1
|
Dao A, Wu H, Wei S, Huang H. Novel Ru(II) complexes with multiple anticancer photoreactivity: ligand exchange, photoredox catalysis, reactive oxygen generation and endoperoxide formation. Phys Chem Chem Phys 2023; 25:20001-20008. [PMID: 37461395 DOI: 10.1039/d3cp02346j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The hypoxic microenvironment and drug resistance of cancer cells have become a huge threat for clinical anticancer therapy. Anticancer phototherapy providing spatial and temporal control over drug activation may conquer this problem. Herein, we report a novel photoactivated Ru(II) complex (Ru2) with multiple activities including photochemotherapy, photodynamic and photocatalytic therapy, and endoperoxide formation. Upon white light irradiation, Ru2 can dissociate the coordinating ligands and form endoperoxides, produce diverse reactive oxygen species and catalytically oxidize cellular coenzymes. As a result, Ru2 shows promising antiproliferation activity toward cisplatin and 5-fluorouracil resistant tumor cell lines under normoxia and hypoxia. The multifunctional design strategy of metal-based anticancer drugs offers novel efficient therapeutics to combat drug-resistant cancer cells under hypoxia.
Collapse
Affiliation(s)
- Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, China.
| | - Haorui Wu
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, China.
| | - Siqi Wei
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, China.
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, China.
| |
Collapse
|
2
|
Guanidine–Curcumin Complex-Loaded Amine-Functionalised Hollow Mesoporous Silica Nanoparticles for Breast Cancer Therapy. Cancers (Basel) 2022; 14:cancers14143490. [PMID: 35884549 PMCID: PMC9323383 DOI: 10.3390/cancers14143490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
The current study focuses on developing a tumour-targeted functionalised nanocarrier that wraps hollow mesoporous silica nanoparticles. The guanidine carbonate and curcumin are immobilised on the surface of 3-aminopropyl-triethoxy silane (APTES)-decorated hollow mesoporous silica nanoparticles (HMSNP), as confirmed through XPS and NMR analysis. XPS analysis demonstrates that the shape of the hysteresis loops is modified and that pore volume and pore diameter are consequently decreased compared to control. Guanidine (85%) and guanidine–curcumin complex (90%) were successfully encapsulated in HMSNAP and showed a 90% effective and sustained release at pH 7.4 for up to 72 h. Acridine orange/ethidium bromide dual staining determined that GuC-HMNSAP induced more late apoptosis and necrosis at 48 and 72 h compared with Gu-HMNSAP-treated cells. Molecular investigation of guanidine-mediated apoptosis was analysed using western blotting. It was found that cleaved caspases, c-PARP, and GSK-3β (Ser9) had increased activity in MCF-7 cells. GuC-HMSNAP increased the activity of phosphorylation of oncogenic proteins such as Akt (Ser473), c-Raf (Ser249), PDK1 (Ser241), PTEN (Ser380), and GSK-3β (Ser9), thus inducing cell death in MCF-7 cells. Altogether, our findings confirm that GuC-HMNSAP induces cell death by precisely associating with tumour-suppressing proteins, which may lead to new therapeutic approaches for breast cancer therapy.
Collapse
|
3
|
|
4
|
Huang J, Ding W, Zhu X, Li B, Zeng F, Wu K, Wu X, Wang F. Ligand Evolution in the Photoactivatable Platinum(IV) Anticancer Prodrugs. Front Chem 2022; 10:876410. [PMID: 35755267 PMCID: PMC9218644 DOI: 10.3389/fchem.2022.876410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Photoactivatable Pt(IV) anticancer prodrugs with the structure of [PtIV(N1)(N2)(L1)(L2)(A1)(A2)], where N1 and N2 are non-leaving nitrogen donor ligands, L1 and L2 are leaving ligands, and A1 and A2 are axial ligands, have attracted increasing attention due to their promising photo-cytotoxicity even to cisplatin-resistant cancer cells. These photochemotherapeutic prodrugs have high dark-stability under physiological conditions, while they can be activated by visible light restrained at the disease areas, as a consequence showing higher spatial and temporal controllability and much more safety than conventional chemotherapy. The coordinated ligands to the Pt center have been proved to be pivotal in determining the function and activity of the photoactivatable Pt(IV) prodrugs. In this review, we will focus on the development of the coordinated ligands in such Pt(IV) prodrugs and discuss the effects of diverse ligands on their photochemistry and photoactivity as well as the future evolution directions of the ligands. We hope this review can help to facilitate the design and development of novel photoactivatable Pt(IV) anticancer prodrugs.
Collapse
Affiliation(s)
- Jingjing Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Weize Ding
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xingfan Zhu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Bingbing Li
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Fangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Fuyi Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Bolitho E, Sanchez-Cano C, Shi H, Quinn PD, Harkiolaki M, Imberti C, Sadler PJ. Single-Cell Chemistry of Photoactivatable Platinum Anticancer Complexes. J Am Chem Soc 2021; 143:20224-20240. [PMID: 34808054 PMCID: PMC8662725 DOI: 10.1021/jacs.1c08630] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 02/08/2023]
Abstract
The Pt(IV) prodrug trans, trans, trans-[Pt(pyridine)2(N3)2(OH)2] (Pt1) and its coumarin derivative trans, trans, trans-[Pt(pyridine)2(N3)2(OH)(coumarin-3-carboxylate)] (Pt2) are promising agents for photoactivated chemotherapy. These complexes are inert in the dark but release Pt(II) species and radicals upon visible light irradiation, resulting in photocytotoxicity toward cancer cells. Here, we have used synchrotron techniques to investigate the in-cell behavior of these prodrugs and visualize, for the first time, changes in cellular morphology and Pt localization upon treatment with and without light irradiation. We show that photoactivation of Pt2 induces remarkable cellular damage with extreme alterations to multiple cellular components, including formation of vacuoles, while also significantly increasing the cellular accumulation of Pt species compared to dark conditions. X-ray absorption near-edge structure (XANES) measurements in cells treated with Pt2 indicate only partial reduction of the prodrug upon irradiation, highlighting that phototoxicity in cancer cells may involve not only Pt(II) photoproducts but also photoexcited Pt(IV) species.
Collapse
Affiliation(s)
- Elizabeth
M. Bolitho
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Diamond
Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United
Kingdom
| | - Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research
and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 San Sebastián, Spain
| | - Huayun Shi
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Paul D. Quinn
- Diamond
Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United
Kingdom
| | - Maria Harkiolaki
- Diamond
Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United
Kingdom
| | - Cinzia Imberti
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Research progress of azido-containing Pt(IV) antitumor compounds. Eur J Med Chem 2021; 227:113927. [PMID: 34695775 DOI: 10.1016/j.ejmech.2021.113927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Cancer is a long-known incurable disease, and the medical use of cisplatin has been a significant discovery. However, the side-effects of cisplatin necessitate the development of new and improved drug. Therefore, in this study, we focused on the photoactivatable Pt(IV) compounds Pt[(X1)(X2)(Y1)(Y2)(N3)2], which have a completely novel mechanism of action. Pt(IV) can efficiently overcome the side-effects of cisplatin and other drugs. Here, we have demonstrated, summarized and discussed the effects and mechanism of these compounds. Compared to the relevant articles in the literature, we have provided a more detailed introduction and a made comprehensive classification of these compounds. We believe that our results can effectively provide a reference for the development of these drugs.
Collapse
|
7
|
Shaili E, Romero MJ, Salassa L, Woods JA, Butler JS, Romero-Canelón I, Clarkson G, Habtemariam A, Sadler PJ, Farrer NJ. Platinum(IV)-azido monocarboxylato complexes are photocytotoxic under irradiation with visible light. Dalton Trans 2021; 50:10593-10607. [PMID: 34278398 PMCID: PMC8335519 DOI: 10.1039/d1dt01730f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/11/2021] [Indexed: 12/15/2022]
Abstract
Complexes trans,trans,trans-[Pt(N3)2(OH)(OCOR)(py)2] where py = pyridine and where OCOR = succinate (1); 4-oxo-4-propoxybutanoate (2) and N-methylisatoate (3) have been synthesized by derivation of trans,trans,trans-[Pt(OH)2(N3)2(py)2] (4) and characterised by NMR and EPR spectroscopy, ESI-MS and X-ray crystallography. Irradiation of 1-3 with green (517 nm) light initiated photoreduction to Pt(ii) and release of the axial ligands at a 3-fold faster rate than for 4. TD-DFT calculations showed dissociative transitions at longer wavelengths for 1 compared to 4. Complexes 1 and 2 showed greater photocytotoxicity than 4 when irradiated with 420 nm light (A2780 cell line IC50 values: 2.7 and 3.7 μM) and complex 2 was particularly active towards the cisplatin-resistant cell line A2780cis (IC50 3.7 μM). Unlike 4, complexes 1-3 were phototoxic under green light irradiation (517 nm), with minimal toxicity in the dark. A pKa(H2O) of 5.13 for the free carboxylate group was determined for 1, corresponding to an overall negative charge during biological experiments, which crucially, did not appear to impede cellular accumulation and photocytotoxicity.
Collapse
Affiliation(s)
- Evyenia Shaili
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Marίa J Romero
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and Departamento de Didácticas Aplicadas, Facultade de Formación do Profesorado, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Luca Salassa
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain and Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia, 20018, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, 48011, Spain
| | - Julie A Woods
- Photobiology Unit, Department of Dermatology and Photobiology, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Jennifer S Butler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, Sir Robert Aitken Institute for Medical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Guy Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Nicola J Farrer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. and Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
8
|
Jia C, Deacon GB, Zhang Y, Gao C. Platinum(IV) antitumor complexes and their nano-drug delivery. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213640] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang FX, Zhang WY, Zhang Z. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 2020; 11:12888-12917. [PMID: 34123239 PMCID: PMC8163330 DOI: 10.1039/d0sc04082g] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metals play vital roles in nutrients and medicines and provide chemical functionalities that are not accessible to purely organic compounds. At least 10 metals are essential for human life and about 46 other non-essential metals (including radionuclides) are also used in drug therapies and diagnostic agents. These include platinum drugs (in 50% of cancer chemotherapies), lithium (bipolar disorders), silver (antimicrobials), and bismuth (broad-spectrum antibiotics). While the quest for novel and better drugs is now as urgent as ever, drug discovery and development pipelines established for organic drugs and based on target identification and high-throughput screening of compound libraries are less effective when applied to metallodrugs. Metallodrugs are often prodrugs which undergo activation by ligand substitution or redox reactions, and are multi-targeting, all of which need to be considered when establishing structure-activity relationships. We focus on early-stage in vitro drug discovery, highlighting the challenges of evaluating anticancer, antimicrobial and antiviral metallo-pharmacophores in cultured cells, and identifying their targets. We highlight advances in the application of metal-specific techniques that can assist the preclinical development, including synchrotron X-ray spectro(micro)scopy, luminescence, and mass spectrometry-based methods, combined with proteomic and genomic (metallomic) approaches. A deeper understanding of the behavior of metals and metallodrugs in biological systems is not only key to the design of novel agents with unique mechanisms of action, but also to new understanding of clinically-established drugs.
Collapse
Affiliation(s)
- Elizabeth J Anthony
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Elizabeth M Bolitho
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Hannah E Bridgewater
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Jane M Donnelly
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Cinzia Imberti
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Edward C Lant
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Frederik Lermyte
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Russell J Needham
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Marta Palau
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Huayun Shi
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Fang-Xin Wang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Wen-Ying Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Zijin Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
10
|
Photoactivatable Platinum-Based Anticancer Drugs: Mode of Photoactivation and Mechanism of Action. Molecules 2020; 25:molecules25215167. [PMID: 33171980 PMCID: PMC7664195 DOI: 10.3390/molecules25215167] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Platinum-based anticancer drugs are a class of widely used agents in clinical cancer treatment. However, their efficacy was greatly limited by their severe side effects and the arising drug resistance. The selective activation of inert platinum-based drugs in the tumor site by light irradiation is able to reduce side effects, and the novel mechanism of action of photoactivatable platinum drugs might also conquer the resistance. In this review, the recent advances in the design of photoactivatable platinum-based drugs were summarized. The complexes are classified according to their mode of action, including photoreduction, photo-uncaging, and photodissociation. The rationale of drug design, dark stability, photoactivation process, cytotoxicity, and mechanism of action of typical photoactivatable platinum drugs were reviewed. Finally, the challenges and opportunities for designing more potent photoactivatable platinum drugs were discussed.
Collapse
|
11
|
Xie Y, Zhang S, Ge X, Ma W, He X, Zhao Y, Ye J, Zhang H, Wang A, Liu Z. Lysosomal‐targeted anticancer half‐sandwich iridium(III) complexes modified with lonidamine amide derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yongkang Xie
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Shumiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Wenli Ma
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Xiaolin He
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Yao Zhao
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Juan Ye
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Hongmin Zhang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Anwei Wang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life‐Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| |
Collapse
|
12
|
Shi H, Imberti C, Huang H, Hands-Portman I, Sadler PJ. Biotinylated photoactive Pt(iv) anticancer complexes. Chem Commun (Camb) 2020; 56:2320-2323. [PMID: 31990000 DOI: 10.1039/c9cc07845b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Novel biotinylated diazido-Pt(iv) complexes exhibit high visible light photocytotoxicity while being stable in the dark. Photocytotoxicity and cellular accumulation of all-trans-[Pt(py)2(N3)2(biotin)(OH)] (2a) were enhanced significantly when bound to avidin; irradiation induced dramatic cellular morphological changes in human ovarian cancer cells treated with 2a.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | | | |
Collapse
|
13
|
Guanidine-modified cyclometalated iridium(III) complexes for mitochondria-targeted imaging and photodynamic therapy. Eur J Med Chem 2019; 179:26-37. [DOI: 10.1016/j.ejmech.2019.06.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 02/07/2023]
|
14
|
Gurruchaga-Pereda J, Martínez Á, Terenzi A, Salassa L. Anticancer platinum agents and light. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Shi H, Imberti C, Sadler PJ. Diazido platinum(iv) complexes for photoactivated anticancer chemotherapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00288j] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diazido Pt(iv) complexes with a general formula [Pt(N3)2(L)(L′)(OR)(OR′)] are a new generation of anticancer prodrugs designed for use in photoactivated chemotherapy.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | |
Collapse
|
16
|
Imran M, Ayub W, Butler IS, Zia-ur-Rehman. Photoactivated platinum-based anticancer drugs. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Shi H, Romero-Canelón I, Hreusova M, Novakova O, Venkatesh V, Habtemariam A, Clarkson GJ, Song JI, Brabec V, Sadler PJ. Photoactivatable Cell-Selective Dinuclear trans-Diazidoplatinum(IV) Anticancer Prodrugs. Inorg Chem 2018; 57:14409-14420. [PMID: 30365308 PMCID: PMC6257630 DOI: 10.1021/acs.inorgchem.8b02599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
A series of dinuclear
octahedral PtIV complexes trans,trans,trans-[{Pt(N3)2(py)2(OH)(OC(O)CH2CH2C(O)NH)}2R] containing pyridine (py) and bridging
dicarboxylate [R = −CH2CH2– (1), trans-1,2-C6H10– (2), p-C6H4– (3), −CH2CH2CH2CH2– (4)] ligands have
been synthesized and characterized, including the X-ray crystal structures
of complexes 1·2MeOH and 4, the first
photoactivatable dinuclear PtIV complexes with azido ligands.
The complexes are highly stable in the dark, but upon photoactivation
with blue light (420 nm), they release the bridging ligand and mononuclear
photoproducts. Upon irradiation with blue light (465 nm), they generate
azidyl and hydroxyl radicals, detected using a 5,5-dimethyl-1-pyrroline N-oxide electron paramagnetic resonance spin trap, accompanied
by the disappearance of the ligand-to-metal charge-transfer (N3 → Pt) band at ca. 300 nm. The dinuclear complexes
are photocytotoxic to human cancer cells (465 nm, 4.8 mW/cm2, 1 h), including A2780 human ovarian and esophageal OE19 cells with
IC50 values of 8.8–78.3 μM, whereas cisplatin
is inactive under these conditions. Complexes 1, 3, and 4 are notably more photoactive toward
cisplatin-resistant ovarian A2780cis compared to A2780 cells. Remarkably,
all of the complexes were relatively nontoxic toward normal cells
(MRC5 lung fibroblasts), with IC50 values >100 μM,
even after irradiation. The introduction of an aromatic bridging ligand
(3) significantly enhanced cellular uptake. The populations
in the stages of the cell cycle remained unchanged upon treatment
with complexes in the dark, while the population of the G2/M phase
increased upon irradiation, suggesting that DNA is a target for these
photoactivated dinuclear PtIV complexes. Liquid chromatography–mass
spectrometry data show that the photodecomposition pathway of the
dinuclear complexes results in the release of two molecules of mononuclear
platinum(II) species. As a consequence, DNA binding of the dinuclear
complexes after photoactivation in cell-free media is, in several
respects, qualitatively similar to that of the photoactivated mononuclear
complex FM-190. After photoactivation, they were 2-fold
more effective in quenching the fluorescence of EtBr bound to DNA,
forming DNA interstrand cross-links and unwinding DNA compared to
the photoactivated FM-190. Novel all-trans dinuclear
PtIV complexes bridged
by a dicarboxylate linker, highly stable in the dark, generate azidyl
and hydroxyl radicals upon irradiation with blue light. They are photocytotoxic
to human cancer cells, whereas cisplatin was inactive under these
conditions and more photoactive toward cisplatin-resistant ovarian
cancer cells compared to wild-type cells. Remarkably, the dinuclear
complexes were relatively nontoxic toward normal human cells. Cell
cycle and DNA binding experiments suggested that DNA is a target.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Isolda Romero-Canelón
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K.,School of Pharmacy, Institute of Clinical Sciences , University of Birmingham , Birmingham B15 2TT , U.K
| | - Monika Hreusova
- Department of Biophysics, Faculty of Science , Palacky University , 17 listopadu 12 , Olomouc CZ-77146 , Czech Republic.,Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - Olga Novakova
- Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - V Venkatesh
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Abraha Habtemariam
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Ji-Inn Song
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| | - Viktor Brabec
- Institute of Biophysics , Czech Academy of Sciences , Kralovopolska 135 , Brno CZ-61265 , Czech Republic
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , U.K
| |
Collapse
|
18
|
Abstract
The success of platinum-based anticancer agents has motivated the exploration of novel metal-based drugs for several decades, whereas problems such as drug-resistance and systemic toxicity hampered their clinical applications and efficacy. Stimuli-responsiveness of some metal complexes offers a good opportunity for designing site-specific prodrugs to maximize the therapeutic efficacy and minimize the side effect of metallodrugs. This review presents a comprehensive and up-to-date overview on the therapeutic stimuli-responsive metallodrugs that have appeared in the past two decades, where stimuli such as redox, pH, enzyme, light, temperature, and so forth were involved. The compounds are classified into three major categories based on the nature of stimuli, that is, endo-stimuli-responsive metallodrugs, exo-stimuli-responsive metallodrugs, and dual-stimuli-responsive metallodrugs. Representative examples of each type are discussed in terms of structure, response mechanism, and potential medical applications. In the end, future opportunities and challenges in this field are tentatively proposed. With diverse metal complexes being introduced, the foci of this review are pointed to platinum and ruthenium complexes.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Nafees Muhammad
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
19
|
Zamora A, Gandioso A, Massaguer A, Buenestado S, Calvis C, Hernández JL, Mitjans F, Rodríguez V, Ruiz J, Marchán V. Toward Angiogenesis Inhibitors Based on the Conjugation of Organometallic Platinum(II) Complexes to RGD Peptides. ChemMedChem 2018; 13:1755-1762. [PMID: 29932312 DOI: 10.1002/cmdc.201800282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/19/2018] [Indexed: 12/16/2022]
Abstract
A novel conjugate between a cyclometalated platinum(II) complex with dual antiangiogenic and antitumor activity and a cyclic peptide containing the RGD sequence (-Arg-Gly-Asp-) has been synthesized by combining solid- and solution-phase methodologies. Although peptide conjugation rendered a non-cytotoxic compound in all tested tumor cell lines (± αV β3 and αV β5 integrin receptors), the antiangiogenic activity of the Pt-c(RGDfK) conjugate in human umbilical vein endothelial cells at sub-cytotoxic concentrations opens the way to the design of a novel class of angiogenesis inhibitors through conjugation of metallodrugs with high antiangiogenic activity to cyclic RGD-containing peptides or peptidomimetic analogues.
Collapse
Affiliation(s)
- Ana Zamora
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.,Departamento de Química Inorgánica, Universidad de Murcia and Institute for Bio-Health, Research of Murcia (IMIB-Arrixaca), 30071, Murcia, Spain
| | - Albert Gandioso
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Anna Massaguer
- Departament de Biologia, Universitat de Girona, 17071, Girona, Spain
| | - Silvia Buenestado
- Biomed Division, LEITAT Technological Center, 08028, Barcelona, Spain
| | - Carme Calvis
- Biomed Division, LEITAT Technological Center, 08028, Barcelona, Spain
| | | | - Francesc Mitjans
- Biomed Division, LEITAT Technological Center, 08028, Barcelona, Spain
| | - Venancio Rodríguez
- Departamento de Química Inorgánica, Universidad de Murcia and Institute for Bio-Health, Research of Murcia (IMIB-Arrixaca), 30071, Murcia, Spain
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia and Institute for Bio-Health, Research of Murcia (IMIB-Arrixaca), 30071, Murcia, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
20
|
Potentiation of cytotoxic action of cis -[PtCl 2 (NH 3 )(1M7AI)] by UVA irradiation. Mechanistic insights. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Mitra K. Platinum complexes as light promoted anticancer agents: a redefined strategy for controlled activation. Dalton Trans 2018; 45:19157-19171. [PMID: 27883129 DOI: 10.1039/c6dt03665a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Site-specific delivery and amenable activation of prodrugs are indispensible criteria for designing novel anticancer agents. Platinum based drugs vanguard the chemotherapeutic regimes and over the years significant attention has been paid to achieve more efficacious drugs with fewer adverse effects. The switch from platinum(ii) drugs to the inert platinum(iv) analogues proved advantageous but the new prodrugs still suffered from unspecific cytotoxic actions. Thus the photoactivation of an inert platinum prodrug specifically within neoplastic cells provided the desired spatio-temporal control over drug activation by means of illumination, thereby limiting the cytotoxic events to only at the targeted tumors. This article collates research on platinum complexes which exhibit potential light mediated anticancer effects and provides insights into the underlying mechanisms of activation. Fine tuning of the coordination sphere results in dramatic alteration of the redox and spectral properties of both ground and excited states and the cellular properties of the molecules. This concise article highlights the various light promoted strategies employed to attain a controlled release of active platinum(ii) and/or reactive oxygen species such as photoreduction, photocaging, photodissociation and photosensitization. Such dual action photoactive metal complexes with improved aqueous solubility and versatility are promising candidates for combination therapy which is likely to be the future of anticancer research.
Collapse
Affiliation(s)
- Koushambi Mitra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560-012, India.
| |
Collapse
|
22
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
23
|
Song XD, Kong X, He SF, Chen JX, Sun J, Chen BB, Zhao JW, Mao ZW. Cyclometalated iridium(III)-guanidinium complexes as mitochondria-targeted anticancer agents. Eur J Med Chem 2017; 138:246-254. [PMID: 28668477 DOI: 10.1016/j.ejmech.2017.06.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/28/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022]
|
24
|
Affiliation(s)
- Pingyu Zhang
- Department of Chemistry; University of Warwick; Gibbet Hill Road CV4 7AL Coventry UK
| | - Peter J. Sadler
- Department of Chemistry; University of Warwick; Gibbet Hill Road CV4 7AL Coventry UK
| |
Collapse
|
25
|
Alberti E, Zampakou M, Donghi D. Covalent and non-covalent binding of metal complexes to RNA. J Inorg Biochem 2016; 163:278-291. [DOI: 10.1016/j.jinorgbio.2016.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/12/2016] [Accepted: 04/12/2016] [Indexed: 01/19/2023]
|
26
|
Perfahl S, Natile MM, Mohamad HS, Helm CA, Schulzke C, Natile G, Bednarski PJ. Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles. Mol Pharm 2016; 13:2346-62. [PMID: 27215283 DOI: 10.1021/acs.molpharmaceut.6b00108] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped β-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a substantial increase in cytotoxicity when modified UCNPs were combined with five rounds of 30 min irradiation with NIR compared to dark controls, but NIR alone also had a significant cytotoxic effect at this duration.
Collapse
Affiliation(s)
- Stefanie Perfahl
- Institute of Pharmacy, Ernst-Moritz-Arndt University of Greifswald , 17487 Greifswald, Germany
| | - Marta M Natile
- CNR-ICMATE, Department of Chemical Sciences, University of Padova , 35131 Padova, Italy
| | - Heba S Mohamad
- Institute of Physics, Ernst-Moritz-Arndt University of Greifswald , 17487 Greifswald, Germany
| | - Christiane A Helm
- Institute of Physics, Ernst-Moritz-Arndt University of Greifswald , 17487 Greifswald, Germany
| | - Carola Schulzke
- Institute of Biochemistry, Ernst-Moritz-Arndt University of Greifswald , 17489 Greifswald, Germany
| | - Giovanni Natile
- Department of Chemistry, University of Bari , 70125 Bari, Italy
| | - Patrick J Bednarski
- Institute of Pharmacy, Ernst-Moritz-Arndt University of Greifswald , 17487 Greifswald, Germany
| |
Collapse
|