1
|
Lin DS, Späth G, Meng Z, Wieske LHE, Farès C, Fürstner A. Total Synthesis of the Norcembranoid Scabrolide B and Its Transformation into Sinuscalide C, Ineleganolide, and Horiolide. J Am Chem Soc 2024; 146:24250-24256. [PMID: 39167047 PMCID: PMC11378282 DOI: 10.1021/jacs.4c09467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
It was recognized only recently that the sister norcembranoids scabrolides A and B have notably different carbotricyclic scaffolds. Therefore, our synthesis route leading to scabrolide A could not be extended to its sibling. Rather, a conceptually new approach had to be devised that relied on a challenging intramolecular alkenylation of a ketone to forge the congested central cycloheptene ring at the bridgehead enone site; the required cyclization precursor was attained by a lanthanide-catalyzed Mukaiyama-Michael addition. The dissonant 1,4-oxygenation pattern was then installed by allylic rearrangement/oxidation of the enone, followed by suprafacial 1,3-transposition. Synthetic scabrolide B was transformed into sinuscalide C by dehydration and into ineleganolide by base-mediated isomerization/oxa-Michael addition, which has potential biosynthetic implications; under basic conditions, the latter compound converts into horiolide by an intricate biomimetic cascade.
Collapse
Affiliation(s)
- Davy S Lin
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Georg Späth
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Zhanchao Meng
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Lianne H E Wieske
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
2
|
Watanabe T, Oga K, Matoba H, Nagatomo M, Inoue M. Total Synthesis of Taxol Enabled by Intermolecular Radical Coupling and Pd-Catalyzed Cyclization. J Am Chem Soc 2023; 145:25894-25902. [PMID: 37972241 DOI: 10.1021/jacs.3c10658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Taxol (1) is a clinically used antineoplastic diterpenoid. The tetracyclic ring system comprises a 6/8/6-membered carbocycle (ABC-ring) and a fused oxetane ring (D-ring) embedded with a bridgehead double bond and decorated with multiple oxygen functionalities. Here, we report a convergent total synthesis of this exceedingly complex natural product. The C-ring fragment was designed to possess a bromocyclohexenone and an extra tetrahydrofuran ring to control the reactivity and selectivity, as well as to minimize functional group manipulations en route to 1. The α-alkoxyacyl telluride of the A-ring served as a radical precursor, and intermolecular radical coupling with the C-ring realized the installation of the C2- and C3-stereocenters and reductive removal of the bromide. After the C8-quaternary stereocenter was constructed by exploiting the three-dimensional shape of the intermediate, the C11-vinyl triflate of A-ring and the C8-methyl ketone of C-ring were utilized for Pd(0)-catalyzed cyclization of the central eight-membered B-ring with the bridgehead olefin. Adjustment of the oxidation level and attachment of the oxetane D-ring completed the total synthesis of 1 (28 steps, as the longest linear sequence). The fragment design principle and implementation of the powerful radical coupling reaction described in the present synthesis provide valuable information for planning and executing syntheses of diverse densely oxygenated terpenoids.
Collapse
Affiliation(s)
- Takahiro Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Kyohei Oga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Hiroaki Matoba
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| |
Collapse
|
3
|
Zhang S, Ye T, Liu Y, Hou G, Wang Q, Zhao F, Li F, Meng Q. Research Advances in Clinical Applications, Anticancer Mechanism, Total Chemical Synthesis, Semi-Synthesis and Biosynthesis of Paclitaxel. Molecules 2023; 28:7517. [PMID: 38005238 PMCID: PMC10673093 DOI: 10.3390/molecules28227517] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Paclitaxel, a natural secondary metabolite isolated and purified from the bark of the Taxus tree, is considered one of the most successful natural anticancer drugs due to its low toxicity, high potency and broad-spectrum anticancer activity. Taxus trees are scarce and slow-growing, and with extremely low paclitaxel content, the contradiction between supply and demand in the market is becoming more and more intense. Therefore, researchers have tried to obtain paclitaxel by various methods such as chemical synthesis, artificial culture, microbial fermentation and tissue cell culture to meet the clinical demand for this drug. This paper provides a comprehensive overview of paclitaxel extraction, combination therapy, total synthesis, semi-synthesis and biosynthesis in recent years and provides an outlook, aiming to provide a theoretical basis and reference for further research on the production and application of paclitaxel in the future.
Collapse
Affiliation(s)
- Shengnan Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (S.Z.); (T.Y.); (Y.L.); (F.Z.)
| | - Taiqiang Ye
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (S.Z.); (T.Y.); (Y.L.); (F.Z.)
| | - Yibin Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (S.Z.); (T.Y.); (Y.L.); (F.Z.)
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Qibao Wang
- School of Biological Science, Jining Medical University, Rizhao 276800, China;
| | - Fenglan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (S.Z.); (T.Y.); (Y.L.); (F.Z.)
| | - Feng Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (S.Z.); (T.Y.); (Y.L.); (F.Z.)
| | - Qingguo Meng
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (S.Z.); (T.Y.); (Y.L.); (F.Z.)
| |
Collapse
|
4
|
Setsumasa H, Imai K, Kobayashi I, Nakada M. Pd-Catalyzed Stereoselective Construction of Benzo-Fused Decalines with a Quaternary Carbon. Org Lett 2023; 25:7953-7957. [PMID: 37901962 DOI: 10.1021/acs.orglett.3c02233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The Pd-catalyzed stereoselective construction of decalins with one-carbon units bearing heteroatoms at the ring junction is described. The Pd-catalyzed cyclization of silyl enol ether resulted in exclusive formation of the cis isomer (89%, >100/1 cis/trans). On the contrary, Pd-catalyzed carboiodination and carboborylation (with oxidative workup) provided products in 56% yield (1/>100 cis/trans) and 69% yield (1/11 cis/trans), respectively.
Collapse
Affiliation(s)
- Hideo Setsumasa
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kosuke Imai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ikumi Kobayashi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masahisa Nakada
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
5
|
Gupta A, Laha JK. Growing Utilization of Radical Chemistry in the Synthesis of Pharmaceuticals. CHEM REC 2023; 23:e202300207. [PMID: 37565381 DOI: 10.1002/tcr.202300207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Our current unhealthy lifestyle and the exponential surge in the population getting affected by a variety of diseases have made pharmaceuticals or drugs an imperative part of life, making the development of innovative strategies for drug discovery or the introduction of refined, cost-effective and modern technologies for the synthesis of clinically used drugs, a need of the hour. Ever since their discovery, free radicals and radical cations or anions as reactive intermediates have captivated the chemists, resulting in an exceptional utilization of these moieties throughout the field of chemical synthesis, owing to their unprecedented and widespread reactivity. Sticking with the idea of not judging the book by its cover, despite the conventional thought process of radicals being unstable and difficult to control entities, scientists and academicians around the globe have done an appreciable amount of work utilizing both persistent as well as transient radicals for a variety of organic transformations, exemplifying them with the synthesis of significant biologically active pharmaceutical ingredients. This review truly accounts for the organic radical transformations including radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling with metal-complexes and radical cations coupling with nucleophiles, that offers fascinating and unconventional approaches towards the construction of intricate structural frameworks of marketed APIs with high atom- and step-economy; complementing the otherwise employed traditional methods. This tutorial review presents a comprehensive package of diverse methods utilized for radical generation, featuring their reactivity to form critical bonds in pharmaceutical total synthesis or in building key starting materials or intermediates of their synthetic journey, acknowledging their excellence, downsides and underlying mechanisms, which are otherwise poorly highlighted in the literature. Despite great achievements over the past few decades in this area, many challenges and obstacles are yet to be unraveled to shorten the distance between the academics and the industry, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| |
Collapse
|
6
|
Zeng W, Zhang X, Zhang Y, Xiao S, Tang Y, Xie P, Loh TP. Organophotoredox-Catalyzed Intermolecular Formal Grob Fragmentation of Cyclic Alcohols with Activated Allylic Acetates. Org Lett 2023; 25:5869-5874. [PMID: 37515785 DOI: 10.1021/acs.orglett.3c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
We have developed an efficient method that employs organophotoredox-catalyzed relay Grob fragmentation to facilitate the smooth ring-opening allylation of cyclic alcohols in an environmentally friendly manner. This protocol directly incorporates a wide spectrum of cyclic alcohols and activated allylic acetates into the cross-coupling reaction, eliminating the need for metal catalysts. The process yields a variety of distally unsaturated ketones with good to excellent outcomes and stereoselectivity, while acetic acid is the sole byproduct.
Collapse
Affiliation(s)
- Wubing Zeng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiaoyu Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yinlei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shiji Xiao
- Jiangsu BioGuide Laboratory Co., Ltd, Wujin Economic Development Zone, Changzhou 213000, Jiangsu, China
| | - Yongming Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
7
|
Min L, Han JC, Zhang W, Gu CC, Zou YP, Li CC. Strategies and Lessons Learned from Total Synthesis of Taxol. Chem Rev 2023; 123:4934-4971. [PMID: 36917457 DOI: 10.1021/acs.chemrev.2c00763] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Taxol (paclitaxel), the most well-known taxane diterpenoid, is the best-selling natural-source anticancer drug ever produced and one of the most common prescriptions in the treatment of breast, lung, and ovarian cancers, saving countless lives around the world. Structurally, Taxol possesses a highly oxygenated [6-8-6-4] core bearing 11 stereocenters, seven of which are contiguous chiral centers. Moreover, the extremely strained bicyclo[5.3.1] undecane ring system with a bridgehead double bond is a unique structural feature. All these features make Taxol a highly challenging synthetic target. Tremendous synthetic efforts from more than 60 research groups around the world have already culminated in ten total syntheses and three formal syntheses, as well as more than 60 synthetic model studies of Taxol. This review is intended to provide a long-overdue appraisal of the great achievements in the total syntheses of Taxol reported in the last few decades. In doing so, we summarize the development of synthesis toward Taxol from 1994 to 2022, including the evolution of synthetic strategy for accessing this complex molecular scaffold and key lessons learned from such endeavors. Finally, we briefly discuss the future of the research in this area.
Collapse
Affiliation(s)
- Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jing-Chun Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Wen Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chen-Chen Gu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yun-Peng Zou
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
8
|
Imamura Y, Takaoka K, Komori Y, Nagatomo M, Inoue M. Total Synthesis of Taxol Enabled by Inter- and Intramolecular Radical Coupling Reactions. Angew Chem Int Ed Engl 2023; 62:e202219114. [PMID: 36646637 DOI: 10.1002/anie.202219114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Taxol is a clinically used drug for the treatment of various types of cancers. Its 6/8/6/4-membered ring (ABCD-ring) system is substituted by eight oxygen functional groups and flanked by four acyl groups, including a β-amino acid side chain. Here we report a 34-step total synthesis of this unusually oxygenated and intricately fused structure. Inter- and intramolecular radical coupling reactions connected the A- and C-ring fragments and cyclized the B-ring, respectively. Functional groups of the A- and C-rings were then efficiently decorated by employing newly developed chemo-, regio-, and stereoselective reactions. Finally, construction of the D-ring and conjugation with the β-amino acid delivered taxol. The powerful coupling reactions and functional group manipulations implemented in the present synthesis provide new valuable information for designing multistep target-oriented syntheses of diverse bioactive natural products.
Collapse
Affiliation(s)
- Yusuke Imamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kyohei Takaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuma Komori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Perea MA, Wang B, Wyler BC, Ham JS, O’Connor NR, Nagasawa S, Kimura Y, Manske C, Scherübl M, Nguyen JM, Sarpong R. General Synthetic Approach to Diverse Taxane Cores. J Am Chem Soc 2022; 144:21398-21407. [PMID: 36346461 PMCID: PMC9901290 DOI: 10.1021/jacs.2c10272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemical synthesis of natural products is typically inspired by the structure and function of a target molecule. When both factors are of interest, such as in the case of taxane diterpenoids, a synthesis can both serve as a platform for synthetic strategy development and enable new biological exploration. Guided by this paradigm, we present here a unified enantiospecific approach to diverse taxane cores from the feedstock monoterpenoid (S)-carvone. Key to the success of our approach was the use of a skeletal remodeling strategy which began with the divergent reorganization and convergent coupling of two carvone-derived fragments, facilitated by Pd-catalyzed C-C bond cleavage tactics. This coupling was followed by additional restructuring using a Sm(II)-mediated rearrangement and a bioinspired, visible-light induced, transannular [2 + 2] photocycloaddition. Overall, this divergent monoterpenoid remodeling/convergent fragment coupling approach to complex diterpenoid synthesis provides access to structurally disparate taxane cores which have set the stage for the preparation of a wide range of taxanes.
Collapse
Affiliation(s)
| | | | - Benjamin C. Wyler
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jin Su Ham
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicholas R. O’Connor
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Shota Nagasawa
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yuto Kimura
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Carolin Manske
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Maximilian Scherübl
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Johny M. Nguyen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Nakada M. Research on the Efficient Enantioselective Total Synthesis of Useful Bioactive Polycyclic Compounds. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masahisa Nakada
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 119-8555
| |
Collapse
|
11
|
Li Z, Zheng J, Li WDZ. Diverse strategic approaches en route to Taxol total synthesis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Sangster JJ, Marshall JR, Turner NJ, Mangas‐Sanchez J. New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds. Chembiochem 2022; 23:e202100464. [PMID: 34726813 PMCID: PMC9401909 DOI: 10.1002/cbic.202100464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature's catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1-21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis.
Collapse
Affiliation(s)
- Jack J. Sangster
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicholas J. Turner
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Juan Mangas‐Sanchez
- Institute of Chemical Synthesis and Homogeneous CatalysisSpanish National Research Council (CSIC)Pedro Cerbuna 1250009ZaragozaSpain
- ARAID FoundationZaragozaSpain
| |
Collapse
|
13
|
Synthesis of the eight-membered carbocycle of brachialactone by intramolecular Mizoroki-Heck reaction. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Iiyama S, Fukaya K, Yamaguchi Y, Watanabe A, Yamamoto H, Mochizuki S, Saio R, Noguchi T, Oishi T, Sato T, Chida N. Total Synthesis of Paclitaxel. Org Lett 2022; 24:202-206. [PMID: 34904840 DOI: 10.1021/acs.orglett.1c03851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The total synthesis of paclitaxel (Taxol) is described. Double Rubottom oxidation of the bis(silyl enol ether) derived from a tricarbocyclic diketone effectively installed a bridgehead olefin and C-5/C-13 hydroxy groups in a one-step operation. The novel Ag-promoted oxetane formation smoothly constructed the tetracyclic framework of paclitaxel.
Collapse
Affiliation(s)
- Shota Iiyama
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Keisuke Fukaya
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yu Yamaguchi
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ami Watanabe
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroaki Yamamoto
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Shota Mochizuki
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ryosuke Saio
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takashi Noguchi
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takeshi Oishi
- School of Medicine, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan
| | - Takaaki Sato
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Noritaka Chida
- Department Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
15
|
Li G, Lou M, Qi X. A brief overview of classical natural product drug synthesis and bioactivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01341f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript briefly overviewed the total synthesis and structure–activity relationship studies of eight classical natural products, which emphasizes the important role of total synthesis in natural product-based drug development.
Collapse
Affiliation(s)
- Gen Li
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Mingliang Lou
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Relay ring-closing metathesis strategies towards the synthesis of the ABC tricycle of Taxol. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Oishi T, Fukaya K, Sato T, Chida N. Crystal structure of (+)-(1 S,5 S,6 S,7 S,10 S,11 S,16 S)-16-hy-droxy-7-(meth-oxy-meth-oxy)-11,15,18,18-tetra-methyl-3,13-dioxo-2,4-dioxa-tetra-cyclo[12.3.1.0 1,5.0 6,11]octa-dec-14-en-10-yl benzoate. Acta Crystallogr E Crystallogr Commun 2021; 77:1234-1238. [PMID: 34925888 PMCID: PMC8647750 DOI: 10.1107/s2056989021011518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022]
Abstract
In the fused tetra-cyclic system of the title compound, C29H36O9, the five-membered dioxolane ring adopts a twist conformation; the two adjacent C atoms deviate alternately from the mean plane of the other three atoms by -0.252 (6) and 0.340 (6) Å. The cyclo-hexane, cyclo-hexene and central cyclo-octane rings show chair, half-chair and boat-chair forms, respectively. There are three intra-molecular C-H⋯O inter-actions supporting the mol-ecular conformation, with one S(6) and two S(7) graph-set motifs. In the crystal, inter-molecular O-H⋯O hydrogen bonds connect the mol-ecules into a helical chain running along the c-axis direction, generating a C(7) graph-set motif. The chains are further linked by inter-molecular C-H⋯O inter-actions to construct a three-dimensional network. There is no valid C-H⋯π inter-action.
Collapse
Affiliation(s)
- Takeshi Oishi
- School of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan
| | - Keisuke Fukaya
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
18
|
Abstract
Taxol is one of the most famous natural diterpenoids and an important anticancer medicine. Taxol represents a formidable synthetic challenge and has prompted significant interest from the synthetic community. However, in all the previous syntheses of Taxol, there have been no reports of closing the desired eight-membered ring through C1-C2 bond formation. Furthermore, the existence of Taxol-resistant tumors and side effects of Taxol make the development of new approaches to synthesize Taxol and its derivatives highly desirable. Here, we report the asymmetric total synthesis of Taxol using a concise approach through 19 isolated intermediates. The synthetically challenging eight-membered ring was constructed efficiently by a diastereoselective intramolecular SmI2-mediated pinacol coupling reaction to form the C1-C2 bond. The unique biomimetic oxygen ene reaction and the newly developed facile tandem C2-benzoate formation and C13 side chain installation improved the efficiency of the synthesis. The mild oxygen ene reaction under light conditions would be an alternative reaction involved in Taxol biosynthesis. This new convergent approach will allow the diverse creation of Taxol derivatives to enable further biological research.
Collapse
Affiliation(s)
- Ya-Jian Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen-Chen Gu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Feng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
19
|
Brooks S, Charlton G, Letort A, Prunet J, Bucher G. Calculations on the Ruthenium-Catalyzed Diene and Dienyne Ring-Closing Metathesis Reactions in the Synthesis of Taxol Derivatives. J Org Chem 2021; 86:13056-13070. [PMID: 34449228 DOI: 10.1021/acs.joc.1c01879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density-functional and semiempirical calculations (M06, M06L, and PM6) on intermediates in the ring-closing metathesis (RCM) reactions in the synthesis of Taxol derivatives give results in excellent agreement with the results of previous experimental work. The results suggest that the degree of steric overloading plays a decisive role in determining the outcome (ene-ene or ene-yne-ene metathesis). Due to the rigidity of the Taxol skeleton being formed in the ene-yne-ene cascade reaction, the transition states in its final ene-ene metathesis reaction stage are particularly sensitive to steric effects. Thus, the reaction is predicted to be preferred for one diastereomer of the precursor in which the diol functionality is protected with a compact cyclic carbonate moiety, whereas the use of a bulkier benzoate-protecting group results in activation barriers for Taxol formation that are prohibitive. The reason why one diastereomer of the carbonate-protected precursor undergoes formation of a tricycle via an ene-yne-ene RCM cascade, whereas the other diastereomer undergoes cyclooctene formation via an ene-ene RCM, likely lies in the orientation of the pseudoaxial methyl group on the cyclohexene ring, which in the latter case would unfavorably point toward the reactive center of the Ru-complex, leading to Taxol formation.
Collapse
Affiliation(s)
- Samantha Brooks
- WestCHEM, School of Chemistry, University of Glasgow, Joseph-Black-Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Georgina Charlton
- WestCHEM, School of Chemistry, University of Glasgow, Joseph-Black-Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Aurélien Letort
- WestCHEM, School of Chemistry, University of Glasgow, Joseph-Black-Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Joëlle Prunet
- WestCHEM, School of Chemistry, University of Glasgow, Joseph-Black-Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Götz Bucher
- WestCHEM, School of Chemistry, University of Glasgow, Joseph-Black-Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
20
|
Shao F, Wilson IW, Qiu D. The Research Progress of Taxol in Taxus. Curr Pharm Biotechnol 2021; 22:360-366. [PMID: 32564747 DOI: 10.2174/1389201021666200621163333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 04/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Taxus is a valuable woody species with important medicinal value. The bark of Taxus can produce taxol, a natural antineoplastic drug that is widely used in the treatment of breast, ovarian and lung cancers. However, the low content of taxol in the bark of Taxus can not meet the growing clinical demands, so the current research aims at finding ways to increase taxol production. OBJECTIVE In this review, the research progress of taxol including the factors affecting the taxol content, biosynthesis pathway of taxol, production of taxol in vitro and the application of multi-omics approaches in Taxus as well as future research prospects will be discussed. RESULTS The taxol content is not only dependent on the species, age and tissues but is also affected by light, moisture levels, temperature, soil fertility and microbes. Most of the enzymes in the taxol biosynthesis pathway have been identified and characterized. Total chemical synthesis, semi-synthesis, plant cell culture and biosynthesis in endophytic fungi have been explored to product taxol. Multi-omics have been used to study Taxus and taxol. CONCLUSION Further efforts in the identification of unknown enzymes in the taxol biosynthesis pathway, establishment of the genetic transformation system in Taxus and the regulatory mechanism of taxol biosynthesis and Taxus cell growth will play a significant role in improving the yield of taxol in Taxus cells and plants.
Collapse
Affiliation(s)
- Fenjuan Shao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Iain W Wilson
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
21
|
Škubník J, Pavlíčková V, Ruml T, Rimpelová S. Current Perspectives on Taxanes: Focus on Their Bioactivity, Delivery and Combination Therapy. PLANTS (BASEL, SWITZERLAND) 2021; 10:569. [PMID: 33802861 PMCID: PMC8002726 DOI: 10.3390/plants10030569] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Taxanes, mainly paclitaxel and docetaxel, the microtubule stabilizers, have been well known for being the first-line therapy for breast cancer for more than the last thirty years. Moreover, they have been also used for the treatment of ovarian, hormone-refractory prostate, head and neck, and non-small cell lung carcinomas. Even though paclitaxel and docetaxel significantly enhance the overall survival rate of cancer patients, there are some limitations of their use, such as very poor water solubility and the occurrence of severe side effects. However, this is what pushes the research on these microtubule-stabilizing agents further and yields novel taxane derivatives with significantly improved properties. Therefore, this review article brings recent advances reported in taxane research mainly in the last two years. We focused especially on recent methods of taxane isolation, their mechanism of action, development of their novel derivatives, formulations, and improved tumor-targeted drug delivery. Since cancer cell chemoresistance can be an unsurpassable hurdle in taxane administration, a significant part of this review article has been also devoted to combination therapy of taxanes in cancer treatment. Last but not least, we summarize ongoing clinical trials on these compounds and bring a perspective of advancements in this field.
Collapse
Affiliation(s)
| | | | | | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.Š.); (V.P.); (T.R.)
| |
Collapse
|
22
|
Škubník J, Jurášek M, Ruml T, Rimpelová S. Mitotic Poisons in Research and Medicine. Molecules 2020; 25:E4632. [PMID: 33053667 PMCID: PMC7587177 DOI: 10.3390/molecules25204632] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the greatest challenges of the modern medicine. Although much effort has been made in the development of novel cancer therapeutics, it still remains one of the most common causes of human death in the world, mainly in low and middle-income countries. According to the World Health Organization (WHO), cancer treatment services are not available in more then 70% of low-income countries (90% of high-income countries have them available), and also approximately 70% of cancer deaths are reported in low-income countries. Various approaches on how to combat cancer diseases have since been described, targeting cell division being among them. The so-called mitotic poisons are one of the cornerstones in cancer therapies. The idea that cancer cells usually divide almost uncontrolled and far more rapidly than normal cells have led us to think about such compounds that would take advantage of this difference and target the division of such cells. Many groups of such compounds with different modes of action have been reported so far. In this review article, the main approaches on how to target cancer cell mitosis are described, involving microtubule inhibition, targeting aurora and polo-like kinases and kinesins inhibition. The main representatives of all groups of compounds are discussed and attention has also been paid to the presence and future of the clinical use of these compounds as well as their novel derivatives, reviewing the finished and ongoing clinical trials.
Collapse
Affiliation(s)
- Jan Škubník
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic;
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| |
Collapse
|
23
|
Min L, Hu YJ, Fan JH, Zhang W, Li CC. Synthetic applications of type II intramolecular cycloadditions. Chem Soc Rev 2020; 49:7015-7043. [PMID: 32869796 DOI: 10.1039/d0cs00365d] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type II intramolecular cycloadditions ([4+2], [4+3], [4+4] and [5+2]) have emerged recently as an efficient and powerful strategy for the construction of bridged ring systems. In general, type II cycloadditions provide access to a wide range of bridged bicyclo[m.n.1] ring systems with high regio- and diastereoselectivity in an easy and straightforward manner. In each section of this review, an overview of the corresponding type II cycloadditions is presented, which is followed by highlights of method development and synthetic applications in natural product synthesis. The goal of this review is to provide a survey of recent advances in the field covering literature up to 2020. The review will serve as a useful reference for organic chemists engaged in the total synthesis of natural products containing bridged bicyclo[m.n.1] ring systems and provide strong stimulus for invention and further advances in this exciting research field.
Collapse
Affiliation(s)
- Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | | | | | | | | |
Collapse
|
24
|
Kanda Y, Ishihara Y, Wilde NC, Baran PS. Two-Phase Total Synthesis of Taxanes: Tactics and Strategies. J Org Chem 2020; 85:10293-10320. [DOI: 10.1021/acs.joc.0c01287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuzuru Kanda
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yoshihiro Ishihara
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nathan C. Wilde
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
25
|
Kanda Y, Nakamura H, Umemiya S, Puthukanoori RK, Murthy Appala VR, Gaddamanugu GK, Paraselli BR, Baran PS. Two-Phase Synthesis of Taxol. J Am Chem Soc 2020; 142:10526-10533. [PMID: 32406238 PMCID: PMC8349513 DOI: 10.1021/jacs.0c03592] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Taxol (a brand name for paclitaxel) is widely regarded as among the most famed natural isolates ever discovered, and has been the subject of innumerable studies in both basic and applied science. Its documented success as an anticancer agent, coupled with early concerns over supply, stimulated a furious worldwide effort from chemists to provide a solution for its preparation through total synthesis. Those pioneering studies proved the feasibility of retrosynthetically guided access to synthetic Taxol, albeit in minute quantities and with enormous effort. In practice, all medicinal chemistry efforts and eventual commercialization have relied upon natural (plant material) or biosynthetically derived (synthetic biology) supplies. Here we show how a complementary divergent synthetic approach that is holistically patterned off of biosynthetic machinery for terpene synthesis can be used to arrive at Taxol.
Collapse
Affiliation(s)
- Yuzuru Kanda
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Hugh Nakamura
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Shigenobu Umemiya
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Ravi Kumar Puthukanoori
- Chemveda Life Sciences, Pvt. Ltd., Plot No. B – 11/1, IDA Uppal, Hyderabad, Telangana 500039, India
| | | | - Gopi Krishna Gaddamanugu
- Chemveda Life Sciences, Pvt. Ltd., Plot No. B – 11/1, IDA Uppal, Hyderabad, Telangana 500039, India
| | - Bheema Rao Paraselli
- Chemveda Life Sciences, Inc., 9920 Pacific Heights Blvd, Suite 150, San Diego, CA 92121, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
26
|
Wang JYJ, Fletcher SP. Synthesis of the Taxol Core via Catalytic Asymmetric 1,4-Addition of an Alkylzirconium Nucleophile. Org Lett 2020; 22:4103-4106. [DOI: 10.1021/acs.orglett.0c01165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jiao Yu Joseph Wang
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Stephen P. Fletcher
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
27
|
Hu YJ, Li LX, Han JC, Min L, Li CC. Recent Advances in the Total Synthesis of Natural Products Containing Eight-Membered Carbocycles (2009-2019). Chem Rev 2020; 120:5910-5953. [PMID: 32343125 DOI: 10.1021/acs.chemrev.0c00045] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural products containing eight-membered carbocycles constitute a class of structurally intriguing and biologically important molecules such as the famous diterpenes taxol and vinigrol. Such natural products are being increasingly investigated because of their fascinating architectural features and potent medicinal properties. However, synthesis of natural products with cyclooctane moieties has proved to be highly challenging. This review highlights the recently completed total syntheses of natural products with eight-membered carbocycles with a focus on strategic considerations. A collection of 27 representative studies from the literature covering the decade from 2009 to 2019 is described in chronological order with relevant studies grouped together, including syntheses of the same natural product by different research groups using different strategies. Finally, a summary and outlook including a discussion of the major features of each strategy used in the syntheses are presented. This review illustrates the diversity and creativity in the elegant synthetic designs of eight-membered carbocycles. We hope this review will provide timely illumination and beneficial guidance for future synthetic efforts for organic chemists who are interested in this area.
Collapse
Affiliation(s)
- Ya-Jian Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Li-Xuan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jing-Chun Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
28
|
Bacteria as genetically programmable producers of bioactive natural products. Nat Rev Chem 2020; 4:172-193. [PMID: 37128046 DOI: 10.1038/s41570-020-0176-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Next to plants, bacteria account for most of the biomass on Earth. They are found everywhere, although certain species thrive only in specific ecological niches. These microorganisms biosynthesize a plethora of both primary and secondary metabolites, defined, respectively, as those required for the growth and maintenance of cellular functions and those not required for survival but offering a selective advantage for the producer under certain conditions. As a result, bacterial fermentation has long been used to manufacture valuable natural products of nutritional, agrochemical and pharmaceutical interest. The interactions of secondary metabolites with their biological targets have been optimized by millions of years of evolution and they are, thus, considered to be privileged chemical structures, not only for drug discovery. During the last two decades, functional genomics has allowed for an in-depth understanding of the underlying biosynthetic logic of secondary metabolites. This has, in turn, paved the way for the unprecedented use of bacteria as programmable biochemical workhorses. In this Review, we discuss the multifaceted use of bacteria as biological factories in diverse applications and highlight recent advances in targeted genetic engineering of bacteria for the production of valuable bioactive compounds. Emphasis is on current advances to access nature's abundance of natural products.
Collapse
|
29
|
Uwamori M, Osada R, Sugiyama R, Nagatani K, Nakada M. Enantioselective Total Synthesis of Cotylenin A. J Am Chem Soc 2020; 142:5556-5561. [DOI: 10.1021/jacs.0c01774] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masahiro Uwamori
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ryunosuke Osada
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ryoji Sugiyama
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kotaro Nagatani
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masahisa Nakada
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
30
|
Recent Advances in Metal-Catalyzed Alkyl–Boron (C(sp3)–C(sp2)) Suzuki-Miyaura Cross-Couplings. Catalysts 2020. [DOI: 10.3390/catal10030296] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Boron chemistry has evolved to become one of the most diverse and applied fields in organic synthesis and catalysis. Various valuable reactions such as hydroborylations and Suzuki–Miyaura cross-couplings (SMCs) are now considered as indispensable methods in the synthetic toolbox of researchers in academia and industry. The development of novel sterically- and electronically-demanding C(sp3)–Boron reagents and their subsequent metal-catalyzed cross-couplings attracts strong attention and serves in turn to expedite the wheel of innovative applications of otherwise challenging organic adducts in different fields. This review describes the significant progress in the utilization of classical and novel C(sp3)–B reagents (9-BBN and 9-MeO-9-BBN, trifluoroboronates, alkylboranes, alkylboronic acids, MIDA, etc.) as coupling partners in challenging metal-catalyzed C(sp3)–C(sp2) cross-coupling reactions, such as B-alkyl SMCs after 2001.
Collapse
|
31
|
|
32
|
Wang Z. Construction of all-carbon quaternary stereocenters by catalytic asymmetric conjugate addition to cyclic enones in natural product synthesis. Org Chem Front 2020. [DOI: 10.1039/d0qo00763c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review discusses the construction of all-carbon quaternary stereocenters using catalytic asymmetric conjugate addition and its application in natural product synthesis.
Collapse
Affiliation(s)
- Zhuo Wang
- Southern University of Science and Technology
- School of Medicine
- Shenzhen
- People's Republic of China
| |
Collapse
|
33
|
Imamura Y, Yoshioka S, Nagatomo M, Inoue M. Total Synthesis of 1-Hydroxytaxinine. Angew Chem Int Ed Engl 2019; 58:12159-12163. [PMID: 31211483 DOI: 10.1002/anie.201906872] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 12/18/2022]
Abstract
1-Hydroxytaxinine (1) is a cytotoxic taxane diterpenoid. Its central eight-membered B-ring possesses four oxygen-functionalized centers (C1, C2, C9, and C10) and two quaternary carbon centers (C8 and C15), and is fused with six-membered A- and C-rings. The densely functionalized and intricately fused structure of 1 makes it a highly challenging synthetic target. Reported here is an efficient radical-based strategy for assembling 1 from A- and C-ring fragments. The A-ring bearing an α-alkoxyacyl telluride moiety underwent intermolecular coupling with the C-ring fragment by a Et3 B/O2 -promoted decarbonylative radical formation. After construction of the C8-quaternary stereocenter, a pinacol coupling reaction using a low-valent titanium reagent formed the B-ring with stereoselective installation of the C1,C2-diol. Subsequent manipulations at the A- and C-rings furnished 1 in 26 total steps.
Collapse
Affiliation(s)
- Yusuke Imamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shun Yoshioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
34
|
Imamura Y, Yoshioka S, Nagatomo M, Inoue M. Total Synthesis of 1‐Hydroxytaxinine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yusuke Imamura
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shun Yoshioka
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
35
|
Alqahtani FY, Aleanizy FS, El Tahir E, Alkahtani HM, AlQuadeib BT. Paclitaxel. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2019; 44:205-238. [PMID: 31029218 DOI: 10.1016/bs.podrm.2018.11.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Paclitaxel is the first microtubule-stabilizing agent identified and considered to be the most significant advance in chemotherapy of the past two decades. It is considered one of the most widely used antineoplastic agents with broad activity in several cancers including breast cancer, endometrial cancer, non-small-cell lung cancer, bladder cancer, and cervical carcinoma. It is also used for treating AIDS-related Kaposi sarcoma as a second line treatment. This comprehensive profile of paclitaxel gives overview of nomenclature, formulae, elemental analysis, appearance, application and uses. In addition, mechanism of action and resistance, different dosage forms and methods of drug preparation are elaborated. Moreover, the physicochemical properties involving X-ray powder diffraction pattern, drug solubility, melting point, differential scanning calorimetry, and stability were summarized. Furthermore, method of drug analysis including compendial, spectrophotometric, and chromatographic was discussed.
Collapse
Affiliation(s)
- Fulwah Yahya Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Eram El Tahir
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bushra T AlQuadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Abstract
This review represents the most complete description of the scientific results obtained on a photochemical reaction described 110 years ago by an Italian scientist.
Collapse
Affiliation(s)
- Maurizio D'Auria
- Dipartimento di Scienze
- Università della Basilicata
- 85100 Potenza
- Italy
| |
Collapse
|
37
|
Matoba H, Watanabe T, Nagatomo M, Inoue M. Convergent Synthesis of Taxol Skeleton via Decarbonylative Radical Coupling Reaction. Org Lett 2018; 20:7554-7557. [PMID: 30452272 DOI: 10.1021/acs.orglett.8b03302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The highly oxygenated 6/8/6-membered ABC-ring 2 of taxol was assembled in a convergent fashion. A decarbonylative radical reaction between α-alkoxyacyl telluride 4 and cyanocyclohexenone 5 linked the A- and C-rings and stereoselectively installed the C2- and C3-tertiary carbon centers of 3. After the C8-quaternary stereocenter was constructed, the C9-methyl ketone and the C11-vinyl triflate of 30 participated in Pd(0)-promoted cyclization of the eight-membered B-ring, giving rise to the taxol skeleton 2.
Collapse
Affiliation(s)
- Hiroaki Matoba
- Graduate School of Pharmaceutical Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Takahiro Watanabe
- Graduate School of Pharmaceutical Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
38
|
Hu YJ, Fan JH, Li S, Zhao J, Li CC. Synthetic Study toward the Total Synthesis of Taxezopidines A and B. Org Lett 2018; 20:5905-5909. [PMID: 30192554 DOI: 10.1021/acs.orglett.8b02571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A concise synthetic approach to construct the [6,8,6]-tricyclic core of taxezopidines A and B, which contains a synthetically challenging bridged bicyclo[5.3.1]undecane ring system bearing most of the desired functionalized groups and stereocenters, has been established. This approach features a diastereoselective type II intramolecular Diels-Alder furan reaction. The stereochemistry of the acetoxy group at the allylic position of the dienophile alkene group, such as in 6a, was found to be critical for achieving the desired highly diastereoselective outcome.
Collapse
Affiliation(s)
- Ya-Jian Hu
- Institute of Chinese Medical Sciences , University of Macau , Macau 999078 , China.,Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Jian-Hong Fan
- Institute of Chinese Medical Sciences , University of Macau , Macau 999078 , China.,Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Shaoping Li
- Institute of Chinese Medical Sciences , University of Macau , Macau 999078 , China
| | - Jing Zhao
- Institute of Chinese Medical Sciences , University of Macau , Macau 999078 , China
| | - Chuang-Chuang Li
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen 518055 , China
| |
Collapse
|
39
|
Seca AML, Pinto DCGA. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int J Mol Sci 2018; 19:ijms19010263. [PMID: 29337925 PMCID: PMC5796209 DOI: 10.3390/ijms19010263] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cancer is a multistage process resulting in an uncontrolled and abrupt division of cells and is one of the leading causes of mortality. The cases reported and the predictions for the near future are unthinkable. Food and Drug Administration data showed that 40% of the approved molecules are natural compounds or inspired by them, from which, 74% are used in anticancer therapy. In fact, natural products are viewed as more biologically friendly, that is less toxic to normal cells. In this review, the most recent and successful cases of secondary metabolites, including alkaloid, diterpene, triterpene and polyphenolic type compounds, with great anticancer potential are discussed. Focusing on the ones that are in clinical trial development or already used in anticancer therapy, therefore successful cases such as paclitaxel and homoharringtonine (in clinical use), curcumin and ingenol mebutate (in clinical trials) will be addressed. Each compound’s natural source, the most important steps in their discovery, their therapeutic targets, as well as the main structural modifications that can improve anticancer properties will be discussed in order to show the role of plants as a source of effective and safe anticancer drugs.
Collapse
Affiliation(s)
- Ana M L Seca
- cE3c-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9501-321 Ponta Delgada, Portugal.
- Department of Chemistry & QOPNA-Organic Chemistry, Natural Products and Food Stuffs, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Diana C G A Pinto
- Department of Chemistry & QOPNA-Organic Chemistry, Natural Products and Food Stuffs, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
40
|
Affiliation(s)
| | | | | | | | - Masahisa Nakada
- Graduate School of Advanced Science and Engineering, Waseda University
| |
Collapse
|
41
|
Letort A, Long DL, Prunet J. Study of Cascade Ring-Closing Metathesis Reactions en Route to an Advanced Intermediate of Taxol. J Org Chem 2016; 81:12318-12331. [PMID: 27978745 DOI: 10.1021/acs.joc.6b02264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly functionalized intermediate in the synthesis of Taxol has been synthesized, which features the tricyclic core and the required oxygen substituents at C1, C2, C7, C10, and C13. The key step, a ring-closing dienyne metathesis (RCDEYM) reaction, has been thoroughly optimized to favor the tricyclic product over the undesired bicyclic product resulting from diene metathesis.
Collapse
Affiliation(s)
- Aurélien Letort
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building , University Avenue, Glasgow G12 8QQ, U.K
| | - De-Liang Long
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building , University Avenue, Glasgow G12 8QQ, U.K
| | - Joëlle Prunet
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building , University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
42
|
Bull JA, Croft RA, Davis OA, Doran R, Morgan KF. Oxetanes: Recent Advances in Synthesis, Reactivity, and Medicinal Chemistry. Chem Rev 2016; 116:12150-12233. [DOI: 10.1021/acs.chemrev.6b00274] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- James A. Bull
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Rosemary A. Croft
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Owen A. Davis
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Robert Doran
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Kate F. Morgan
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
43
|
Yuan C, Jin Y, Wilde NC, Baran PS. Short, Enantioselective Total Synthesis of Highly Oxidized Taxanes. Angew Chem Int Ed Engl 2016; 55:8280-4. [PMID: 27240325 PMCID: PMC4972021 DOI: 10.1002/anie.201602235] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 01/14/2023]
Abstract
In the realm of natural product chemistry, few isolates have risen to the level of fame justifiably accorded to Taxol (1) and its chemical siblings. This report describes the most concise route to date for accessing the highly oxidized members of this family. As representative members of taxanes containing five oxygen atoms, decinnamoyltaxinine E (2) and taxabaccatin III (3), have succumbed to enantioselective total synthesis for the first time in only 18 steps from a simple olefin starting material. The strategy holistically mimics nature's approach (two-phase synthesis) and features a carefully choreographed sequence of stereoselective oxidations and a remarkable redox-isomerization to set the key trans-diol present in 2 and 3. This work lays the critical groundwork necessary to access even higher oxidized taxanes such as 1 in a more practical fashion, thus empowering a medicinal chemistry campaign that is not wedded to semi-synthesis.
Collapse
Affiliation(s)
- Changxia Yuan
- Dept of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yehua Jin
- Dept of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nathan C Wilde
- Dept of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Dept of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
44
|
Yuan C, Jin Y, Wilde NC, Baran PS. Short, Enantioselective Total Synthesis of Highly Oxidized Taxanes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Changxia Yuan
- Dept of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Yehua Jin
- Dept of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Nathan C. Wilde
- Dept of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Phil S. Baran
- Dept of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
45
|
Nucleophilic β-alkenylation of N-alkoxyenamines: an umpolung strategy for the preparation of β,γ-unsaturated ketones. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Ma C, Letort A, Aouzal R, Wilkes A, Maiti G, Farrugia LJ, Ricard L, Prunet J. Cascade Metathesis Reactions for the Synthesis of Taxane and Isotaxane Derivatives. Chemistry 2016; 22:6891-8. [PMID: 27062670 PMCID: PMC4982030 DOI: 10.1002/chem.201600592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/28/2022]
Abstract
Tricyclic isotaxane and taxane derivatives have been synthesized by a very efficient cascade ring‐closing dienyne metathesis (RCDEYM) reaction, which formed the A and B rings in one operation. When the alkyne is present at C13 (with no neighboring gem‐dimethyl group), the RCEDYM reaction leads to 14,15‐isotaxanes 16 a,b and 18 b with the gem‐dimethyl group on the A ring. If the alkyne is at the C11 position (and thus flanked by a gem‐dimethyl group), RCEDYM reaction only proceeds in the presence of a trisubstituted olefin at C13, which disfavors the competing diene ring‐closing metathesis reaction, to give the tricyclic core of Taxol 44.
Collapse
Affiliation(s)
- Cong Ma
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole Polytechnique, DCSO, 91128, Palaiseau, France
| | - Aurélien Letort
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Rémi Aouzal
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole Polytechnique, DCSO, 91128, Palaiseau, France
| | - Antonia Wilkes
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Gourhari Maiti
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole Polytechnique, DCSO, 91128, Palaiseau, France
| | - Louis J Farrugia
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Louis Ricard
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, Ecole Polytechnique, LCM, 91128, Palaiseau, France
| | - Joëlle Prunet
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK.
| |
Collapse
|
47
|
Practical synthesis of the C-ring precursor of paclitaxel from 3-methoxytoluene. J Antibiot (Tokyo) 2016; 69:273-9. [DOI: 10.1038/ja.2016.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 11/08/2022]
|
48
|
Burroughs L, Eccleshare L, Ritchie J, Kulkarni O, Lygo B, Woodward S, Lewis W. One-Pot Cannizzaro Cascade Synthesis of ortho-Fused Cycloocta-2,5-dien-1-ones from 2-Bromo(hetero)aryl Aldehydes. Angew Chem Int Ed Engl 2015; 54:10648-51. [PMID: 26230528 PMCID: PMC4581465 DOI: 10.1002/anie.201505347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 11/19/2022]
Abstract
An intramolecular Cannizzaro-type hydride transfer to an in situ prepared allene enables the synthesis of ortho-fused 4-substituted cycloocta-2,5-dien-1-ones with unprecedented technical ease for an eight-ring carboannulation. Various derivatives could be obtained from commercially available (hetero)aryl aldehydes, trimethylsilylacetylene, and simple propargyl chlorides in good yields.
Collapse
Affiliation(s)
- Laurence Burroughs
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (UK)
| | - Lee Eccleshare
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (UK)
| | - John Ritchie
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (UK)
| | - Omkar Kulkarni
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (UK)
| | - Barry Lygo
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (UK)
| | - Simon Woodward
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (UK).
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (UK)
| |
Collapse
|
49
|
Burroughs L, Eccleshare L, Ritchie J, Kulkarni O, Lygo B, Woodward S, Lewis W. One-Pot Cannizzaro Cascade Synthesis of ortho
-Fused Cycloocta-2,5-dien-1-ones from 2-Bromo(hetero)aryl Aldehydes. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Fukaya K, Tanaka Y, Sato AC, Kodama K, Yamazaki H, Ishimoto T, Nozaki Y, Iwaki YM, Yuki Y, Umei K, Sugai T, Yamaguchi Y, Watanabe A, Oishi T, Sato T, Chida N. Synthesis of Paclitaxel. 1. Synthesis of the ABC Ring of Paclitaxel by SmI2-Mediated Cyclization. Org Lett 2015; 17:2570-3. [DOI: 10.1021/acs.orglett.5b01173] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keisuke Fukaya
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuta Tanaka
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ayako C. Sato
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Keisuke Kodama
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hirohisa Yamazaki
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takeru Ishimoto
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yasuyoshi Nozaki
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuki M. Iwaki
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yohei Yuki
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kentaro Umei
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Tomoya Sugai
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yu Yamaguchi
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ami Watanabe
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takeshi Oishi
- School of Medicine, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan
| | - Takaaki Sato
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Noritaka Chida
- Department Applied
Chemistry, Faculty of Science and Technology, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|