array of the three hydroxyl groups with D-Man. To obtain a plausible explanation for this inconsistency, we performed co-precipitation experiments of PRM-A with L-Fuc, L-Gal, and their methyl pyranosides (L-Fuc-OMe, L-Gal-OMe) by taking advantage of aggregate-forming propensity of the binary [PRM-A/Ca(2+)] complex. While L-Fuc and L-Gal were hardly incorporated into the aggregate, L-Fuc-OMe and L-Gal-OMe were found to exhibit significant binding to PRM-A. However, increased Ca(2+) concentration abolished this binding, raising the possibility that poor binding of L-Fuc and L-Gal to PRM-A is attributed to their chelation with Ca(2+) ion. This possibility was partly supported by (1)H NMR analysis that detected interaction of L-Fuc and L-Gal with Ca(2+) ion in aqueous solution. These results collectively indicate that PRM-A binds pyranosides of L-Fuc and L-Gal when Ca(2+) concentration is not excessive to trap these sugars by chelation but sufficient to form the [PRM-A/Ca(2+)] complex.
Collapse
Affiliation(s)
- Yu Nakagawa
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Yasunori Watanabe
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Japan Science and Technology Agency, ERATO, Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Ojika
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
28
|
Francesconi O, Nativi C, Gabrielli G, De Simone I, Noppen S, Balzarini J, Liekens S, Roelens S. Antiviral Activity of Synthetic Aminopyrrolic Carbohydrate Binding Agents: Targeting the Glycans of Viral gp120 to Inhibit HIV Entry. Chemistry 2015; 21:10089-93. [DOI: 10.1002/chem.201501030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 01/18/2023]
|
29
|
Enomoto M, Igarashi Y, Sasaki M, Shimizu H. A mannose-recognizable chemosensor using gold nanoparticles functionalized with pradimicin, a nonpeptidic mannose-binding natural product. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Napan KL, Zhang S, Anderson T, Takemoto JY, Zhan J. Three enzymes involved in the N-methylation and incorporation of the pradimicin sugar moieties. Bioorg Med Chem Lett 2015; 25:1288-91. [PMID: 25677666 DOI: 10.1016/j.bmcl.2015.01.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Pradimicins are antifungal and antiviral natural products from Actinomadura hibisca P157-2. The sugar moieties play a critical role in the biological activities of these compounds. There are two glycosyltransferase genes in the pradimicin biosynthetic gene cluster, pdmS and pdmQ, which are putatively responsible for the introduction of the sugar moieties during pradimicin biosynthesis. In this study, we disrupted these two genes using a double crossover approach. Disruption of pdmS led to the production of pradimicinone I, the aglycon of pradimicin A, which confirmed that PdmS is the O-glycosyltransferase responsible for the first glycosylation step and attaching the 4',6'-dideoxy-4'-amino-d-galactose or 4',6'-dideoxy-4'-methylamino-d-galactose moiety to the 5-OH. Disruption of pdmQ resulted in the production of pradimicin B, indicating that this enzyme is the second glycosyltransferase that introduces the d-xylose moiety to the 3'-OH of the first sugar moiety. Insertion of an integrative plasmid before pdmO might have interfered with the dedicated promoter, yielding a mutant that produces pradimicin C as the major metabolite, which suggested that PdmO is the enzyme that specifically methylates the 4'-NH2 of the 4',6'-dideoxy-4'-amino-d-galactose moiety. Functional characterization of these sugar-decorating and -incorporating enzymes thus facilitates the understanding of the pradimicin biosynthetic pathway.
Collapse
Affiliation(s)
- Kandy L Napan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, United States
| | - Shuwei Zhang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, United States
| | - Thomas Anderson
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, United States
| | - Jon Y Takemoto
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, United States
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, United States.
| |
Collapse
|
31
|
Akkouh O, Ng TB, Singh SS, Yin C, Dan X, Chan YS, Pan W, Cheung RCF. Lectins with anti-HIV activity: a review. Molecules 2015; 20:648-68. [PMID: 25569520 PMCID: PMC6272367 DOI: 10.3390/molecules20010648] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/29/2014] [Indexed: 11/18/2022] Open
Abstract
Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed.
Collapse
Affiliation(s)
- Ouafae Akkouh
- Department of Biology and Medical Laboratory Research, Faculty of Technology, University of Applied Sciences Leiden, Zernikdreef 11, 2333 CK Leiden, The Netherlands.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Senjam Sunil Singh
- Department of Biochemistry, Manipur University, Canchipur, Imphal 795003, India.
| | - Cuiming Yin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Yau Sang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|