1
|
Stachelska-Wierzchowska A, Narczyk M, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B. Interaction of Tri-Cyclic Nucleobase Analogs with Enzymes of Purine Metabolism: Xanthine Oxidase and Purine Nucleoside Phosphorylase. Int J Mol Sci 2024; 25:10426. [PMID: 39408755 PMCID: PMC11477426 DOI: 10.3390/ijms251910426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Fluorescent markers play important roles in spectroscopic and microscopic research techniques and are broadly used in basic and applied sciences. We have obtained markers with fluorescent properties, two etheno derivatives of 2-aminopurine, as follows: 1,N2-etheno-2-aminopurine (1,N2-ε2APu, I) and N2,3-etheno-2-aminopurine (N2,3-ε2APu, II). In the present paper, we investigate their interaction with two key enzymes of purine metabolism, purine nucleoside phosphorylase (PNP), and xanthine oxidase (XO), using diffraction of X-rays on protein crystals, isothermal titration calorimetry, and fluorescence spectroscopy. Crystals were obtained and structures were solved for WT PNP and D204N-PNP mutant in a complex with N2,3-ε2APu (II). In the case of WT PNP-1,N2-ε2APu (I) complex, the electron density corresponding to the ligand could not be identified in the active site. Small electron density bobbles may indicate that the ligand binds to the active site of a small number of molecules. On the basis of spectroscopic studies in solution, we found that, in contrast to PNP, 1,N2-ε2APu (I) is the ligand with better affinity to XO. Enzymatic oxidation of (I) leads to a marked increase in fluorescence near 400 nm. Hence, we have developed a new method to determine XO activity in biological material, particularly suitable for milk analysis.
Collapse
Affiliation(s)
- Alicja Stachelska-Wierzchowska
- Department of Physics and Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland; (A.S.-W.); (J.W.)
| | - Marta Narczyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-719 Olsztyn, Poland; (A.S.-W.); (J.W.)
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland;
| |
Collapse
|
2
|
Eletskaya BZ, Mironov AF, Fateev IV, Berzina MY, Antonov KV, Smirnova OS, Zatsepina AB, Arnautova AO, Abramchik YA, Paramonov AS, Kayushin AL, Khandazhinskaya AL, Matyugina ES, Kochetkov SN, Miroshnikov AI, Mikhailopulo IA, Esipov RS, Konstantinova ID. Enzymatic Transglycosylation Features in Synthesis of 8-Aza-7-Deazapurine Fleximer Nucleosides by Recombinant E. coli PNP: Synthesis and Structure Determination of Minor Products. Biomolecules 2024; 14:798. [PMID: 39062512 PMCID: PMC11275124 DOI: 10.3390/biom14070798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Enzymatic transglycosylation of the fleximer base 4-(4-aminopyridine-3-yl)-1H-pyrazole using recombinant E. coli purine nucleoside phosphorylase (PNP) resulted in the formation of "non-typical" minor products of the reaction. In addition to "typical" N1-pyrazole nucleosides, a 4-imino-pyridinium riboside and a N1-pyridinium-N1-pyrazole bis-ribose derivative were formed. N1-Pyrazole 2'-deoxyribonucleosides and a N1-pyridinium-N1-pyrazole bis-2'-deoxyriboside were formed. But 4-imino-pyridinium deoxyriboside was not formed in the reaction mixture. The role of thermodynamic parameters of key intermediates in the formation of reaction products was elucidated. To determine the mechanism of binding and activation of heterocyclic substrates in the E. coli PNP active site, molecular modeling of the fleximer base and reaction products in the enzyme active site was carried out. As for N1-pyridinium riboside, there are two possible locations for it in the PNP active site. The presence of a relatively large space in the area of amino acid residues Phe159, Val178, and Asp204 allows the ribose residue to fit into that space, and the heterocyclic base can occupy a position that is suitable for subsequent glycosylation. Perhaps it is this "upside down" arrangement that promotes secondary glycosylation and the formation of minor bis-riboside products.
Collapse
Affiliation(s)
- Barbara Z. Eletskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Anton F. Mironov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Miklukho-Maklaya St. 6, Moscow 117198, Russia
| | - Ilya V. Fateev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Maria Ya. Berzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Konstantin V. Antonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Olga S. Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Alexandra B. Zatsepina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Alexandra O. Arnautova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Yulia A. Abramchik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Alexey L. Kayushin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Anastasia L. Khandazhinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (A.L.K.); (E.S.M.); (S.N.K.)
| | - Elena S. Matyugina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (A.L.K.); (E.S.M.); (S.N.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (A.L.K.); (E.S.M.); (S.N.K.)
| | - Anatoly I. Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Igor A. Mikhailopulo
- Institute of Bioorganic Chemistry, National Academy of Sciences, Acad. Kuprevicha 5/2, 220141 Minsk, Belarus;
| | - Roman S. Esipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Irina D. Konstantinova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| |
Collapse
|
3
|
Stachelska-Wierzchowska A, Wierzchowski J. Chemo-Enzymatic Generation of Highly Fluorescent Nucleoside Analogs Using Purine-Nucleoside Phosphorylase. Biomolecules 2024; 14:701. [PMID: 38927104 PMCID: PMC11201700 DOI: 10.3390/biom14060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as well as α-ribose-1-phosphate (r1P) as a second substrate, are described. In several instances, the ribosylation sites are different to the canonical purine N9. Some of the obtained ribosides show fluorescence yields close to 100%. Possible applications of the new analogs include assays of PNP, nucleoside hydrolases, and other enzyme activities both in vitro and within living cells using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
4
|
Hatano A, Matsuzaka R, Shimane G, Wakana H, Suzuki K, Nishioka C, Kojima A, Kidowaki M. Introduction of pseudo-base benzimidazole derivatives into nucleosides via base exchange by a nucleoside metabolic enzyme. Bioorg Med Chem 2023; 91:117411. [PMID: 37451053 DOI: 10.1016/j.bmc.2023.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
In alternate organic synthesis, biocatalysis using enzymes provides a more stereoselective and cost-effective approach. Synthesis of unnatural nucleosides by nucleoside base exchange reactions using nucleoside-metabolizing enzymes has previously shown that the 5-position recognition of pyrimidine bases on nucleoside substrates is loose and can be used to introduce functional molecules into pyrimidine nucleosides. Here we explored the incorporation of purine pseudo bases into nucleosides by the base exchange reaction of pyrimidine nucleoside phosphorylase (PyNP), demonstrating that an imidazole five-membered ring is an essential structure for the reaction. In the case of benzimidazole, the base exchange proceeded to give the deoxyribose form in 96 % yield, and the ribose form in 23 % yield. The reaction also proceeded with 1H-imidazo[4,5-b]phenazine, a benzimidazole analogue with an additional ring, although the yield of nucleoside was only 31 %. Docking simulations between 1H and imidazo[4,5-b]phenazine nucleoside and the active site of PyNP (PDB 1BRW) supported our observation that 1H-imidazo[4,5-b]phenazine can be used as a substrate by PyNP. Thus, the enzymatic substitution reaction using PyNP can be used to incorporate many purine pseudo bases and benzimidazole derivatives with various functional groups into nucleoside structures, which have potential utility as diagnostic or therapeutic agents.
Collapse
Affiliation(s)
- Akihiko Hatano
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan.
| | - Riki Matsuzaka
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Genki Shimane
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Hiroyuki Wakana
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kou Suzuki
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Chisato Nishioka
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Aoi Kojima
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Masatoshi Kidowaki
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
5
|
Zayats EA, Fateev IV, Kostromina MA, Abramchik YA, Lykoshin DD, Yurovskaya DO, Timofeev VI, Berzina MY, Eletskaya BZ, Konstantinova ID, Esipov RS. Rational Mutagenesis in the Lid Domain of Ribokinase from E. coli Results in an Order of Magnitude Increase in Activity towards D-arabinose. Int J Mol Sci 2022; 23:ijms232012540. [PMID: 36293391 PMCID: PMC9604405 DOI: 10.3390/ijms232012540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Development of efficient approaches for the production of medically important nucleosides is a highly relevant challenge for biotechnology. In particular, cascade synthesis of arabinosides would allow relatively easy production of various cytostatic and antiviral drugs. However, the biocatalyst necessary for this approach, ribokinase from Escherichia coli (EcoRK), has a very low activity towards D-arabinose, making the synthesis using the state-of-art native enzyme technologically unfeasible. Here, we report the results of our enzyme design project, dedicated to engineering a mutant form of EcoRK with elevated activity towards arabinose. Analysis of the active site structure has allowed us to hypothesize the reasons behind the low EcoRK activity towards arabinose and select feasible mutations. Enzyme assay and kinetic studies have shown that the A98G mutation has caused a large 15-fold increase in kcat and 1.5-fold decrease in KM for arabinose phosphorylation. As a proof of concept, we have performed the cascade synthesis of 2-chloroadenine arabinoside utilizing the A98G mutant with 10-fold lower amount of enzyme compared to the wild type without any loss of synthesis efficiency. Our results are valuable both for the development of new technologies of synthesis of modified nucleosides and providing insight into the structural reasons behind EcoRK substrate specificity.
Collapse
|
6
|
Varizhuk IV, Oslovsky VE, Solyev PN, Drenichev MS, Mikhailov SN. Synthesis of α-D-Ribose 1-Phosphate and 2-Deoxy-α-D-Ribose 1-Phosphate Via Enzymatic Phosphorolysis of 7-Methylguanosine and 7-Methyldeoxyguanosine. Curr Protoc 2022; 2:e347. [PMID: 35050551 DOI: 10.1002/cpz1.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A simple and efficient method for the preparation of α-D-ribose 1-phosphate and 2-deoxy-α-D-ribose 1-phosphate, key intermediates in nucleoside metabolism and important starting compounds for the enzymatic synthesis of various modified nucleosides, has been proposed. It consists in near-irreversible enzymatic phosphorolysis of readily prepared hydroiodide salts of 7-methylguanosine and 7-methyl-2'-deoxyguanosine, respectively, in the presence of purine nucleoside phosphorylase. α-D-Ribose 1-phosphate and 2-deoxy-α-D-ribose 1-phosphate are obtained in near quantitative yields (by HPLC analysis) and 74%-94% yields after their isolation and purification. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of α-D-ribose 1-phosphate barium salt (4a) Alternate Protocol 1: Preparation of 2-deoxy-α-D-ribose 1-phosphate barium salt (4b) Basic Protocol 2: Preparation of α-D-ribose 1-phosphate bis(cyclohexylammonium) salt (5a) Alternate Protocol 2: Preparation of 2-deoxy-α-D-ribose 1-phosphate bis(cyclohexylammonium) salt (5b).
Collapse
Affiliation(s)
- Irina V Varizhuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey N Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Teng H, Wu Z, Wang Z, Jin Z, Yang Y, Jin Q. Site-directed mutation of purine nucleoside phosphorylase for synthesis of 2'-deoxy-2'-fluoroadenosine. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Khandazhinskaya A, Eletskaya B, Fateev I, Kharitonova M, Konstantinova I, Barai V, Azhayev A, Hyvonen MT, Keinanen TA, Kochetkov S, Seley-Radtke K, Khomutov A, Matyugina E. Novel fleximer pyrazole-containing adenosine analogues: chemical, enzymatic and highly efficient biotechnological synthesis. Org Biomol Chem 2021; 19:7379-7389. [PMID: 34198312 DOI: 10.1039/d1ob01069g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleoside analogues have long served as key chemotherapeutic drugs for the treatment of viral infections and cancers. Problems associated with the development of drug resistance have led to a search for the design of nucleosides capable of bypassing point mutations in the target enzyme's binding site. As a possible answer to this, the Seley-Radtke group developed a flexible nucleoside scaffold (fleximers), where the heterocyclic purine base is split into its two components, i.e. pyrimidine and imidazole. Herein, we present a series of new pyrazole-containing flex-bases and the corresponding fleximer analogues of 8-aza-7-deaza nucleosides. Subsequent studies found that pyrazole-containing flex-bases are substrates of purine nucleoside phosphorylase (PNP). We have compared the chemical synthesis of fleximers and enzymatic approaches with both isolated enzymes and the use of E. coli cells overproducing PNP. The latter provided stereochemically pure pyrazole-containing β-d-ribo- and β-d-2'-deoxyribo-fleximers and are beneficial in terms of environmental issues, are more economical, and streamline the steps required from a chemical approach. The reaction is carried out in water, avoiding hazardous chemicals, and the products are isolated by ion-exchange chromatography using water/ethanol mixtures for elution. Moreover, the target nucleosides were obtained on a multi-milligram scale with >97-99% purity, and the reactions can be easily scaled up.
Collapse
Affiliation(s)
- Anastasia Khandazhinskaya
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Artsemyeva JN, Remeeva EA, Buravskaya TN, Konstantinova ID, Esipov RS, Miroshnikov AI, Litvinko NM, Mikhailopulo IA. Anion exchange resins in phosphate form as versatile carriers for the reactions catalyzed by nucleoside phosphorylases. Beilstein J Org Chem 2020; 16:2607-2622. [PMID: 33133292 PMCID: PMC7588730 DOI: 10.3762/bjoc.16.212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
In the present work, we suggested anion exchange resins in the phosphate form as a source of phosphate, one of the substrates of the phosphorolysis of uridine, thymidine, and 1-(β-ᴅ-arabinofuranosyl)uracil (Ara-U) catalyzed by recombinant E. coli uridine (UP) and thymidine (TP) phosphorylases. α-ᴅ-Pentofuranose-1-phosphates (PF-1Pis) obtained by phosphorolysis were used in the enzymatic synthesis of nucleosides. It was found that phosphorolysis of uridine, thymidine, and Ara-U in the presence of Dowex® 1X8 (phosphate; Dowex-nPi) proceeded smoothly in the presence of magnesium cations in water at 20-50 °C for 54-96 h giving rise to quantitative formation of the corresponding pyrimidine bases and PF-1Pis. The resulting PF-1Pis can be used in three routes: (1) preparation of barium salts of PF-1Pis, (2) synthesis of nucleosides by reacting the crude PF-1Pi with an heterocyclic base, and (3) synthesis of nucleosides by reacting the ionically bound PF-1Pi to the resin with an heterocyclic base. These three approaches were tested in the synthesis of nelarabine, kinetin riboside, and cladribine with good to excellent yields (52-93%).
Collapse
Affiliation(s)
- Julia N Artsemyeva
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| | - Ekaterina A Remeeva
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| | - Tatiana N Buravskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| | - Irina D Konstantinova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 GSP-7, Moscow B-437, Russian Federation
| | - Roman S Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 GSP-7, Moscow B-437, Russian Federation
| | - Anatoly I Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 GSP-7, Moscow B-437, Russian Federation
| | - Natalia M Litvinko
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| | - Igor A Mikhailopulo
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Acad. Kuprevicha 5/2, Republic of Belarus
| |
Collapse
|
10
|
Matyugina ES, Khandazhinskaya AL, Kochetkov SN, Seley-Radtke KL. Synthesis of 3-hetarylpyrroles by Suzuki–Miyaura cross-coupling. MENDELEEV COMMUNICATIONS 2020. [PMCID: PMC7241993 DOI: 10.1016/j.mencom.2020.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1-[tert-Butyl(diphenyl)silyl]pyrrol-3-ylboronic acid was obtained from pyrrole in three steps. Its Suzuki–Miyaura cross-coupling with functionalized pyridinyl and pyrimidinyl bromides afforded new promising 3-hetaryl-1H-pyrroles.
Collapse
Affiliation(s)
- Elena S. Matyugina
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Anastasia L. Khandazhinskaya
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- Corresponding author.
| | - Sergey N. Kochetkov
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Katherine L. Seley-Radtke
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
11
|
Vichier-Guerre S, Ku TC, Pochet S, Seley-Radtke KL. An Expedient Synthesis of Flexible Nucleosides through Enzymatic Glycosylation of Proximal and Distal Fleximer Bases. Chembiochem 2020; 21:1412-1417. [PMID: 31899839 PMCID: PMC7228337 DOI: 10.1002/cbic.201900714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 01/24/2023]
Abstract
The structurally unique “fleximer” nucleosides were originally designed to investigate how flexibility in a nucleobase could potentially affect receptor–ligand recognition and function. Recently they have been shown to have low‐to‐sub‐micromolar levels of activity against a number of viruses, including coronaviruses, filoviruses, and flaviviruses. However, the synthesis of distal fleximers in particular has thus far been quite tedious and low yielding. As a potential solution to this issue, a series of proximal fleximer bases (flex‐bases) has been successfully coupled to both ribose and 2′‐deoxyribose sugars by using the N‐deoxyribosyltransferase II of Lactobacillus leichmannii (LlNDT) and Escherichia coli purine nucleoside phosphorylase (PNP). To explore the range of this facile approach, transglycosylation experiments on a thieno‐expanded tricyclic heterocyclic base, as well as several distal and proximal flex‐bases were performed to determine whether the corresponding fleximer nucleosides could be obtained in this fashion, thus potentially significantly shortening the route to these biologically significant compounds. The results of those studies are reported herein.
Collapse
Affiliation(s)
- Sophie Vichier-Guerre
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 28, rue du Dr Roux, 75015, Paris, France
| | - Therese C Ku
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Sylvie Pochet
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 28, rue du Dr Roux, 75015, Paris, France
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| |
Collapse
|
12
|
Ichikawa H, Miyashi N, Ishigaki Y, Mitsuhashi M. Synthesis of 2-Amino-1,3-benzoselenazole via Metal-Free Cyclization from Isothiocyanate and Bis(o-aminophenyl)diselenide. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Kulikova IV, Drenichev MS, Solyev PN, Alexeev CS, Mikhailov SN. Enzymatic Synthesis of 2-Deoxyribose 1-Phosphate and Ribose 1 Phosphate and Subsequent Preparation of Nucleosides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Irina V. Kulikova
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; 32 Vavilov St. 119991 Moscow Russian Federation
| | - Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; 32 Vavilov St. 119991 Moscow Russian Federation
| | - Pavel N. Solyev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; 32 Vavilov St. 119991 Moscow Russian Federation
| | - Cyril S. Alexeev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; 32 Vavilov St. 119991 Moscow Russian Federation
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; 32 Vavilov St. 119991 Moscow Russian Federation
| |
Collapse
|
14
|
Investigation of 8-Aza-7-Deaza Purine Nucleoside Derivatives. Molecules 2019; 24:molecules24050983. [PMID: 30862058 PMCID: PMC6429420 DOI: 10.3390/molecules24050983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
Glycosylation of 6-amino-4-methoxy-1H-pyrazolo[3,4-d]pyrimidine and its iodo- and bromo- analogues with the protected ribofuranose and 2′-deoxyribofuranose under different conditions resulted in the synthesis of N9- and N8-glycosylated purine nucleosides. Five key intermediate nucleosides, having 6-methoxy, 7-iodo, and 2-bromo groups, were further derivatized to 23 final 8-aza-7-deazapurine nucleoside derivatives. The structures of N9- and N8-glycosylated products were assigned based on UV and NMR spectra. HMBC analysis of 2D NMR spectra and X-ray crystallographic studies of the representative compounds unambiguously verified the connection of ribose ring to N9- or N8-position of the purine ring. The anticancer activity of these new compounds was evaluated.
Collapse
|
15
|
Hatano A, Wakana H, Terado N, Kojima A, Nishioka C, Iizuka Y, Imaizumi T, Uehara S. Bio-catalytic synthesis of unnatural nucleosides possessing a large functional group such as a fluorescent molecule by purine nucleoside phosphorylase. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01063g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unnatural nucleosides are attracting interest as potential diagnostic tools, medicines, and functional molecules.
Collapse
Affiliation(s)
- Akihiko Hatano
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Hiroyuki Wakana
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Nanae Terado
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Aoi Kojima
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Chisato Nishioka
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Yu Iizuka
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Takuya Imaizumi
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Sanae Uehara
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| |
Collapse
|
16
|
Kamel S, Weiß M, Klare HF, Mikhailopulo IA, Neubauer P, Wagner A. Chemo-enzymatic synthesis of α-d-pentofuranose-1-phosphates using thermostable pyrimidine nucleoside phosphorylases. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Drenichev MS, Alexeev CS, Kurochkin NN, Mikhailov SN. Use of Nucleoside Phosphorylases for the Preparation of Purine and Pyrimidine 2′-Deoxynucleosides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 Moscow 119991 Russia
| | - Cyril S. Alexeev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 Moscow 119991 Russia
| | - Nikolay N. Kurochkin
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 Moscow 119991 Russia
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 Moscow 119991 Russia
| |
Collapse
|
18
|
Zhurilo NI, Chudinov MV, Matveev AV, Smirnova OS, Konstantinova ID, Miroshnikov AI, Prutkov AN, Grebenkina LE, Pulkova NV, Shvets VI. Isosteric ribavirin analogues: Synthesis and antiviral activities. Bioorg Med Chem Lett 2017; 28:11-14. [PMID: 29173944 DOI: 10.1016/j.bmcl.2017.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 01/11/2023]
Abstract
The novel isosteric ribavirin analogues were synthesized by two different ways. Some of them showed significant antiviral action against hepatitis C virus (HCV), herpes simplex (HCV-1) and influenza A virus comparable to that of ribavirin itself. The data obtained confirm the proposed theory of the ribavirin possible antiviral activity mechanism related with bioisosterism.
Collapse
Affiliation(s)
- Nikolay I Zhurilo
- Lomonosov Institute of Fine Chemical Tehnologies, Moscow Technological University, Vernadskogo Pr. 78, 119454 Moscow, Russia
| | - Mikhail V Chudinov
- Lomonosov Institute of Fine Chemical Tehnologies, Moscow Technological University, Vernadskogo Pr. 78, 119454 Moscow, Russia.
| | - Andrey V Matveev
- Lomonosov Institute of Fine Chemical Tehnologies, Moscow Technological University, Vernadskogo Pr. 78, 119454 Moscow, Russia
| | - Olga S Smirnova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 GSP, Moscow B-437, Russia
| | - Irina D Konstantinova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 GSP, Moscow B-437, Russia
| | - Anatoly I Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 GSP, Moscow B-437, Russia
| | - Alexander N Prutkov
- Moscow Politechnical University, Bolshaya Semenovskaya Str., 38, 107023 Moscow, Russia
| | - Lyubov E Grebenkina
- Moscow Politechnical University, Bolshaya Semenovskaya Str., 38, 107023 Moscow, Russia
| | - Natalya V Pulkova
- Moscow Politechnical University, Bolshaya Semenovskaya Str., 38, 107023 Moscow, Russia
| | - Vitaly I Shvets
- Lomonosov Institute of Fine Chemical Tehnologies, Moscow Technological University, Vernadskogo Pr. 78, 119454 Moscow, Russia
| |
Collapse
|
19
|
Kharitonova MI, Denisova AO, Andronova VL, Kayushin AL, Konstantinova ID, Kotovskaya SK, Galegov GA, Charushin VN, Miroshnikov AI. New modified 2-aminobenzimidazole nucleosides: Synthesis and evaluation of their activity against herpes simplex virus type 1. Bioorg Med Chem Lett 2017; 27:2484-2487. [DOI: 10.1016/j.bmcl.2017.03.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 01/30/2023]
|
20
|
Stepchenko VA, Miroshnikov AI, Seela F, Mikhailopulo IA. Enzymatic synthesis and phosphorolysis of 4(2)-thioxo- and 6(5)-azapyrimidine nucleosides by E. coli nucleoside phosphorylases. Beilstein J Org Chem 2016; 12:2588-2601. [PMID: 28144328 PMCID: PMC5238616 DOI: 10.3762/bjoc.12.254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/17/2016] [Indexed: 11/23/2022] Open
Abstract
The trans-2-deoxyribosylation of 4-thiouracil (4SUra) and 2-thiouracil (2SUra), as well as 6-azauracil, 6-azathymine and 6-aza-2-thiothymine was studied using dG and E. coli purine nucleoside phosphorylase (PNP) for the in situ generation of 2-deoxy-α-D-ribofuranose-1-phosphate (dRib-1P) followed by its coupling with the bases catalyzed by either E. coli thymidine (TP) or uridine (UP) phosphorylases. 4SUra revealed satisfactory substrate activity for UP and, unexpectedly, complete inertness for TP; no formation of 2'-deoxy-2-thiouridine (2SUd) was observed under analogous reaction conditions in the presence of UP and TP. On the contrary, 2SU, 2SUd, 4STd and 2STd are good substrates for both UP and TP; moreover, 2SU, 4STd and 2'-deoxy-5-azacytidine (Decitabine) are substrates for PNP and the phosphorolysis of the latter is reversible. Condensation of 2SUra and 5-azacytosine with dRib-1P (Ba salt) catalyzed by the accordant UP and PNP in Tris∙HCl buffer gave 2SUd and 2'-deoxy-5-azacytidine in 27% and 15% yields, respectively. 6-Azauracil and 6-azathymine showed good substrate properties for both TP and UP, whereas only TP recognizes 2-thio-6-azathymine as a substrate. 5-Phenyl and 5-tert-butyl derivatives of 6-azauracil and its 2-thioxo derivative were tested as substrates for UP and TP, and only 5-phenyl- and 5-tert-butyl-6-azauracils displayed very low substrate activity. The role of structural peculiarities and electronic properties in the substrate recognition by E. coli nucleoside phosphorylases is discussed.
Collapse
Affiliation(s)
- Vladimir A Stepchenko
- Institute of Bioorganic Chemistry, National Academy of Sciences, Acad. Kuprevicha 5/2, 220141 Minsk, Belarus
| | - Anatoly I Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 GSP, Moscow B-437, Russia
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, D-48149 Münster, Germany
| | - Igor A Mikhailopulo
- Institute of Bioorganic Chemistry, National Academy of Sciences, Acad. Kuprevicha 5/2, 220141 Minsk, Belarus
| |
Collapse
|
21
|
Stachelska-Wierzchowska A, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B. Site-Selective Ribosylation of Fluorescent Nucleobase Analogs Using Purine-Nucleoside Phosphorylase as a Catalyst: Effects of Point Mutations. Molecules 2015; 21:E44. [PMID: 26729076 PMCID: PMC6274182 DOI: 10.3390/molecules21010044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 01/31/2023] Open
Abstract
Enzymatic ribosylation of fluorescent 8-azapurine derivatives, like 8-azaguanine and 2,6-diamino-8-azapurine, with purine-nucleoside phosphorylase (PNP) as a catalyst, leads to N9, N8, and N7-ribosides. The final proportion of the products may be modulated by point mutations in the enzyme active site. As an example, ribosylation of the latter substrate by wild-type calf PNP gives N7- and N8-ribosides, while the N243D mutant directs the ribosyl substitution at N9- and N7-positions. The same mutant allows synthesis of the fluorescent N7-β-d-ribosyl-8-azaguanine. The mutated form of the E. coli PNP, D204N, can be utilized to obtain non-typical ribosides of 8-azaadenine and 2,6-diamino-8-azapurine as well. The N7- and N8-ribosides of the 8-azapurines can be analytically useful, as illustrated by N7-β-d-ribosyl-2,6-diamino-8-azapurine, which is a good fluorogenic substrate for mammalian forms of PNP, including human blood PNP, while the N8-riboside is selective to the E. coli enzyme.
Collapse
Affiliation(s)
- Alicja Stachelska-Wierzchowska
- Department of Physics and Biophysics, University of Varmia & Masuria in Olsztyn, 4 Oczapowskiego St., 10-719 Olsztyn, Poland.
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Varmia & Masuria in Olsztyn, 4 Oczapowskiego St., 10-719 Olsztyn, Poland.
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| |
Collapse
|