1
|
Ozturk S, Davis AR, Seaton CC, Male L, Pike SJ. Solvatomorphism of a 2,6-pyridyldicarboxamide-based foldamer. Org Biomol Chem 2025. [PMID: 40114610 DOI: 10.1039/d5ob00342c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A detailed solvatomorphism study conducted on a diamine-terminated 2,6-pyridyldicarboxamide-based foldamer 1 is reported. This investigation establishes the influence of a diverse range of polar and non-polar solvents including chloroform (1A), a trifluorotoluene/dichloromethane mixture (1A), dimethylformamide/diethyl ether (1B), tetrahydrofuran (1·THF), butanone (1·butanone), dichloromethane (1·DCM), a methanol/dichloromethane mixture (1·MeOH) and dimethylsulfoxide (1·DMSO) on the solid-state conformation and crystal packing behaviour of this supramolecular scaffold. Single-crystal X-ray diffraction analysis of the seven solvatomorphs of the studied foldamer (1A, 1B, 1·DCM, 1·THF, 1·butanone, 1·MeOH and 1·DMSO) identified that 1·DCM, 1·THF, 1·butanone, 1·MeOH and 1·DMSO form supramolecular aggregates (e.g., channels/cavities) which incorporate solvent molecules within the voids of the system, leading them to adopt channels of differing dimensions between 3.5 and 9.0 Å. Solid-state analysis identified that a diverse array of intermolecular non-covalent interactions form between the foldamer and the solvent molecule, including N-H⋯O, N-H⋯Cl, O-H⋯O, N-H⋯Cl and C-H⋯O hydrogen-bonding interactions, stabilising the formation of these solvent-mediated channel aggregates within the different solvatomorphs of the studied foldamer. We envisage that these solvatomorphism studies will facilitate the future design of foldamers, particularly given the emerging solid-state applications of foldamers which could hold relevance in the field of crystal engineering or for the uptake of small molecules for long-term use in energy storage and materials chemistry.
Collapse
Affiliation(s)
- Sena Ozturk
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Alexander R Davis
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Colin C Seaton
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Sarah J Pike
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
2
|
Davis AR, Ozturk S, Seaton CC, Male L, Pike SJ. Controlling the Helical Pitch of Foldamers through Terminal Functionality: A Solid State Study. Chemistry 2024; 30:e202402892. [PMID: 39246096 DOI: 10.1002/chem.202402892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/10/2024]
Abstract
Developing new methods to control the size and shape of the helical structures adopted by foldamers is highly important as the secondary structure displayed by these supramolecular scaffolds often dictates their activity and function. Herein, we report on a systematic study demonstrating that the helical pitch of ortho-azobenzene/2,6-pyridyldicarboxamide foldamers can be readily controlled through the nature of the terminal functionality. Remarkably, simply through varying the end group of the foldamer, and without modifying any other structural features of the scaffold, the helical pitch can be over doubled in magnitude (from 3.4 Å-7.3 Å). Additionally, crystallographic analysis of a library ten foldamers has identified general trends in the influence of a range of terminal functionalities, including carboxylbenzyl (Cbz), diphenylcarbamyl (N(Ph)2), ferrocene (Fc) and tert-butyloxycarbonyl (Boc), in controlling the folding behaviour of these supramolecular scaffolds. These studies could prove useful in the future development of functional foldamers which adopt specific sizes and shapes.
Collapse
Affiliation(s)
- Alexander R Davis
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sena Ozturk
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Colin C Seaton
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sarah J Pike
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
3
|
Davis AR, Dismorr JO, Male L, Tucker JHR, Pike SJ. Dual, Photo-Responsive and Redox-Active Supramolecular Foldamers. Chemistry 2024; 30:e202402423. [PMID: 39137164 DOI: 10.1002/chem.202402423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
We report on dual, light-responsive and redox-active foldamers that demonstrate reversible and robust stimuli-induced behaviour. Herein, UV/Vis, 1H NMR and circular dichroism (CD) spectroscopy and cyclic voltammetry have been used to establish the reversibility and highly robust nature of the light- and redox-driven behaviour of these new foldamers with minimal levels of fatigue observed even upon multiple cyclic treatments with irradiative/non-irradiative and oxidative/reductive conditions. This proof-of-concept work paves the way towards the creation of novel stimuli-responsive foldamers of increasing sophistication capable of demonstrating reversible and robust responses to multiple distinct stimuli.
Collapse
Affiliation(s)
- Alexander R Davis
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jack O Dismorr
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sarah J Pike
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
4
|
Martínez-Crespo L, Whitehead GFS, Vitórica-Yrezábal IJ, Webb SJ. Cooperative intra- and intermolecular hydrogen bonding in scaffolded squaramide arrays. Chem Sci 2024; 15:d4sc04337e. [PMID: 39345772 PMCID: PMC11428187 DOI: 10.1039/d4sc04337e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
The structural, self-assembly and binding properties of oligo-(phenylene-ethynylene) (OPE) rigid rods linked to squaramides (SQs) have been studied and correlated with rod length. In the solid-state, OPE-SQ conjugates form indefinite arrays of head-to-tail hydrogen bonded SQs, arrays that include both intra- and intermolecular hydrogen bonds. In dichloromethane solution, intramolecularly hydrogen bonded SQ chains show cooperative polarisation, an effect that increases with OPE-SQ length. Appending powerful hydrogen bonding groups to the OPE-SQ termini further increases this intramolecular polarisation. Greater end-to-end polarisation leads to stronger intermolecular interactions, with longer OPE-SQs showing stronger hydrogen bonding to DMSO as well as stronger self-association. These studies show how cooperative hydrogen bond polarisation in a hydrogen bonded array can be strengthened and how this polarisation can continue intermolecularly.
Collapse
Affiliation(s)
- Luis Martínez-Crespo
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess St Manchester M1 7DN UK
| | - George F S Whitehead
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Simon J Webb
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
5
|
Wang S, della Sala F, Cliff MJ, Whitehead GFS, Vitórica-Yrezábal IJ, Webb SJ. A Chiral 19F NMR Reporter of Foldamer Conformation in Bilayers. J Am Chem Soc 2022; 144:21648-21657. [PMID: 36379007 PMCID: PMC9716558 DOI: 10.1021/jacs.2c09103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Understanding and controlling peptide foldamer conformation in phospholipid bilayers is a key step toward their use as molecular information relays in membranes. To this end, a new 19F "reporter" tag has been developed and attached to dynamic peptide foldamers. The (R)-1-(trifluoromethyl)ethylamido ((R)-TFEA) reporter was attached to the C-terminus of α-amino-iso-butyric acid (Aib) foldamers. Crystallography confirmed that the foldamers adopted 310 helical conformations. Variable temperature (VT) NMR spectroscopy in organic solvents showed that the (R)-TFEA reporter had an intrinsic preference for P helicity, but the overall screw-sense was dominated by a chiral "controller" at the N-terminus. The 19F NMR chemical shift of the CF3 resonance was correlated with the ability of different N-terminal groups to induce either an M or a P helix in solution. In bilayers, a similar correlation was found. Solution 19F NMR spectroscopy on small unilamellar vesicle (SUV) suspensions containing the same family of (R)-TFEA-labeled foldamers showed broadened but resolvable 19F resonances, with each chemical shift mirroring their relative positions in organic solvents. These studies showed that foldamer conformational preferences are the same in phospholipid bilayers as in organic solvents and also revealed that phospholipid chirality has little influence on conformation.
Collapse
Affiliation(s)
- Siyuan Wang
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| | - Flavio della Sala
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| | - Matthew J. Cliff
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| | | | | | - Simon J. Webb
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| |
Collapse
|
6
|
Rohmer M, Freudenberg J, Binder WH. Secondary Structures in Synthetic Poly(Amino Acids): Homo- and Copolymers of Poly(Aib), Poly(Glu), and Poly(Asp). Macromol Biosci 2022; 23:e2200344. [PMID: 36377468 DOI: 10.1002/mabi.202200344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/02/2022] [Indexed: 11/16/2022]
Abstract
The secondary structure of poly(amino acids) is an excellent tool for controlling and understanding the functionality and properties of proteins. In this perspective article the secondary structures of the homopolymers of oligo- and poly-glutamic acid (Glu), aspartic acid (Asp), and α-aminoisobutyric acid (Aib) are discussed. Information on external and internal factors, such as the nature of side groups, interactions with solvents and interactions between chains is reviewed. A special focus is directed on the folding in hybrid-polymers consisting of oligo(amino acids) and synthetic polymers. Being part of the SFB TRR 102 "Polymers under multiple constraints: restricted and controlled molecular order and mobility" this overview is embedded into the cross section of protein fibrillation and supramolecular polymers. As polymer- and amino acid folding is an important step for the utilization and design of future biomolecules these principles guide to a deeper understanding of amyloid fibrillation.
Collapse
Affiliation(s)
- Matthias Rohmer
- Macromolecular Chemistry, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Jan Freudenberg
- Macromolecular Chemistry, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | | |
Collapse
|
7
|
Lizio MG, Campana M, De Poli M, Jefferies DF, Cullen W, Andrushchenko V, Chmel NP, Bouř P, Khalid S, Clayden J, Blanch E, Rodger A, Webb SJ. Insight into the Mechanism of Action and Peptide-Membrane Interactions of Aib-Rich Peptides: Multitechnique Experimental and Theoretical Analysis. Chembiochem 2021; 22:1656-1667. [PMID: 33411956 PMCID: PMC8248331 DOI: 10.1002/cbic.202000834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/06/2021] [Indexed: 12/16/2022]
Abstract
The increase in resistant bacterial strains necessitates the identification of new antimicrobial molecules. Antimicrobial peptides (AMPs) are an attractive option because of evidence that bacteria cannot easily develop resistance to AMPs. The peptaibols, a class of naturally occurring AMPs, have shown particular promise as antimicrobial drugs, but their development has been hindered by their mechanism of action not being clearly understood. To explore how peptaibols might interact with membranes, circular dichroism, vibrational circular dichroism, linear dichroism, Raman spectroscopy, Raman optical activity, neutron reflectivity and molecular dynamics simulations have been used to study a small library of peptaibol mimics, the Aib-rich peptides. All the peptides studied quickly partitioned and oriented in membranes, and we found evidence of chiral interactions between the phospholipids and membrane-embedded peptides. The protocols presented in this paper open new ground by showing how chiro-optical spectroscopies can throw light on the mechanism of action of AMPs.
Collapse
Affiliation(s)
| | - Mario Campana
- ISIS Neutron and Muon SourceRutherford Appleton Laboratory Harwell DidcotOxfordOX11 0QXUK
| | - Matteo De Poli
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - William Cullen
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess St.ManchesterM1 7DNUK
| | - Valery Andrushchenko
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesFlemingovo náměstí 216610Prague 6Czech Republic
| | - Nikola P. Chmel
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Petr Bouř
- Institute of Organic Chemistry and BiochemistryAcademy of SciencesFlemingovo náměstí 216610Prague 6Czech Republic
| | - Syma Khalid
- School of ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Jonathan Clayden
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Ewan Blanch
- School of ScienceRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | - Alison Rodger
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Department of Molecular SciencesMacquarie UniversitySydneyNSW 2109Australia
| | - Simon J. Webb
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess St.ManchesterM1 7DNUK
| |
Collapse
|
8
|
Rohmer M, Ucak Ö, Fredrick R, Binder WH. Chiral amines as initiators for ROP and their chiral induction on poly(2-aminoisobutyric acid) chains. Polym Chem 2021. [DOI: 10.1039/d1py01021b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chirality induction by chiral amines in poly(amino acid)s by ring opening polymerization.
Collapse
Affiliation(s)
- Matthias Rohmer
- Martin-Luther University Halle Wittenberg, Chair of Macromolecular Chemistry, D-06120 Halle, Germany
| | - Özgün Ucak
- Martin-Luther University Halle Wittenberg, Chair of Macromolecular Chemistry, D-06120 Halle, Germany
| | - Rahul Fredrick
- Martin-Luther University Halle Wittenberg, Chair of Polymer Reaction Engineering, D-06099 Halle, Germany
| | - Wolfgang H. Binder
- Martin-Luther University Halle Wittenberg, Chair of Macromolecular Chemistry, D-06120 Halle, Germany
| |
Collapse
|
9
|
Rinaldi S. The Diverse World of Foldamers: Endless Possibilities of Self-Assembly. Molecules 2020; 25:E3276. [PMID: 32708440 PMCID: PMC7397133 DOI: 10.3390/molecules25143276] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described.
Collapse
Affiliation(s)
- Samuele Rinaldi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
10
|
Eccles N, della Sala F, Le Bailly BAF, Whitehead GFS, Clayden J, Webb SJ. Molecular Recognition by Zn(II)-Capped Dynamic Foldamers. ChemistryOpen 2020; 9:338-345. [PMID: 32195074 PMCID: PMC7080544 DOI: 10.1002/open.201900362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/05/2020] [Indexed: 11/29/2022] Open
Abstract
Two α-aminoisobutyric acid (Aib) foldamers bearing Zn(II)-chelating N-termini have been synthesized and compared with a reported Aib foldamer that has a bis(quinolinyl)/mono(pyridyl) cap (BQPA group). Replacement of the quinolinyl arms of the BQPA-capped foldamer with pyridyl gave a BPPA-capped foldamer, then further replacement of the linking pyridyl with a 1,2,3-triazole gave a BPTA-capped foldamer. Their ability to relay chiral information from carboxylate bound to Zn(II) at the N-terminus to a glycinamide-based NMR reporter of conformational preference at the C-terminus was measured. The importance of the quinolinyl arms became readily apparent, as the foldamers with pyridyl arms were unable to report on the presence of chiral carboxylate in acetonitrile. Low solubility, X-ray crystallography and 1H NMR spectroscopy suggested that interfoldamer interactions inhibited carboxylate binding. However changing solvent to methanol revealed that the end-to-end relay of chiral information could be observed for the Zn(II) complex of the BPTA-capped foldamer at low temperature.
Collapse
Affiliation(s)
- Natasha Eccles
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StManchesterM1 7DNUK
| | - Flavio della Sala
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StManchesterM1 7DNUK
| | - Bryden A. F. Le Bailly
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Jonathan Clayden
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Simon J. Webb
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StManchesterM1 7DNUK
| |
Collapse
|
11
|
Das S, Ben Haj Salah K, Djibo M, Inguimbert N. Peptaibols as a model for the insertions of chemical modifications. Arch Biochem Biophys 2018; 658:16-30. [DOI: 10.1016/j.abb.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
12
|
Lizio MG, Andrushchenko V, Pike SJ, Peters AD, Whitehead GFS, Vitórica-Yrezábal IJ, Mutter ST, Clayden J, Bouř P, Blanch EW, Webb SJ. Optically Active Vibrational Spectroscopy of α-Aminoisobutyric Acid Foldamers in Organic Solvents and Phospholipid Bilayers. Chemistry 2018; 24:9399-9408. [PMID: 29745985 DOI: 10.1002/chem.201801121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Helical α-aminoisobutyric acid (Aib) foldamers show great potential as devices for the communication of conformational information across phospholipid bilayers, but determining their conformation in bilayers remains a challenge. In the present study, Raman, Raman optical activity (ROA), infrared (IR) and vibrational circular dichroism (VCD) spectroscopies have been used to analyze the conformational preferences of Aib foldamers in solution and when interacting with bilayers. A 310 -helix marker band at 1665-1668 cm-1 in Raman spectra was used to show that net helical content increased strongly with oligomer length. ROA and VCD spectra of chiral Aib foldamers provided the chiroptical signature for both left- and right-handed 310 -helices in organic solvents, with VCD establishing that foldamer screw-sense was preserved when the foldamers became embedded within bilayers. However, the population distribution between different secondary structures was perturbed by the chiral phospholipid. These studies indicate that ROA and VCD spectroscopies are valuable tools for the study of biomimetic structures, such as artificial signal transduction molecules, in phospholipid bilayers.
Collapse
Affiliation(s)
- Maria Giovanna Lizio
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Sarah J Pike
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Anna D Peters
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - George F S Whitehead
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | - Shaun T Mutter
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Ewan W Blanch
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Simon J Webb
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
13
|
Adam C, Peters AD, Lizio MG, Whitehead GFS, Diemer V, Cooper JA, Cockroft SL, Clayden J, Webb SJ. The Role of Terminal Functionality in the Membrane and Antibacterial Activity of Peptaibol-Mimetic Aib Foldamers. Chemistry 2018; 24:2249-2256. [PMID: 29210477 DOI: 10.1002/chem.201705299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 01/04/2023]
Abstract
Peptaibols are peptide antibiotics that typically feature an N-terminal acetyl cap, a C-terminal aminoalcohol, and a high proportion of α-aminoisobutyric acid (Aib) residues. To establish how each feature might affect the membrane-activity of peptaibols, biomimetic Aib foldamers with different lengths and terminal groups were synthesised. Vesicle assays showed that long foldamers (eleven Aib residues) with hydrophobic termini had the highest ionophoric activity. C-terminal acids or primary amides inhibited activity, while replacement of an N-terminal acetyl with an azide group made little difference. Crystallography showed that N3 Aib11 CH2 OTIPS folded into a 310 helix 2.91 nm long, which is close to the bilayer hydrophobic width. Planar bilayer conductance assays showed discrete ion channels only for N-acetylated foldamers. However long foldamers with hydrophobic termini had the highest antibacterial activity, indicating that ionophoric activity in vesicles was a better indicator of antibacterial activity than the observation of discrete ion channels.
Collapse
Affiliation(s)
- Catherine Adam
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Anna D Peters
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - M Giovanna Lizio
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - George F S Whitehead
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Vincent Diemer
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - James A Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Simon J Webb
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| |
Collapse
|
14
|
Nasrallah H, Rabah J, Bui-Thi-Tuyet V, Baczko K, Fensterbank H, Bourdreux F, Goncalves AM, Declerck V, Boujday S, Humblot V, Wright K, Vallée A, Allard E. A fullerene helical peptide: synthesis, characterization and formation of self-assembled monolayers on gold surfaces. NEW J CHEM 2018. [DOI: 10.1039/c8nj04599b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A helical C60-peptide allowed the formation of well-packed SAMs compared to a C60-alkyl peptide, which was determined by QCM and CV experiments.
Collapse
|
15
|
Pike SJ, Jones JE, Raftery J, Clayden J, Webb SJ. Helical peptaibol mimics are better ionophores when racemic than when enantiopure. Org Biomol Chem 2016; 13:9580-4. [PMID: 26327434 DOI: 10.1039/c5ob01652e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helical peptide foldamers rich in α-aminoisobutyric acid (Aib) act as peptaibol-mimicking ionophores in the phospholipid bilayers of artificial vesicles. Racemic samples of these foldamers are more active than their enantiopure counterparts, which was attributed to differing propensities to form aggregates with crystal-like features in the bilayer.
Collapse
Affiliation(s)
- Sarah J Pike
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | | | | | | |
Collapse
|
16
|
De Poli M, Zawodny W, Quinonero O, Lorch M, Webb SJ, Clayden J. Conformational photoswitching of a synthetic peptide foldamer bound within a phospholipid bilayer. Science 2016; 352:575-80. [PMID: 27033546 DOI: 10.1126/science.aad8352] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/24/2016] [Indexed: 12/17/2022]
Abstract
The dynamic properties of foldamers, synthetic molecules that mimic folded biomolecules, have mainly been explored in free solution. We report on the design, synthesis, and conformational behavior of photoresponsive foldamers bound in a phospholipid bilayer akin to a biological membrane phase. These molecules contain a chromophore, which can be switched between two configurations by different wavelengths of light, attached to a helical synthetic peptide that both promotes membrane insertion and communicates conformational change along its length. Light-induced structural changes in the chromophore are translated into global conformational changes, which are detected by monitoring the solid-state (19)F nuclear magnetic resonance signals of a remote fluorine-containing residue located 1 to 2 nanometers away. The behavior of the foldamers in the membrane phase is similar to that of analogous compounds in organic solvents.
Collapse
Affiliation(s)
- Matteo De Poli
- School of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Wojciech Zawodny
- School of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Ophélie Quinonero
- School of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Mark Lorch
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Simon J Webb
- School of Chemistry, University of Manchester, Manchester M13 9PL, UK. Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
17
|
Jones JE, Diemer V, Adam C, Raftery J, Ruscoe RE, Sengel JT, Wallace MI, Bader A, Cockroft SL, Clayden J, Webb SJ. Length-Dependent Formation of Transmembrane Pores by 310-Helical α-Aminoisobutyric Acid Foldamers. J Am Chem Soc 2016; 138:688-95. [PMID: 26699898 PMCID: PMC4752191 DOI: 10.1021/jacs.5b12057] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The synthetic biology toolbox lacks
extendable and conformationally
controllable yet easy-to-synthesize building blocks that are long
enough to span membranes. To meet this need, an iterative synthesis
of α-aminoisobutyric acid (Aib) oligomers was used to create
a library of homologous rigid-rod 310-helical foldamers,
which have incrementally increasing lengths and functionalizable N-
and C-termini. This library was used to probe the inter-relationship
of foldamer length, self-association strength, and ionophoric ability,
which is poorly understood. Although foldamer self-association in
nonpolar chloroform increased with length, with a ∼14-fold
increase in dimerization constant from Aib6 to Aib11, ionophoric activity in bilayers showed a stronger length
dependence, with the observed rate constant for Aib11 ∼70-fold
greater than that of Aib6. The strongest ionophoric activity
was observed for foldamers with >10 Aib residues, which have end-to-end
distances greater than the hydrophobic width of the bilayers used
(∼2.8 nm); X-ray crystallography showed that Aib11 is 2.93 nm long. These studies suggest that being long enough to
span the membrane is more important for good ionophoric activity than
strong self-association in the bilayer. Planar bilayer conductance
measurements showed that Aib11 and Aib13, but
not Aib7, could form pores. This pore-forming behavior
is strong evidence that Aibm (m ≥ 10) building blocks can span bilayers.
Collapse
Affiliation(s)
- Jennifer E Jones
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom.,Manchester Institute of Biotechnology, University of Manchester , 131 Princess St, Manchester M1 7DN, United Kingdom
| | - Vincent Diemer
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom.,Manchester Institute of Biotechnology, University of Manchester , 131 Princess St, Manchester M1 7DN, United Kingdom
| | - Catherine Adam
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom.,School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - James Raftery
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Rebecca E Ruscoe
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jason T Sengel
- Department of Chemistry, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Mark I Wallace
- Department of Chemistry, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Antoine Bader
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Jonathan Clayden
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom.,School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Simon J Webb
- School of Chemistry, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom.,Manchester Institute of Biotechnology, University of Manchester , 131 Princess St, Manchester M1 7DN, United Kingdom
| |
Collapse
|
18
|
Ruffoni A, Cavanna MV, Argentiere S, Locarno S, Pellegrino S, Gelmi ML, Clerici F. Aqueous self-assembly of short hydrophobic peptides containing norbornene amino acid into supramolecular structures with spherical shape. RSC Adv 2016. [DOI: 10.1039/c6ra17116h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The preparation and self-assembly of short hydrophobic peptides containing the non-coded norbornene amino acid is reported. The formation of a supramolecular assembly in water was assessed by TEM and DLS.
Collapse
Affiliation(s)
- Alessandro Ruffoni
- Università degli Studi di Milano
- Dipartimento di Scienze Farmaceutiche
- Sezione di Chimica Generale e Organica “Alessandro Marchesini”
- 20133 Milano
- Italy
| | | | | | - Silvia Locarno
- Università degli Studi di Milano
- Dipartimento di Scienze Farmaceutiche
- Sezione di Chimica Generale e Organica “Alessandro Marchesini”
- 20133 Milano
- Italy
| | - Sara Pellegrino
- Università degli Studi di Milano
- Dipartimento di Scienze Farmaceutiche
- Sezione di Chimica Generale e Organica “Alessandro Marchesini”
- 20133 Milano
- Italy
| | - Maria Luisa Gelmi
- Università degli Studi di Milano
- Dipartimento di Scienze Farmaceutiche
- Sezione di Chimica Generale e Organica “Alessandro Marchesini”
- 20133 Milano
- Italy
| | - Francesca Clerici
- Università degli Studi di Milano
- Dipartimento di Scienze Farmaceutiche
- Sezione di Chimica Generale e Organica “Alessandro Marchesini”
- 20133 Milano
- Italy
| |
Collapse
|
19
|
Brioche J, Pike S, Tshepelevitsh S, Leito I, Morris GA, Webb SJ, Clayden J. Conformational Switching of a Foldamer in a Multicomponent System by pH-Filtered Selection between Competing Noncovalent Interactions. J Am Chem Soc 2015; 137:6680-91. [PMID: 25915163 PMCID: PMC4520694 DOI: 10.1021/jacs.5b03284] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 12/26/2022]
Abstract
Biomolecular systems are able to respond to their chemical environment through reversible, selective, noncovalent intermolecular interactions. Typically, these interactions induce conformational changes that initiate a signaling cascade, allowing the regulation of biochemical pathways. In this work, we describe an artificial molecular system that mimics this ability to translate selective noncovalent interactions into reversible conformational changes. An achiral but helical foldamer carrying a basic binding site interacts selectively with the most acidic member of a suite of chiral ligands. As a consequence of this noncovalent interaction, a global absolute screw sense preference, detectable by (13)C NMR, is induced in the foldamer. Addition of base, or acid, to the mixture of ligands competitively modulates their interaction with the binding site, and reversibly switches the foldamer chain between its left and right-handed conformations. As a result, the foldamer-ligand mixture behaves as a biomimetic chemical system with emergent properties, functioning as a "proton-counting" molecular device capable of providing a tunable, pH-dependent conformational response to its environment.
Collapse
Affiliation(s)
- Julien Brioche
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Sarah
J. Pike
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Sofja Tshepelevitsh
- Institute
of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Ivo Leito
- Institute
of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Gareth A. Morris
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Simon J. Webb
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Jonathan Clayden
- School
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
20
|
Le Bailly BAF, Byrne L, Diemer V, Foroozandeh M, Morris GA, Clayden J. Flaws in foldamers: conformational uniformity and signal decay in achiral helical peptide oligomers. Chem Sci 2015; 6:2313-2322. [PMID: 29308146 PMCID: PMC5645781 DOI: 10.1039/c4sc03944k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/19/2015] [Indexed: 11/21/2022] Open
Abstract
Although foldamers, by definition, are extended molecular structures with a well-defined conformation, minor conformers must be populated at least to some extent in solution. We present a quantitative analysis of these minor conformers for a series of helical oligomers built from achiral but helicogenic α-amino acids. By measuring the chain length dependence or chain position dependence of NMR or CD quantities that measure screw-sense preference in a helical oligomer, we quantify values for the decay constant of a conformational signal as it passes through the molecular structure. This conformational signal is a perturbation of the racemic mixture of M and P helices that such oligomers typically adopt by the inclusion of an N or C terminal chiral inducer. We show that decay constants may be very low (<1% signal loss per residue) in non-polar solvents, and we evaluate the increase in decay constant that results in polar solvents, at higher temperatures, and with more conformationally flexible residues such as Gly. Decay constants are independent of whether the signal originates from the N or the C terminus. By interpreting the decay constant in terms of the probability with which conformations containing a screw-sense reversal are populated, we quantify the populations of these alternative minor conformers within the overall ensemble of secondary structures adopted by the foldamer. We deduce helical persistence lengths for Aib polymers that allow us to show that in a non-polar solvent a peptide helix, even in the absence of chiral residues, may continue with the same screw sense for approximately 200 residues.
Collapse
Affiliation(s)
- Bryden A F Le Bailly
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | - Liam Byrne
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | - Vincent Diemer
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | | | - Gareth A Morris
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | - Jonathan Clayden
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| |
Collapse
|
21
|
Crisma M, De Zotti M, Formaggio F, Peggion C, Moretto A, Toniolo C. Handedness preference and switching of peptide helices. Part II: Helices based on noncodedα-amino acids. J Pept Sci 2015; 21:148-77. [DOI: 10.1002/psc.2743] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/27/2022]
Affiliation(s)
| | - Marta De Zotti
- Department of Chemistry; University of Padova; Padova Italy
| | - Fernando Formaggio
- ICB; Padova Unit; CNR Padova Italy
- Department of Chemistry; University of Padova; Padova Italy
| | | | - Alessandro Moretto
- ICB; Padova Unit; CNR Padova Italy
- Department of Chemistry; University of Padova; Padova Italy
| | - Claudio Toniolo
- ICB; Padova Unit; CNR Padova Italy
- Department of Chemistry; University of Padova; Padova Italy
| |
Collapse
|
22
|
Pike SJ, Boddaert T, Raftery J, Webb SJ, Clayden J. Participation of non-aminoisobutyric acid (Aib) residues in the 310 helical conformation of Aib-rich foldamers: a solid state study. NEW J CHEM 2015. [DOI: 10.1039/c4nj01547a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
310 helical conformations that extend over 21 Å result when selected non-Aib terminal and central residues are incorporated into Aib-rich foldamers.
Collapse
Affiliation(s)
- Sarah J. Pike
- School of Chemistry
- University of Manchester
- Manchester
- UK
| | | | - James Raftery
- School of Chemistry
- University of Manchester
- Manchester
- UK
| | - Simon J. Webb
- School of Chemistry
- University of Manchester
- Manchester
- UK
- Manchester Institute of Biotechnology
| | | |
Collapse
|
23
|
Byrne L, Solà J, Clayden J. Screw sense alone can govern enantioselective extension of a helical peptide by kinetic resolution of a racemic amino acid. Chem Commun (Camb) 2015; 51:10965-8. [DOI: 10.1039/c5cc01790d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Helical secondary structure alone, even in the absence of local chiral residues, can direct the enantioselectivity of peptide coupling.
Collapse
Affiliation(s)
- Liam Byrne
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | - Jordi Solà
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | | |
Collapse
|