1
|
Zhang XY, Fu JH, Chen ZQ, Gong WW, Wang Y, Kang LX, Zhao Y, Shu CH, Li DY, Liu PN. Isomerization of Organometallic Polymers on Ag(111): Revealing the Intermolecular Hydrogen Transfer Mechanism. ACS NANO 2025. [PMID: 40265293 DOI: 10.1021/acsnano.4c18959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Dehalogenation plays a crucial role in on-surface synthesis, but the bond-forming sites in dehalogenation occasionally differ from the original halogen-substituted sites, leading to unexpected products. Revealing its mechanism is essential for the atomically precise fabrication of low-dimensional nanomaterials, although it remains elusive. Herein, we report an isomerization of organometallic polymers derived from debromination on Ag(111) and elucidate the mechanism involving intermolecular hydrogen transfer via combining scanning tunneling microscopy, noncontact atomic force microscopy, and density functional theory calculations. At room temperature, the precursor 1,4-bis(3-bromothiophen-2-yl)benzene undergoes surface-assisted debromination on Ag(111), forming two organometallic polymers where the bond-forming sites correspond to the original debromination sites. Upon annealing to 393 K, the isomerization of organometallic polymers generates a linear organometallic polymer, where the bond-forming sites mismatched with the original debromination sites. Control experiments combined with theoretical calculations demonstrate that the unexpected isomerization proceeds through the dissociation of polymer chains into surface-stabilized diradical monomers or oligomers, intermolecular hydrogen transfer, and the final recombination of surface-stabilized radicals with Ag adatoms.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Jian-Hui Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Zhen-Qiang Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wen-Wen Gong
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ying Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Li-Xia Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yan Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chen-Hui Shu
- School of Future Technology, Henan University, Kaifeng 475004, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Deng-Yuan Li
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Giovanelli L, Pawlak R, Hussein F, MacLean O, Rosei F, Song W, Pigot C, Dumur F, Gigmes D, Ksari Y, Bondino F, Magnano E, Meyer E, Clair S. On-Surface Synthesis of Unsaturated Hydrocarbon Chains through C-S Activation. Chemistry 2022; 28:e202200809. [PMID: 35657383 PMCID: PMC9540368 DOI: 10.1002/chem.202200809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 11/05/2022]
Abstract
We use an on-surface synthesis approach to drive the homocoupling reaction of a simple dithiophenyl-functionalized precursor on Cu(111). The C-S activation reaction is initiated at low annealing temperature and yields unsaturated hydrocarbon chains interconnected in a fully conjugated reticulated network. High-resolution atomic force microscopy imaging reveals the opening of the thiophenyl rings and the presence of trans- and cis-oligoacetylene chains as well as pentalene units. The chemical transformations were studied by C 1s and S 2p core level photoemission spectroscopy and supported by theoretical calculations. At higher annealing temperature, additional cyclization reactions take place, leading to the formation of small graphene flakes.
Collapse
Affiliation(s)
| | - Rémy Pawlak
- University of BaselDepartment of PhysicsBaselCH4056Switzerland
| | | | - Oliver MacLean
- Key Laboratory of Functional Materials Physics andChemistry of the Ministry of EducationJilin Normal UniversityChangchun130103China
- Institut National de la Recherche ScientifiqueVarennesQuébecJ3X 1S2Canada
| | - Federico Rosei
- Institut National de la Recherche ScientifiqueVarennesQuébecJ3X 1S2Canada
| | - Wentao Song
- Aix-Marseille Univ, CNRS, IM2NPMarseilleFrance
| | | | | | | | | | - Federica Bondino
- IOM-CNR Laboratorio TASC AREA Science Park, Basovizza34149TriesteItaly
| | - Elena Magnano
- IOM-CNR Laboratorio TASC AREA Science Park, Basovizza34149TriesteItaly
- Department of PhysicsUniversity of JohannesburgPO Box 524Auckland Park2006South Africa
| | - Ernst Meyer
- University of BaselDepartment of PhysicsBaselCH4056Switzerland
| | | |
Collapse
|
3
|
Wang Z, Wei S, Jiang D, Liu X, Lu Y, Liu F, Wang L. Three-Bit Digital Comparator Based on Intracell Diffusion of Silver Single Atom. NANO LETTERS 2022; 22:5909-5915. [PMID: 35816405 DOI: 10.1021/acs.nanolett.2c01916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using a single atom to construct electronic components is a promising route for the microminiaturization of electronic instruments. However, effective control of the intrinsic property in a molecular/atomic prototype component is full of challenges. Here, we present that the intracell diffusion behavior of a target Ag single atom within a unit cell of Si reconstruction is controllably modulated by constructing Ag nanoclusters and arrays in the neighboring cells. Moreover, a three-bit digital comparator device is fabricated on the basis of the diffusion time of a Ag single atom that can be effectively regulated by using the intercoupling between the target Ag monomer and the surrounding metal arrays.
Collapse
Affiliation(s)
- Zhongping Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Sheng Wei
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Danfeng Jiang
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Xiaoqing Liu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yan Lu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Fengliang Liu
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Li Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Berdonces-Layunta A, Schulz F, Aguilar-Galindo F, Lawrence J, Mohammed MSG, Muntwiler M, Lobo-Checa J, Liljeroth P, de Oteyza DG. Order from a Mess: The Growth of 5-Armchair Graphene Nanoribbons. ACS NANO 2021; 15:16552-16561. [PMID: 34633170 DOI: 10.1021/acsnano.1c06226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The advent of on-surface chemistry under vacuum has vastly increased our capabilities to synthesize carbon nanomaterials with atomic precision. Among the types of target structures that have been synthesized by these means, graphene nanoribbons (GNRs) have probably attracted the most attention. In this context, the vast majority of GNRs have been synthesized from the same chemical reaction: Ullmann coupling followed by cyclodehydrogenation. Here, we provide a detailed study of the growth process of five-atom-wide armchair GNRs starting from dibromoperylene. Combining scanning probe microscopy with temperature-dependent XPS measurements and theoretical calculations, we show that the GNR growth departs from the conventional reaction scenario. Instead, precursor molecules couple by means of a concerted mechanism whereby two covalent bonds are formed simultaneously, along with a concomitant dehydrogenation. Indeed, this alternative reaction path is responsible for the straight GNR growth in spite of the initial mixture of reactant isomers with irregular metal-organic intermediates that we find. The provided insight will not only help understanding the reaction mechanisms of other reactants but also serve as a guide for the design of other precursor molecules.
Collapse
Affiliation(s)
- Alejandro Berdonces-Layunta
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Física de Materiales, 20018 San Sebastián, Spain
| | - Fabian Schulz
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | | | - James Lawrence
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Física de Materiales, 20018 San Sebastián, Spain
| | - Mohammed S G Mohammed
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Física de Materiales, 20018 San Sebastián, Spain
| | | | - Jorge Lobo-Checa
- Instituto de Nanociencia y Materiales de Aragón, 50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Peter Liljeroth
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Dimas G de Oteyza
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Centro de Física de Materiales, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Franco-Cañellas A, Duhm S, Gerlach A, Schreiber F. Binding and electronic level alignment of π-conjugated systems on metals. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:066501. [PMID: 32101802 DOI: 10.1088/1361-6633/ab7a42] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We review the binding and energy level alignment of π-conjugated systems on metals, a field which during the last two decades has seen tremendous progress both in terms of experimental characterization as well as in the depth of theoretical understanding. Precise measurements of vertical adsorption distances and the electronic structure together with ab initio calculations have shown that most of the molecular systems have to be considered as intermediate cases between weak physisorption and strong chemisorption. In this regime, the subtle interplay of different effects such as covalent bonding, charge transfer, electrostatic and van der Waals interactions yields a complex situation with different adsorption mechanisms. In order to establish a better understanding of the binding and the electronic level alignment of π-conjugated molecules on metals, we provide an up-to-date overview of the literature, explain the fundamental concepts as well as the experimental techniques and discuss typical case studies. Thereby, we relate the geometric with the electronic structure in a consistent picture and cover the entire range from weak to strong coupling.
Collapse
Affiliation(s)
- Antoni Franco-Cañellas
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
6
|
|
7
|
Telychko M, Su J, Gallardo A, Gu Y, Mendieta‐Moreno JI, Qi D, Tadich A, Song S, Lyu P, Qiu Z, Fang H, Koh MJ, Wu J, Jelínek P, Lu J. Strain‐Induced Isomerization in One‐Dimensional Metal–Organic Chains. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mykola Telychko
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Jie Su
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Aurelio Gallardo
- Faculty of Mathematics and Physics Charles University V Holešovičkách 2 180 00 Prague Czech Republic
- Institute of Physics The Czech Academy of Sciences 162 00 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University 78371 Olomouc Czech Republic
| | - Yanwei Gu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | | | - Dongchen Qi
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology Brisbane Queensland 4001 Australia
| | - Anton Tadich
- Australian Synchrotron 800 Blackburn Road Clayton Victoria 3168 Australia
| | - Shaotang Song
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Pin Lyu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Zhizhan Qiu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Hanyan Fang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ming Joo Koh
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Pavel Jelínek
- Institute of Physics The Czech Academy of Sciences 162 00 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University 78371 Olomouc Czech Republic
| | - Jiong Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| |
Collapse
|
8
|
Telychko M, Su J, Gallardo A, Gu Y, Mendieta‐Moreno JI, Qi D, Tadich A, Song S, Lyu P, Qiu Z, Fang H, Koh MJ, Wu J, Jelínek P, Lu J. Strain‐Induced Isomerization in One‐Dimensional Metal–Organic Chains. Angew Chem Int Ed Engl 2019; 58:18591-18597. [DOI: 10.1002/anie.201909074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/21/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Mykola Telychko
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Jie Su
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Aurelio Gallardo
- Faculty of Mathematics and Physics Charles University V Holešovičkách 2 180 00 Prague Czech Republic
- Institute of Physics The Czech Academy of Sciences 162 00 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University 78371 Olomouc Czech Republic
| | - Yanwei Gu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | | | - Dongchen Qi
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology Brisbane Queensland 4001 Australia
| | - Anton Tadich
- Australian Synchrotron 800 Blackburn Road Clayton Victoria 3168 Australia
| | - Shaotang Song
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Pin Lyu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Zhizhan Qiu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Hanyan Fang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ming Joo Koh
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Pavel Jelínek
- Institute of Physics The Czech Academy of Sciences 162 00 Prague Czech Republic
- Regional Centre of Advanced Technologies and Materials Palacký University 78371 Olomouc Czech Republic
| | - Jiong Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| |
Collapse
|
9
|
Tabrizi L, Abyar F. De Novo Design of Cu(II) Complex Containing CNC–Pincer–Vitamin B3 and B7 Conjugates for Breast Cancer Application. Mol Pharm 2019; 16:3802-3813. [DOI: 10.1021/acs.molpharmaceut.9b00399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland, Galway, University Road, Galway H91 TK33, Ireland
| | - Fatemeh Abyar
- Department of Chemical Engineering, Faculty of Engineering, Ardakan University, P.O. Box 184, Ardakan, Iran
| |
Collapse
|
10
|
Ebeling D, Zhong Q, Schlöder T, Tschakert J, Henkel P, Ahles S, Chi L, Mollenhauer D, Wegner HA, Schirmeisen A. Adsorption Structure of Mono- and Diradicals on a Cu(111) Surface: Chemoselective Dehalogenation of 4-Bromo-3″-iodo- p-terphenyl. ACS NANO 2019; 13:324-336. [PMID: 30550265 DOI: 10.1021/acsnano.8b06283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Selectivity is a key parameter for building customized organic nanostructures via bottom-up approaches. Therefore, strategies are needed that allow connecting molecular entities at a specific stage of the assembly process in a chemoselective manner. Studying the mechanisms of such reactions is the key to apply these transformations for the buildup of organic nanostructures on surfaces. Especially, the knowledge about the precise adsorption geometry of intermediates at different stages during the reaction process and their interactions with surface atoms or adatoms is of fundamental importance, since often catalytic processes are involved. We show the selective dehalogenation of 4-bromo-3″-iodo- p-terphenyl on the Cu(111) surface using bond imaging atomic force microscopy with CO-functionalized tips. The deiodination and debromination reactions are triggered either by heating or by locally applying voltage pulses with the tip. We observed a strong hierarchical behavior of the dehalogenation with respect to temperature and voltage. In connection with first-principles simulations we can determine the orientation and position of the pristine molecules as well as adsorbed mono/diradicals and the halogens. We find that the isolated radicals are chemisorbed to Cu(111) top sites, which are lifted by 16 pm ( meta-position) and 32 pm ( para-position) from the Cu surface plane. This leads to a strongly twisted and bent 3D adsorption structure. After heating, different types of dimers are observed whose molecules are either bound to surface atoms or connected via Cu adatoms. Such knowledge about the intermediate geometry and its interaction with the surface will open the way to rationally design syntheses on surfaces.
Collapse
Affiliation(s)
- Daniel Ebeling
- Institute of Applied Physics , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| | - Qigang Zhong
- Institute of Applied Physics , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , 215123 Suzhou , People's Republic of China
| | - Tobias Schlöder
- Institute of Physical Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Jalmar Tschakert
- Institute of Applied Physics , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| | - Pascal Henkel
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Institute of Physical Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Sebastian Ahles
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Institute of Organic Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , 215123 Suzhou , People's Republic of China
| | - Doreen Mollenhauer
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Institute of Physical Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Hermann A Wegner
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Institute of Organic Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - André Schirmeisen
- Institute of Applied Physics , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| |
Collapse
|
11
|
Synthesis of armchair graphene nanoribbons from the 10,10'-dibromo-9,9'-bianthracene molecules on Ag(111): the role of organometallic intermediates. Sci Rep 2018; 8:3506. [PMID: 29472611 PMCID: PMC5823938 DOI: 10.1038/s41598-018-21704-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/01/2018] [Indexed: 11/08/2022] Open
Abstract
We investigate the bottom-up growth of N = 7 armchair graphene nanoribbons (7-AGNRs) from the 10,10′-dibromo-9,9′-bianthracene (DBBA) molecules on Ag(111) with the focus on the role of the organometallic (OM) intermediates. It is demonstrated that DBBA molecules on Ag(111) are partially debrominated at room temperature and lose all bromine atoms at elevated temperatures. Similar to DBBA on Cu(111), debrominated molecules form OM chains on Ag(111). Nevertheless, in contrast with the Cu(111) substrate, formation of polyanthracene chains from OM intermediates via an Ullmann-type reaction is feasible on Ag(111). Cleavage of C–Ag bonds occurs before the thermal threshold for the surface-catalyzed activation of C–H bonds on Ag(111) is reached, while on Cu(111) activation of C–H bonds occurs in parallel with the cleavage of the stronger C–Cu bonds. Consequently, while OM intermediates obstruct the Ullmann reaction between DBBA molecules on the Cu(111) substrate, they are required for the formation of polyanthracene chains on Ag(111). If the Ullmann-type reaction on Ag(111) is inhibited, heating of the OM chains produces nanographenes instead. Heating of the polyanthracene chains produces 7-AGNRs, while heating of nanographenes causes the formation of the disordered structures with the possible admixture of short GNRs.
Collapse
|
12
|
Smerieri M, Píš I, Ferrighi L, Nappini S, Lusuan A, Vattuone L, Vaghi L, Papagni A, Magnano E, Di Valentin C, Bondino F, Savio L. Synthesis of corrugated C-based nanostructures by Br-corannulene oligomerization. Phys Chem Chem Phys 2018; 20:26161-26172. [DOI: 10.1039/c8cp04791j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure and electronic properties of carbon-based nanostructures obtained by metal surface assisted synthesis is highly dependent on the nature of the precursor molecule.
Collapse
Affiliation(s)
| | - Igor Píš
- Elettra-Sincrotrone Trieste S.C.p.A
- 34149 Basovizza (TS)
- Italy
- IOM-CNR
- Laboratorio TASC
| | - Lara Ferrighi
- Dipartimento di Scienza dei Materiali
- Università di Milano-Bicocca
- 20125 Milano
- Italy
| | | | | | - Luca Vattuone
- IMEM-CNR
- UOS Genova
- 16146 Genova
- Italy
- Dipartimento di Fisica
| | - Luca Vaghi
- Dipartimento di Scienza dei Materiali
- Università di Milano-Bicocca
- 20125 Milano
- Italy
| | - Antonio Papagni
- Dipartimento di Scienza dei Materiali
- Università di Milano-Bicocca
- 20125 Milano
- Italy
| | - Elena Magnano
- IOM-CNR
- Laboratorio TASC
- 34149 Basovizza (TS)
- Italy
- Department of Physics
| | | | | | | |
Collapse
|
13
|
Jiang L, Zhang B, Médard G, Seitsonen AP, Haag F, Allegretti F, Reichert J, Kuster B, Barth JV, Papageorgiou AC. N-Heterocyclic carbenes on close-packed coinage metal surfaces: bis-carbene metal adatom bonding scheme of monolayer films on Au, Ag and Cu. Chem Sci 2017; 8:8301-8308. [PMID: 29619176 PMCID: PMC5858017 DOI: 10.1039/c7sc03777e] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
By means of scanning tunnelling microscopy (STM), complementary density functional theory (DFT) and X-ray photoelectron spectroscopy (XPS) we investigate the binding and self-assembly of a saturated molecular layer of model N-heterocyclic carbene (NHC) on Cu(111), Ag(111) and Au(111) surfaces under ultra-high vacuum (UHV) conditions. XPS reveals that at room temperature, coverages up to a monolayer exist, with the molecules engaged in metal carbene bonds. On all three surfaces, we resolve similar arrangements, which can be interpreted only in terms of mononuclear M(NHC)2 (M = Cu, Ag, Au) complexes, reminiscent of the paired bonding of thiols to surface gold adatoms. Theoretical investigations for the case of Au unravel the charge distribution of a Au(111) surface covered by Au(NHC)2 and reveal that this is the energetically preferential adsorption configuration.
Collapse
Affiliation(s)
- Li Jiang
- Chair of Molecular Nanoscience and Chemical Physics of Interfaces (E20) , Department of Physics , Technical University of Munich , D-85748 Garching , Germany .
| | - Bodong Zhang
- Chair of Molecular Nanoscience and Chemical Physics of Interfaces (E20) , Department of Physics , Technical University of Munich , D-85748 Garching , Germany .
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics , Technical University of Munich , Emil-Erlenmeyer-Forum 5 , D-85354 Freising , Germany
| | - Ari Paavo Seitsonen
- Département de Chimie , Ecole Normale Supérieure (ENS) , Paris Cedex 05 F-75230 , France
| | - Felix Haag
- Chair of Molecular Nanoscience and Chemical Physics of Interfaces (E20) , Department of Physics , Technical University of Munich , D-85748 Garching , Germany .
| | - Francesco Allegretti
- Chair of Molecular Nanoscience and Chemical Physics of Interfaces (E20) , Department of Physics , Technical University of Munich , D-85748 Garching , Germany .
| | - Joachim Reichert
- Chair of Molecular Nanoscience and Chemical Physics of Interfaces (E20) , Department of Physics , Technical University of Munich , D-85748 Garching , Germany .
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics , Technical University of Munich , Emil-Erlenmeyer-Forum 5 , D-85354 Freising , Germany
| | - Johannes V Barth
- Chair of Molecular Nanoscience and Chemical Physics of Interfaces (E20) , Department of Physics , Technical University of Munich , D-85748 Garching , Germany .
| | - Anthoula C Papageorgiou
- Chair of Molecular Nanoscience and Chemical Physics of Interfaces (E20) , Department of Physics , Technical University of Munich , D-85748 Garching , Germany .
| |
Collapse
|
14
|
Choudhury S, Wan CTC, Al Sadat WI, Tu Z, Lau S, Zachman MJ, Kourkoutis LF, Archer LA. Designer interphases for the lithium-oxygen electrochemical cell. SCIENCE ADVANCES 2017; 3:e1602809. [PMID: 28439557 PMCID: PMC5397139 DOI: 10.1126/sciadv.1602809] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/11/2017] [Indexed: 05/07/2023]
Abstract
An electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e - + O2↔ Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but also react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells.
Collapse
Affiliation(s)
- Snehashis Choudhury
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Charles Tai-Chieh Wan
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wajdi I. Al Sadat
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zhengyuan Tu
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sampson Lau
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Michael J. Zachman
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - Lena F. Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - Lynden A. Archer
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Corresponding author.
| |
Collapse
|
15
|
Abstract
Surface-assisted Ullmann coupling is both drosophila and workhorse of on-surface synthesis. The fabrication of novel covalent low-dimensional organic nanostructures is accompanied by fundamental studies of surface chemistry.
Collapse
Affiliation(s)
- M. Lackinger
- Deutsches Museum
- 80538 München
- Germany
- Physics Department
- Technische Universität München
| |
Collapse
|
16
|
Smerieri M, Píš I, Ferrighi L, Nappini S, Lusuan A, Di Valentin C, Vaghi L, Papagni A, Cattelan M, Agnoli S, Magnano E, Bondino F, Savio L. Synthesis of graphene nanoribbons with a defined mixed edge-site sequence by surface assisted polymerization of (1,6)-dibromopyrene on Ag(110). NANOSCALE 2016; 8:17843-17853. [PMID: 27714142 DOI: 10.1039/c6nr05952j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
By a combination of scanning tunneling microscopy, X-ray spectroscopic techniques and density functional theory calculations, we prove the formation of extended patterns of parallel, graphene nanoribbons with alternate zig-zag and armchair edges and selected width by surface-assisted Ullmann coupling polymerization and dehydrogenation of 1,6-dibromopyrene (C16H8Br2). Besides the relevance of these nanostructures for their possible application in nanodevices, we demonstrate the peculiarity of halogenated pyrene derivatives for the formation of nanoribbons, in particular on Ag(110). These results open the possibility of tuning the shape and dimension of nanoribbons (and hence the correlated electronic properties) by choosing suitably tailored or on-purpose designed molecular precursors.
Collapse
Affiliation(s)
- Marco Smerieri
- IMEM-CNR, UOS Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | - Igor Píš
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, 34149 Basovizza (TS), Italy. and IOM-CNR, Laboratorio TASC, S.S. 14 km 163.5, 34149 Basovizza (TS), Italy
| | - Lara Ferrighi
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Silvia Nappini
- IOM-CNR, Laboratorio TASC, S.S. 14 km 163.5, 34149 Basovizza (TS), Italy
| | - Angelique Lusuan
- IMEM-CNR, UOS Genova, Via Dodecaneso 33, 16146 Genova, Italy. and Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Luca Vaghi
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Antonio Papagni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Mattia Cattelan
- Department of Chemical Science, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Stefano Agnoli
- Department of Chemical Science, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Elena Magnano
- IOM-CNR, Laboratorio TASC, S.S. 14 km 163.5, 34149 Basovizza (TS), Italy and Department of Physics, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Federica Bondino
- IOM-CNR, Laboratorio TASC, S.S. 14 km 163.5, 34149 Basovizza (TS), Italy
| | - Letizia Savio
- IMEM-CNR, UOS Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| |
Collapse
|
17
|
Sánchez-Sánchez C, Dienel T, Deniz O, Ruffieux P, Berger R, Feng X, Müllen K, Fasel R. Purely Armchair or Partially Chiral: Noncontact Atomic Force Microscopy Characterization of Dibromo-Bianthryl-Based Graphene Nanoribbons Grown on Cu(111). ACS NANO 2016; 10:8006-11. [PMID: 27428831 DOI: 10.1021/acsnano.6b04025] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report on the atomic structure of graphene nanoribbons (GNRs) formed via on-surface synthesis from 10,10'-dibromo-9,9'-bianthryl (DBBA) precursors on Cu(111). By means of ultrahigh vacuum noncontact atomic force microscopy with CO-functionalized tips we unveil the chiral nature of the so-formed GNRs, a structure that has been under considerable debate. Furthermore, we prove that-in this particular case-the coupling selectivity usually introduced by halogen substitution is overruled by the structural and catalytic properties of the substrate. Specifically, we show that identical chiral GNRs are obtained from 9,9'-bianthryl, the unsubstituted sister molecule of DBBA.
Collapse
Affiliation(s)
- Carlos Sánchez-Sánchez
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Thomas Dienel
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Okan Deniz
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Pascal Ruffieux
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Reinhard Berger
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research , D-55128 Mainz, Germany
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Department of Chemistry and Biochemistry, University of Bern , Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
18
|
Basagni A, Ferrighi L, Cattelan M, Nicolas L, Handrup K, Vaghi L, Papagni A, Sedona F, Valentin CD, Agnoli S, Sambi M. On-surface photo-dissociation of C–Br bonds: towards room temperature Ullmann coupling. Chem Commun (Camb) 2015; 51:12593-6. [DOI: 10.1039/c5cc04317d] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface-assisted synthesis of gold-organometallic hybrids on the Au(111) surface both by thermo- and light-initiated dehalogenation of bromo-substituted tetracene is reported.
Collapse
Affiliation(s)
- Andrea Basagni
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Lara Ferrighi
- Department of Materials Science
- University of Milano-Bicocca
- 20125 Milano
- Italy
| | - Mattia Cattelan
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Louis Nicolas
- Ecole Normale Supérieure de Cachan 61
- 94235 Cachan Cedex
- France
| | | | - Luca Vaghi
- Department of Materials Science
- University of Milano-Bicocca
- 20125 Milano
- Italy
| | - Antonio Papagni
- Department of Materials Science
- University of Milano-Bicocca
- 20125 Milano
- Italy
| | - Francesco Sedona
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | | | - Stefano Agnoli
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Mauro Sambi
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| |
Collapse
|