1
|
Kelly B, Boudreau JE, Beyea S, Brewer K. Molecular imaging of viral pathogenesis and opportunities for the future. NPJ IMAGING 2025; 3:3. [PMID: 39872292 PMCID: PMC11761071 DOI: 10.1038/s44303-024-00056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 01/30/2025]
Abstract
Molecular imaging is used in clinical and research settings. Since tools to study viral pathogenesis longitudinally and systemically are limited, molecular imaging is an attractive and largely unexplored tool. This review discusses molecular imaging probes and techniques for studying viruses, particularly those currently used in oncology that are applicable to virology. Expanding the repertoire of probes to better detect viral disease may make imaging even more valuable in (pre-)clinical settings.
Collapse
Affiliation(s)
- Brianna Kelly
- Biomedical MRI Research Laboratory (BMRL), IWK Health Centre, Halifax, NS Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
| | - Jeanette E. Boudreau
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
- Department of Pathology, Dalhousie University, Halifax, NS Canada
- Beatrice Hunter Cancer Research Institute (BHCRI), Halifax, NS Canada
| | - Steven Beyea
- IWK Health Centre, Halifax, NS Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS Canada
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, NS Canada
| | - Kimberly Brewer
- Biomedical MRI Research Laboratory (BMRL), IWK Health Centre, Halifax, NS Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
- IWK Health Centre, Halifax, NS Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS Canada
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
2
|
Su H, Chan KWY. Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange in Vivo. ACS NANO 2024; 18:33775-33791. [PMID: 39642940 PMCID: PMC11656841 DOI: 10.1021/acsnano.4c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 12/09/2024]
Abstract
Chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) enables the imaging of many endogenous and exogenous compounds with exchangeable protons and protons experiencing dipolar coupling by using a label-free approach. This provides an avenue for following interesting molecular events in vivo by detecting the natural protons of molecules, such as the increase in amide protons of proteins in brain tumors and the concentration of drugs reaching the target site. Neither of these detections require metallic or radioactive labels and thus will not perturb the molecular events happening in vivo. Yet, magnetization transfer processes such as chemical exchange and dipolar coupling of protons are sensitive to the local environment. Hence, the use of nanocarriers could enhance the CEST contrast by providing a relatively high local concentration of contrast agents, considering the portion of the protons available for exchange, optimizing the exchange rate, and utilizing molecular interactions. This review provides an overview of these factors to be considered for designing efficient CEST contrast agents (CAs), and the molecular events that can be imaged using CEST MRI during disease progression and treatment, as well as the nanocarriers for drug delivery and distribution for the evaluation of treatments.
Collapse
Affiliation(s)
- Haoyun Su
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
- Hong
Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Kannie W. Y. Chan
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
- Hong
Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- City
University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Tung
Biomedical Sciences Centre, City University
of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Welleman IM, Reeβing F, Boersma HH, Dierckx RAJO, Feringa BL, Szymanski W. The Development of a Smart Magnetic Resonance Imaging and Chemical Exchange Saturation Transfer Contrast Agent for the Imaging of Sulfatase Activity. Pharmaceuticals (Basel) 2023; 16:1439. [PMID: 37895910 PMCID: PMC10610007 DOI: 10.3390/ph16101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The molecular imaging of biomarkers plays an increasing role in medical diagnostics. In particular, the imaging of enzyme activity is a promising approach, as it enables the use of its inherent catalytic activity for the amplification of an imaging signal. The increased activity of a sulfatase enzyme has been observed in several types of cancers. We describe the development and in vitro evaluation of molecular imaging agents that allow for the detection of sulfatase activity using the whole-body, non-invasive MRI and CEST imaging methods. This approach relies on a responsive ligand that features a sulfate ester moiety, which upon sulfatase-catalyzed hydrolysis undergoes an elimination process that changes the functional group, coordinating with the metal ion. When Gd3+ is used as the metal, the complex can be used for MRI, showing a 25% decrease at 0.23T and a 42% decrease at 4.7T in magnetic relaxivity after enzymatic conversion, thus providing a "switch-off" contrast agent. Conversely, the use of Yb3+ as the metal leads to a "switch-on" effect in the CEST imaging of sulfatase activity. Altogether, the results presented here provide a molecular basis and a proof-of-principle for the magnetic imaging of the activity of a key cancer biomarker.
Collapse
Affiliation(s)
- Ilse M. Welleman
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Friederike Reeβing
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hendrikus H. Boersma
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Department of Clinical Pharmacy and Pharmacology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rudi A. J. O. Dierckx
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (I.M.W.)
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Gilad AA, Bar-Shir A, Bricco AR, Mohanta Z, McMahon MT. Protein and peptide engineering for chemical exchange saturation transfer imaging in the age of synthetic biology. NMR IN BIOMEDICINE 2023; 36:e4712. [PMID: 35150021 PMCID: PMC10642350 DOI: 10.1002/nbm.4712] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 05/23/2023]
Abstract
At the beginning of the millennium, the first chemical exchange saturation transfer (CEST) contrast agents were bio-organic molecules. However, later, metal-based CEST agents (paraCEST agents) took center stage. This did not last too long as paraCEST agents showed limited translational potential. By contrast, the CEST field gradually became dominated by metal-free CEST agents. One branch of research stemming from the original work by van Zijl and colleagues is the development of CEST agents based on polypeptides. Indeed, in the last 2 decades, tremendous progress has been achieved in this field. This includes the design of novel peptides as biosensors, genetically encoded recombinant as well as synthetic reporters. This was a result of extensive characterization and elucidation of the theoretical requirements for rational designing and engineering of such agents. Here, we provide an extensive overview of the evolution of more precise protein-based CEST agents, review the rationalization of enzyme-substrate pairs as CEST contrast enhancers, discuss the theoretical considerations to improve peptide selectivity, specificity and enhance CEST contrast. Moreover, we discuss the strong influence of synthetic biology on the development of the next generation of protein-based CEST contrast agents.
Collapse
Affiliation(s)
- Assaf A. Gilad
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander R. Bricco
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Zinia Mohanta
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michael T. McMahon
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Kombala CJ, Lokugama SD, Kotrotsou A, Li T, Pollard AC, Pagel MD. Simultaneous Evaluations of pH and Enzyme Activity with a CEST MRI Contrast Agent. ACS Sens 2021; 6:4535-4544. [PMID: 34856102 PMCID: PMC11936461 DOI: 10.1021/acssensors.1c02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extracellular tumor microenvironment of many solid tumors has high acidosis and high protease activity. Simultaneously assessing both characteristics may improve diagnostic evaluations of aggressive tumors and the effects of anticancer treatments. Noninvasive imaging methods have previously been developed that measure extracellular pH or can detect enzyme activity using chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI). Herein, we developed a single-hybrid CEST agent that can simultaneously measure pH and evaluate protease activity using a combination of dual-power acidoCEST MRI and catalyCEST MRI. Our agent showed CEST signals at 9.2 ppm from a salicylic acid moiety and at 5.0 ppm from an aryl amide. The CEST signal at 9.2 ppm could be measured after selective saturation was applied at 1 and 4 μT, and these measurements could be used with a ratiometric analysis to determine pH. The CEST signal at 5.0 ppm from the aryl amide disappeared after the agent was treated with cathepsin B, while the CEST signal at 9.2 ppm remained, indicating that the agent could detect protease activity through the amide bond cleavage. Michaelis-Menten kinetics studies with catalyCEST MRI demonstrated that the binding affinity (as shown with the Michaelis constant KM), the catalytic turnover rate (kcat), and catalytic efficiency (kcat/KM) were each higher for cathepsin B at lower pH. The kcat rates measured with catalyCEST MRI were lower than the comparable rates measured with liquid chromatography-mass spectrometry (LC-MS), which reflected a limitation of inherently noisy and relatively insensitive CEST MRI analyses. Although this level of precision limited catalyCEST MRI to semiquantitative evaluations, these semiquantitative assessments of high and low protease activity still had value by demonstrating that high acidosis and high protease activity can be used as synergistic, multiparametric biomarkers.
Collapse
Affiliation(s)
- Chathuri J Kombala
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Sanjaya D Lokugama
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Aikaterini Kotrotsou
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Tianzhe Li
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Alyssa C Pollard
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Mark D Pagel
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| |
Collapse
|
6
|
Cai X, Zhang J, Lu J, Yi L, Han Z, Zhang S, Yang X, Liu G. N-Aryl Amides as Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agents. Chemistry 2020; 26:11705-11709. [PMID: 32639618 PMCID: PMC10186200 DOI: 10.1002/chem.202002415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Indexed: 12/22/2022]
Abstract
Chemical exchange saturation transfer (CEST) MRI has recently emerged as a versatile molecular imaging approach in which diamagnetic compounds can be utilized to generate an MRI signal. To expand the scope of CEST MRI applications, herein, we systematically investigated the CEST properties of N-aryl amides with different N-aromatic substitution, revealing their chemical shifts (4.6-5.8 ppm) and exchange rates (up to thousands s-1 ) are favorable to be used as CEST agents as compared to alkyl amides. As the first proof-of-concept study, we used CEST MRI to detect the enzymatic metabolism of the drug acebutolol directly by its intrinsic CEST signal without any chemical labeling. Our study implies that N-aryl amides may enable the label-free CEST MRI detection of the metabolism of many N-aryl amide-containing drugs and a variety of enzymes that act on N-aryl amides, greatly expanding the scope of CEST MR molecular imaging.
Collapse
Affiliation(s)
- Xuekang Cai
- Department of Nuclear Medicine, Peking University First Hospital, 100034, Beijing, P. R. China.,State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, 100029, Beijing, P. R. China.,Institute of Medical Technology, Peking University, 100871, Beijing, P. R. China
| | - Jia Zhang
- Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA
| | - Jiaqi Lu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, 100029, Beijing, P. R. China.,Institute of Medical Technology, Peking University, 100871, Beijing, P. R. China
| | - Zheng Han
- Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, Guandong, P. R. China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, 100034, Beijing, P. R. China.,Institute of Medical Technology, Peking University, 100871, Beijing, P. R. China
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA
| |
Collapse
|
7
|
Jayapaul J, Schröder L. Probing Reversible Guest Binding with Hyperpolarized 129Xe-NMR: Characteristics and Applications for Cucurbit[ n]urils. Molecules 2020; 25:E957. [PMID: 32093412 PMCID: PMC7070628 DOI: 10.3390/molecules25040957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/01/2023] Open
Abstract
Cucurbit[n]urils (CB[n]s) are a family of macrocyclic host molecules that find various applications in drug delivery, molecular switching, and dye displacement assays. The CB[n]s with n = 5-7 have also been studied with 129Xe-NMR. They bind the noble gas with a large range of exchange rates. Starting with insights from conventional direct detection of bound Xe, this review summarizes recent achievements with chemical exchange saturation transfer (CEST) detection of efficiently exchanging Xe in various CB[n]-based supramolecular systems. Unprecedented sensitivity has been reached by combining the CEST method with hyperpolarized Xe, the production of which is also briefly described. Applications such as displacement assays for enzyme activity detection and rotaxanes as emerging types of Xe biosensors are likewise discussed in the context of biomedical applications and pinpoint future directions for translating this field to preclinical studies.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
8
|
Goldenberg JM, Pagel MD. Assessments of tumor metabolism with CEST MRI. NMR IN BIOMEDICINE 2019; 32:e3943. [PMID: 29938857 PMCID: PMC7377947 DOI: 10.1002/nbm.3943] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 05/06/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a relatively new contrast mechanism for MRI. CEST MRI exploits a specific MR frequency (chemical shift) of a molecule while generating an image with good spatial resolution using standard MRI techniques, combining the specificity of MRS with the spatial resolution of MRI. Many CEST MRI acquisition methods have been developed to improve analyses of tumor metabolism. GluCEST, CrCEST, and LATEST can map glutamate, creatine, and lactate, which are important metabolites involved in tumor metabolism. GlucoCEST MRI tracks the pharmacokinetics of glucose transport and cell internalization within tumors. CatalyCEST MRI detects enzyme catalysis that changes a substrate CEST agent. AcidoCEST MRI measures extracellular pH of the tumor microenvironment by exploiting a ratio of two pH-dependent CEST signals. This review describes each technique, the technical issues involved with CEST MRI and each specific technique, and the merits and challenges associated with applying each CEST MRI technique to study tumor metabolism.
Collapse
Affiliation(s)
- Joshua M. Goldenberg
- Department of Pharmaceutical Sciences, The University of Arizona, Tucson, AZ, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark D. Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Zhang J, Yuan Y, Han Z, Li Y, van Zijl PCM, Yang X, Bulte JWM, Liu G. Detecting acid phosphatase enzymatic activity with phenol as a chemical exchange saturation transfer magnetic resonance imaging contrast agent (PhenolCEST MRI). Biosens Bioelectron 2019; 141:111442. [PMID: 31252256 PMCID: PMC6717000 DOI: 10.1016/j.bios.2019.111442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Phenol contains an exchangeable hydroxyl proton resonant at 4.8 ppm from the resonance frequency of water in the 1H nuclear magnetic resonance (1H NMR) spectrum, enabling itself to be detected at sub-mM concentration by either chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) or exchange-based T2 relaxation enhancement (T2ex) effect under acidic and basic conditions, respectively. We recently investigated the T2ex effects of phenol and its derivatives, but the CEST characteristics of phenols are unknown in detail, and no study on using the natural CEST MRI effects of phenol for detecting enzymatic activity has been conducted. Herein, on the basis of the inherent CEST MR property of phenol, namely phenolCEST, we developed the first MRI approach to detect acid phosphatase (AcP) enzymatic activity. Upon the activity of AcP at pH = 5.0, non-CEST-detectable enzyme substrate phenyl phosphate was converted to CEST-detectable phenol, providing a simple way to quantify AcP activity directly without the need for a second signalling probe. We showed the application of this phenolCEST biosensor for measuring AcP activity in both enzyme solutions and cell lysates of prostate cells. This work opens a door for the utilization of phenolCEST MRI technique in sensor design and development.
Collapse
Affiliation(s)
- Jia Zhang
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yue Yuan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zheng Han
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States.
| |
Collapse
|
10
|
Yang C, Wang Q, Ding W. Recent progress in the imaging detection of enzyme activities in vivo. RSC Adv 2019; 9:25285-25302. [PMID: 35530057 PMCID: PMC9070033 DOI: 10.1039/c9ra04508b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Enzymatic activities are important for normal physiological processes and are also critical regulatory mechanisms for many pathologies. Identifying the enzyme activities in vivo has considerable importance in disease diagnoses and monitoring of the physiological metabolism. In the past few years, great strides have been made towards the imaging detection of enzyme activity in vivo based on optical modality, MRI modality, nuclear modality, photoacoustic modality and multifunctional modality. This review summarizes the latest advances in the imaging detection of enzyme activities in vivo reported within the past years, mainly concentrating on the probe design, imaging strategies and demonstration of enzyme activities in vivo. This review also highlights the potential challenges and the further directions of this field.
Collapse
Affiliation(s)
- Chunjie Yang
- College of Health Science, Yuncheng Polytechnic College Yuncheng Shanxi 044000 PR China
- College of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 PR China
| | - Qian Wang
- College of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 PR China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 PR China
| |
Collapse
|
11
|
Abstract
Many elegant inorganic designs have been developed to aid medical imaging. We know better now how to improve imaging due to the enormous efforts made by scientists in probe design and other fundamental sciences, including inorganic chemistry, physiochemistry, analytical chemistry, and biomedical engineering. However, despite several years being invested in the development of diagnostic probes, only a few examples have shown applicability in MRI in vivo. In this short review, we aim to show the reader the latest advances in the application of inorganic agents in preclinical MRI.
Collapse
|
12
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 950] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
13
|
Döpfert J, Schnurr M, Kunth M, Rose HM, Hennig A, Schröder L. Time-resolved monitoring of enzyme activity with ultrafast Hyper-CEST spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:679-688. [PMID: 29274298 DOI: 10.1002/mrc.4702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
We propose a method to dynamically monitor the progress of an enzymatic reaction using NMR of hyperpolarized 129 Xe in a host-guest system. It is based on a displacement assay originally designed for fluorescence experiments that exploits the competitive binding of the enzymatic product on the one hand and a reporter dye on the other hand to a supramolecular host. Recently, this assay has been successfully transferred to NMR, using xenon as a reporter, cucurbit[6]uril as supramolecular host, and chemical exchange saturation transfer with hyperpolarized Xe (Hyper-CEST) as detection technique. Its advantage is that the enzyme acts on the unmodified substrate and that only the product is detected through immediate inclusion into the host. We here apply a method that drastically accelerates the acquisition of Hyper-CEST spectra in vitro using magnetic field gradients. This allows monitoring the dynamic progress of the conversion of lysine to cadaverine with a temporal resolution of ~30 s. Moreover, the method only requires to sample the very early onset of the reaction (<0.5% of substrate conversion where the host itself is required only at μM concentrations) at comparatively low reaction rates, thus saving enzyme material and reducing NMR acquisition time. The obtained value for the specific activity agrees well with previously published results from fluorescence assays. We furthermore outline how the Hyper-CEST results correlate with xenon T2 measurements performed during the enzymatic reaction. This suggests that ultrafast Hyper-CEST spectroscopy can be used for dynamically monitoring enzymatic activity with NMR.
Collapse
Affiliation(s)
- Jörg Döpfert
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Matthias Schnurr
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Martin Kunth
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Honor May Rose
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Andreas Hennig
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
14
|
Jones KM, Pollard AC, Pagel MD. Clinical applications of chemical exchange saturation transfer (CEST) MRI. J Magn Reson Imaging 2017; 47:11-27. [PMID: 28792646 DOI: 10.1002/jmri.25838] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has been developed and employed in multiple clinical imaging research centers worldwide. Selective radiofrequency (RF) saturation pulses with standard 2D and 3D MRI acquisition schemes are now routinely performed, and CEST MRI can produce semiquantitative results using magnetization transfer ratio asymmetry (MTRasym ) analysis while accounting for B0 inhomogeneity. Faster clinical CEST MRI acquisition methods and more quantitative acquisition and analysis routines are under development. Endogenous biomolecules with amide, amine, and hydroxyl groups have been detected during clinical CEST MRI studies, and exogenous CEST agents have also been administered to patients. These CEST MRI tools show promise for contributing to assessments of cerebral ischemia, neurological disorders, lymphedema, osteoarthritis, muscle physiology, and solid tumors. This review summarizes the salient features of clinical CEST MRI protocols and critically evaluates the utility of CEST MRI for these clinical imaging applications. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:11-27.
Collapse
Affiliation(s)
- Kyle M Jones
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | | | - Mark D Pagel
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA.,Department of Chemistry, Rice University, Houston, Texas, USA.,Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Piontek A, Witte C, May Rose H, Eichner M, Protze J, Krause G, Piontek J, Schröder L. A cCPE-based xenon biosensor for magnetic resonance imaging of claudin-expressing cells. Ann N Y Acad Sci 2017. [PMID: 28636798 DOI: 10.1111/nyas.13363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The majority of malignant tumors originate from epithelial cells, and many of them are characterized by an overexpression of claudins (Cldns) and their mislocalization out of tight junctions. We utilized the C-terminal claudin-binding domain of Clostridium perfringens enterotoxin (cCPE), with its high affinity to specific members of the claudin family, as the targeting unit for a claudin-sensitive cancer biosensor. To overcome the poor sensitivity of conventional relaxivity-based magnetic resonance imaging (MRI) contrast agents, we utilized the superior sensitivity of xenon Hyper-CEST biosensors. We labeled cCPE for both xenon MRI and fluorescence detection. As one readout module, we employed a cryptophane (CrA) monoacid and, as the second, a fluorescein molecule. Both were conjugated separately to a biotin molecule via a polyethyleneglycol chemical spacer and later via avidin linked to GST-cCPE. Nontransfected HEK293 cells and HEK293 cells stably expressing Cldn4-FLAG were incubated with the cCPE-based biosensor. Fluorescence-based flow cytometry and xenon MRI demonstrated binding of the biosensor specifically to Cldn4-expressing cells. This study provides proof of concept for the use of cCPE as a carrier for diagnostic contrast agents, a novel approach for potential detection of Cldn3/-4-overexpressing tumors for noninvasive early cancer detection.
Collapse
Affiliation(s)
- Anna Piontek
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Structural Bioinformatics and Protein Design, Berlin, Germany
| | - Christopher Witte
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Molecular Imaging, Berlin, Germany
| | - Honor May Rose
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Molecular Imaging, Berlin, Germany
| | - Miriam Eichner
- Institute of Clinical Physiology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Structural Bioinformatics and Protein Design, Berlin, Germany
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Structural Bioinformatics and Protein Design, Berlin, Germany
| | - Jörg Piontek
- Institute of Clinical Physiology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif Schröder
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Molecular Imaging, Berlin, Germany
| |
Collapse
|
16
|
Daryaei I, Mohammadebrahim Ghaffari M, Jones KM, Pagel MD. Detection of Alkaline Phosphatase Enzyme Activity with a CatalyCEST MRI Biosensor. ACS Sens 2016; 1:857-861. [PMID: 30246144 DOI: 10.1021/acssensors.6b00203] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Responsive CEST MRI biosensors offer good sensitivity and excellent specificity for detection of biomarkers with great potential for clinical translation. We report the application of fosfosal, a phosphorylated form of salicylic acid, for the detection of alkaline phosphatase (AP) enzyme. We detected conversion of fosfosal to salicylic acid in the presence of the enzyme by CEST MRI. Importantly the technique was able to detect AP enzyme expressed in cells in the presence of other cell components, which improves specificity. Various isoforms of the enzyme showed different Michaelis-Menten kinetics and yet these kinetics studies indicated very efficient catalytic rates. Our results with the fosfosal biosensor encourage further in vivo studies.
Collapse
Affiliation(s)
- Iman Daryaei
- Biological
Chemistry Program, Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85719, United States
| | - Mahsa Mohammadebrahim Ghaffari
- Biological
Chemistry Program, Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85719, United States
| | - Kyle M. Jones
- Department
of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Mark D. Pagel
- University of Arizona Cancer Center, Tucson, Arizona 85724, United States
- Department
of Medical Imaging, University of Arizona, Tucson, Arizona 85724, United States
| |
Collapse
|