1
|
Hirahara M, Iwamoto A, Teraoka Y, Mizuno Y, Umemura Y, Uekita T. Ruthenium Pyrazole Complexes: A Family of Highly Active Metallodrugs for Photoactivated Chemotherapy. Inorg Chem 2024; 63:1988-1996. [PMID: 38215027 DOI: 10.1021/acs.inorgchem.3c03716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Ruthenium complexes bearing bis pyrazole (pzH) ligands, cis-[Ru(bpy)2(R-pzH)2]2+ (bpy = 2,2'-bipyridine, R = -H, -Cl), were examined as photoactivated anticancer prodrugs. A dicationic pyrazole complex deprotonated to give monocationic pyrazole-pyrazolate complexes, cis-[Ru(bpy)2(R-pz-)(R-pzH)]+, in an aqueous solution with pKa values of 9.5 and 7.2 for R = H and R = Cl, respectively. Upon deprotonation, relative quantum yields of photosubstitution decreased while lipophilicity of the complexes increased according to the measurements of water-octanol coefficients. The ruthenium complex with 4-chloropyrazole ligands displayed high cytotoxicity upon light irradiation (IC50 = 0.060 ± 0.016 μM) toward lung cancer cells, which was 7 times higher than that in the dark (IC50 = 0.44 ± 0.07 μM). Additional experiments for the ruthenium R-pyrazole complexes indicated that (1) selective photodissociation of the 4-chloropyrazole ligand occurs from cis-[Ru(bpy)2(4-Clpz-)(4-ClpzH)]+, (2) photoinduced ligand dissociation is dominant rather than photoinduced generation of singlet oxygen (1O2), and (3) induction of cell death occurs via the intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Masanari Hirahara
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Aki Iwamoto
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Yuto Teraoka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yuki Mizuno
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yasushi Umemura
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| |
Collapse
|
2
|
Maeda A, Tokumoto JY, Kojima S, Fujimori K, Moriuchi-Kawakami T, Hirahara M. Binding of Stimuli-Responsive Ruthenium Aqua Complexes with 9-Ethylguanine. ACS OMEGA 2023; 8:37391-37401. [PMID: 37841177 PMCID: PMC10569010 DOI: 10.1021/acsomega.3c05343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Stimuli-responsive ruthenium complexes proximal- and distal-[Ru(C10tpy)(C10pyqu) OH2]2+ (proximal-1 and distal-1; C10tpy = 4'-decyloxy-2,2':6',2″-terpyridine and C10pyqu = 2-[2'-(6'-decyloxy)-pyridyl]quinoline) were experimentally studied for adduct formation with a model DNA base. At 303 K, proximal-1 exhibited 1:1 adduct formation with 9-ethylguanine (9-EtG) to yield proximal-[Ru(C10tpy)(C10pyqu)(9-EtG)]2+ (proximal-RuEtG). Rotation of the guanine ligand on the ruthenium center was sterically hindered by the presence of an adjacent quinoline moiety at 303 K. Results from 1H NMR measurements indicated that photoirradiation of a proximal-RuEtG solution caused photoisomerization to distal-RuEtG, whereas heating of proximal-RuEtG caused ligand substitution to proximal-1. The distal isomer of the aqua complex, distal-1, was observed to slowly revert to proximal-1 at 303 K. In the presence of 9-EtG, distal-1 underwent thermal back-isomerization to proximal-1 and adduct formation to distal-RuEtG. Kinetic analysis of 1H NMR measurements showed that adduct formation between proximal-1 and 9-EtG was 8-fold faster than that between distal-1 and 9-EtG. This difference may be attributed to intramolecular hydrogen bonding and steric repulsion between the aqua ligand and the pendant moiety of the bidentate ligand..
Collapse
Affiliation(s)
- Atsuki Maeda
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan
| | - Jun-ya Tokumoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan
| | - Soichiro Kojima
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan
| | - Keiichi Fujimori
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan
| | - Takayo Moriuchi-Kawakami
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan
| | - Masanari Hirahara
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan
| |
Collapse
|
3
|
Mishra S, Tripathy SK, Paul D, Laha P, Santra MK, Patra S. Asymmetrically Coordinated Heterodimetallic Ir-Ru System: Synthesis, Computational, and Anticancer Aspects. Inorg Chem 2023; 62:7003-7013. [PMID: 37097171 DOI: 10.1021/acs.inorgchem.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein, we present an unprecedented formation of a heterodinuclear complex [{(ppy)2IrIII}(μ-phpy){RuII(tpy)}](ClO4)2 {[1](ClO4)2} using terpyridyl/phenylpyridine as ancillary ligands and asymmetric phpy as a bridging ligand. The asymmetric binding mode (N∧N-∩-N∧N∧C-) of the phpy ligand in {[1](ClO4)2} is confirmed by 1H, 13C, 1H-1H correlated spectroscopy (COSY), high-resolution mass spectrum (HRMS), single-crystal X-ray crystallography techniques, and solution conductivity measurements. Theoretical investigation suggests that the highest occupied molecular orbital (HOMO) and the least unoccupied molecular orbital (LUMO) of [1]2+ are located on iridium/ppy and phpy, respectively. The complex displays a broad low energy charge transfer (CT) band within 450-575 nm. The time-dependent density functional theory (TDDFT) analysis suggests this as a mixture of metal-to-ligand charge transfer (MLCT) and ligand-to-ligand charge transfer (LLCT), where both ruthenium, iridium, and ligands are involved. Complex {[1](ClO4)2} exhibits RuIIIrIII/RuIIIIrIII- and RuIIIIrIII/RuIIIIrIV-based oxidative couples at 0.83 and 1.39 V, respectively. The complex shows anticancer activity and selectivity toward human breast cancer cells (IC50; MCF-7: 9.3 ± 1.2 μM, and MDA-MB-231: 8.6 ± 1.2 μM) over normal breast cells (MCF 10A: IC50 ≈ 21 ± 1.3 μM). The Western blot analysis and fluorescence microscopy images suggest that combined apoptosis and autophagy are responsible for cancer cell death.
Collapse
Affiliation(s)
- Saumyaranjan Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| | - Suman Kumar Tripathy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| | - Debasish Paul
- National Centre for Cell Science, NCCS Complex, Pune University Campus Ganeshkhind, Pune 411007, Maharashtra, India
| | - Paltan Laha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| | - Manas Kumar Santra
- National Centre for Cell Science, NCCS Complex, Pune University Campus Ganeshkhind, Pune 411007, Maharashtra, India
| | - Srikanta Patra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| |
Collapse
|
4
|
Vinck R, Gandioso A, Burckel P, Saubaméa B, Cariou K, Gasser G. Red-Absorbing Ru(II) Polypyridyl Complexes with Biotin Targeting Spontaneously Assemble into Nanoparticles in Biological Media. Inorg Chem 2022; 61:13576-13585. [PMID: 35960605 DOI: 10.1021/acs.inorgchem.2c02214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four new ruthenium(II) polypyridyl complexes were synthesized to study the effect of poly(ethylene glycol) and/or biotin conjugation on their physical and biological properties, including their hydrophilicity, their cellular uptake, and their phototoxicity. Unexpectedly, these complexes self-assembled into nanoparticles upon dilution in biological media. This behavior leads to their accumulation in lysosomes following their internalization by cells. While a significant increase in cellular uptake was observed for the biotin-conjugated complexes, it did not result in an increase in their phototoxicity. However, their high phototoxicity upon irradiation at long wavelengths (645-670 nm) and their self-assembling behavior make them a promising backbone for the development of new lysosome-targeted photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Pierre Burckel
- Institut de Physique du Globe de Paris, Biogéochimie à l'Anthropocène des Eléments et Contaminants Emergents, 75005 Paris, France
| | - Bruno Saubaméa
- Cellular and Molecular Imaging platform, US 25 Inserm, UMS 3612 CNRS, Faculté de Pharmacie de Paris, Université Paris Cité, 75006 Paris, France
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
5
|
Papish ET, Oladipupo OE. Factors that influence singlet oxygen formation vs. ligand substitution for light-activated ruthenium anticancer compounds. Curr Opin Chem Biol 2022; 68:102143. [PMID: 35483128 DOI: 10.1016/j.cbpa.2022.102143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/03/2022]
Abstract
This review focuses on light-activated ruthenium anticancer compounds and the factors that influence which pathway is favored. Photodynamic therapy (PDT) is favored by π expansion and the presence of low-lying triplet excited states (e.g. 3MLCT, 3IL). Photoactivated chemotherapy (PACT) refers to light-driven ligand dissociation to give a toxic metal complex or a toxic ligand upon photo substitution. This process is driven by steric bulk near the metal center and weak metal-ligand bonds to create a low-energy 3MC state with antibonding character. With protic dihydroxybipyridine ligands, ligand charge can play a key role in these processes, with a more electron-rich deprotonated ligand favoring PDT and an electron-poor protonated ligand favoring PACT in several cases.
Collapse
Affiliation(s)
- Elizabeth T Papish
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Olaitan E Oladipupo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
6
|
Kettenmann SD, White M, Colard-Thomas J, Kraft M, Feßler AT, Danz K, Wieland G, Wagner S, Schwarz S, Wiehe A, Kulak N. Investigating Alkylated Prodigiosenes and Their Cu(II)-Dependent Biological Activity: Interactions with DNA, Antimicrobial and Photoinduced Anticancer Activity. ChemMedChem 2021; 17:e202100702. [PMID: 34779147 PMCID: PMC9306646 DOI: 10.1002/cmdc.202100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Indexed: 11/23/2022]
Abstract
Prodigiosenes are a family of red pigments with versatile biological activity. Their tripyrrolic core structure has been modified many times in order to manipulate the spectrum of activity. We have been looking systematically at prodigiosenes substituted at the C ring with alkyl chains of different lengths, in order to assess the relevance of this substituent in a context that has not been investigated before for these derivatives: Cu(II) complexation, DNA binding, self‐activated DNA cleavage, photoinduced cytotoxicity and antimicrobial activity. Our results indicate that the hydrophobic substituent has a clear influence on the different aspects of their biological activity. The cytotoxicity study of the Cu(II) complexes of these prodigiosenes shows that they exhibit a strong cytotoxic effect towards the tested tumor cell lines. The Cu(II) complex of a prodigiosene lacking any alkyl chain excelled in its photoinduced anticancer activity, thus demonstrating the potential of prodigiosenes and their metal complexes for an application in photodynamic therapy (PDT). Two derivatives along with their Cu(II) complexes showed also antimicrobial activity against Staphylococcus aureus strains.
Collapse
Affiliation(s)
| | - Matthew White
- Imperial College London, Department of Chemistry, UNITED KINGDOM
| | - Julien Colard-Thomas
- Ecole Nationale Superieur de Chimie de Paris: Ecole nationale superieure de chimie de Paris, Chimie, FRANCE
| | - Matilda Kraft
- Freie Universität Berlin: Freie Universitat Berlin, Institut für Chemie und Biochemie, GERMANY
| | - Andrea T Feßler
- Freie Universität Berlin: Freie Universitat Berlin, Institute for Microbiology, GERMANY
| | - Karin Danz
- Fraunhofer-Institut fur Biomedizinische Technik IBMT, Zellmodelle und Toxikologie, GERMANY
| | | | - Sylvia Wagner
- Fraunhofer-Institut fur Biomedizinische Technik IBMT, Zellmodelle und Toxikologie, GERMANY
| | - Stefan Schwarz
- Freie Universität Berlin: Freie Universitat Berlin, Institut für Mikrobiologie, GERMANY
| | | | - Nora Kulak
- Otto von Guericke Universitat Magdeburg, Institut für Chemie, Universitätsplatz 2, 39106, Magdeburg, GERMANY
| |
Collapse
|
7
|
Estalayo-Adrián S, Blasco S, Bright SA, McManus GJ, Orellana G, Williams DC, Kelly JM, Gunnlaugsson T. Effect of Alkyl Chain Length on the Photophysical, Photochemical, and Photobiological Properties of Ruthenium(II) Polypyridyl Complexes for Their Application as DNA-Targeting, Cellular-Imaging, and Light-Activated Therapeutic Agents. ACS APPLIED BIO MATERIALS 2021; 4:6664-6681. [PMID: 35006970 DOI: 10.1021/acsabm.1c00284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A family of six Ru(II) polypyridyl complexes (1-6) which contain phenanthroline-based ligands functionalized with alkyl chains of different lengths (one methyl group, 10 and 21 carbon alkyl chains) and either 1,10-phenanthroline (phen) or 1,4,5,8-tetraazaphenanthrene (TAP) as ancillary ligands have been synthesized and characterized. The influence of the alkyl chain length on their photophysical and photochemical properties as well as in their photobiological applications has been elucidated by monitoring the changes in their MLCT-centered absorption and emission bands. The presence of one methyl group or 10 carbon alkyl chains does not seem to significantly affect the photophysical and photochemical properties of the resulting Ru(II) complexes when compared to the well-known [Ru(phen)3]2+ and [Ru(TAP)2phen]2+. However, an effect on their emission properties and in their ability to photosensitize singlet oxygen is observed for the Ru(II) complexes containing 21 carbon alkyl chains. The binding of these complexes to salmon testes DNA (stDNA) was investigated by observing the changes in the photophysical properties. Complexes 1, 2, 4, and 5 all showed changes in their MLCT bands that could be analyzed using conventional fitting methods, such as the Bard equation. In contrast, complexes 3 and 6, possessing long aliphatic chains, gave rise to nonclassic behavior. In addition to these analyses, both thermal denaturation and circular dichroism studies of 1-6 were carried out in the presence of stDNA which confirmed that these complexes bind to DNA. Confocal microscopy and viability studies in HeLa cervical cancer cells reveal an alkyl chain-length dependence on the cellular uptake and cytotoxicity of the resulting Ru(II) complexes due to an enhancement of their lipophilicity with increasing alkyl chain length. Thus, complexes containing 10 and 21 carbon alkyl chains are rapidly taken up into HeLa cells and, in particular, those with 21 carbon alkyl chains show a significant phototoxicity against the same cell line. Therefore, this study provides further insight into the possible modulation of the photophysical, photochemical, and photobiological properties of Ru(II) polypyridyl complexes by varying the length of the alkyl chains attached to the polypyridyl ligands coordinated to the Ru(II) center and the nature of the auxiliary groups, which we show has a significant effect on photophysical and biological properties.
Collapse
Affiliation(s)
- Sandra Estalayo-Adrián
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.,Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Salvador Blasco
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Sandra A Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Gavin J McManus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - D Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - John M Kelly
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.,Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
8
|
Busemann A, Flaspohler I, Zhou XQ, Schmidt C, Goetzfried SK, van Rixel VHS, Ott I, Siegler MA, Bonnet S. Ruthenium-based PACT agents based on bisquinoline chelates: synthesis, photochemistry, and cytotoxicity. J Biol Inorg Chem 2021; 26:667-674. [PMID: 34378103 PMCID: PMC8437835 DOI: 10.1007/s00775-021-01882-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022]
Abstract
The known ruthenium complex [Ru(tpy)(bpy)(Hmte)](PF6)2 ([1](PF6)2, where tpy = 2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, Hmte = 2-(methylthio)ethanol) is photosubstitutionally active but non-toxic to cancer cells even upon light irradiation. In this work, the two analogs complexes [Ru(tpy)(NN)(Hmte)](PF6)2, where NN = 3,3'-biisoquinoline (i-biq, [2](PF6)2) and di(isoquinolin-3-yl)amine (i-Hdiqa, [3](PF6)2), were synthesized and their photochemistry and phototoxicity evaluated to assess their suitability as photoactivated chemotherapy (PACT) agents. The increase of the aromatic surface of [2](PF6)2 and [3](PF6)2, compared to [1](PF6)2, leads to higher lipophilicity and higher cellular uptake for the former complexes. Such improved uptake is directly correlated to the cytotoxicity of these compounds in the dark: while [2](PF6)2 and [3](PF6)2 showed low EC50 values in human cancer cells, [1](PF6)2 is not cytotoxic due to poor cellular uptake. While stable in the dark, all complexes substituted the protecting thioether ligand upon light irradiation (520 nm), with the highest photosubstitution quantum yield found for [3](PF6)2 (Φ[3] = 0.070). Compounds [2](PF6)2 and [3](PF6)2 were found both more cytotoxic after light activation than in the dark, with a photo index of 4. Considering the very low singlet oxygen quantum yields of these compounds, and the lack of cytotoxicity of the photoreleased Hmte thioether ligand, it can be concluded that the toxicity observed after light activation is due to the photoreleased aqua complexes [Ru(tpy)(NN)(OH2)]2+, and thus that [2](PF6)2 and [3](PF6)2 are promising PACT candidates.
Collapse
Affiliation(s)
- Anja Busemann
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Ingrid Flaspohler
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Xue-Quan Zhou
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Claudia Schmidt
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106, Braunschweig, Germany
| | - Sina K Goetzfried
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Vincent H S van Rixel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106, Braunschweig, Germany
| | - Maxime A Siegler
- Small Molecule X-Ray Facility, Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
9
|
|
10
|
Zamora A, Wachter E, Vera M, Heidary DK, Rodríguez V, Ortega E, Fernández-Espín V, Janiak C, Glazer EC, Barone G, Ruiz J. Organoplatinum(II) Complexes Self-Assemble and Recognize AT-Rich Duplex DNA Sequences. Inorg Chem 2021; 60:2178-2187. [PMID: 33502194 PMCID: PMC8456496 DOI: 10.1021/acs.inorgchem.0c02648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The
specific recognition of AT-rich DNA sequences opens up the
door to promising diagnostic and/or therapeutic strategies against
gene-related diseases. Here, we demonstrate that amphiphilic PtII complexes of the type [Pt(dmba)(N∧N)]NO3 (dmba = N,N-dimethylbenzylamine-κN, κC; N∧N = dpq (3), dppz (4), and dppn (5)) recognize AT-rich
oligonucleotides over other types of DNA, RNA, and model proteins.
The crystal structure of 4 shows the presence of significant
π-stacking interactions and a distorted coordination sphere
of the d8 PtII atom. Complex 5,
containing the largest π-conjugated ligand, forms supramolecular
assemblies at high concentrations under aqueous environment. However,
its aggregation can be promoted in the presence of DNA at concentrations
as low as 10 μM in a process that “turns on” its
excimer emission around 600 nm. Viscometry, gel electrophoresis, and
theoretical calculations demonstrate that 5 binds to
minor groove when self-assembled, while the monomers of 3 and 4 intercalate into the DNA. The complexes also
inhibit cancer cell growth with low-micromolar IC50 values
in 2D tissue culture and suppress tumor growth in 3D tumor spheroids
with a multicellular resistance (MCR) index comparable to that of
cisplatin. Cyclometalated PtII complexes
containing π-conjugated
ligands form supramolecular assemblies under aqueous environment,
and DNA-induced aggregation occurs for the one containing the highest
conjugated N,N-diimine ligand. The complexes recognize
AT-rich DNA sequences over others in DNA, RNA, and proteins. Their
DNA binding mode switches from intercalation to minor groove binding
when self-assembled. The complexes suppress tumor growth in 3D tumor
spheroids.
Collapse
Affiliation(s)
- Ana Zamora
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Erin Wachter
- Department of Chemistry, University of Kentucky 505 Rose Street, Lexington, Kentucky 40506, United States
| | - María Vera
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - David K Heidary
- Department of Chemistry, University of Kentucky 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Venancio Rodríguez
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Enrique Ortega
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | | | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany
| | - Edith C Glazer
- Department of Chemistry, University of Kentucky 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| |
Collapse
|
11
|
Hu Y, Tresback J, Pérez-Mercader J. Preparation of ruthenium-functionalized microgels through the intermolecular crosslinking of two functionalized polymers within droplets and study of their chemical/ photo-active behaviors. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Li J, Chen T. Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213355] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
van Rixel VHS, Ramu V, Auyeung AB, Beztsinna N, Leger DY, Lameijer LN, Hilt ST, Le Dévédec SE, Yildiz T, Betancourt T, Gildner MB, Hudnall TW, Sol V, Liagre B, Kornienko A, Bonnet S. Photo-Uncaging of a Microtubule-Targeted Rigidin Analogue in Hypoxic Cancer Cells and in a Xenograft Mouse Model. J Am Chem Soc 2019; 141:18444-18454. [PMID: 31625740 PMCID: PMC11774275 DOI: 10.1021/jacs.9b07225] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Marine alkaloid rigidins are cytotoxic compounds known to kill cancer cells at nanomolar concentrations by targeting the microtubule network. Here, a rigidin analogue containing a thioether group was "caged" by coordination of its thioether group to a photosensitive ruthenium complex. In the dark, the coordinated ruthenium fragment prevented the rigidin analogue from inhibiting tubulin polymerization and reduced its toxicity in 2D cancer cell line monolayers, 3D lung cancer tumor spheroids (A549), and a lung cancer tumor xenograft (A549) in nude mice. Photochemical activation of the prodrug upon green light irradiation led to the photosubstitution of the thioether ligand by water, thereby releasing the free rigidin analogue capable of inhibiting the polymerization of tubulin. In cancer cells, such photorelease was accompanied by a drastic reduction of cell growth, not only when the cells were grown in normoxia (21% O2) but also remarkably in hypoxic conditions (1% O2). In vivo, low toxicity was observed at a dose of 1 mg·kg-1 when the compound was injected intraperitoneally, and light activation of the compound in the tumor led to 30% tumor volume reduction, which represents the first demonstration of the safety and efficacy of ruthenium-based photoactivated chemotherapy compounds in a tumor xenograft.
Collapse
Affiliation(s)
| | | | | | | | - David Y Leger
- Laboratoire PEIRENE EA7500, Faculté de Pharmacie , Université de Limoges , 2 rue du Dr Marcland , 87025 Limoges , France
| | | | | | | | | | | | | | | | - Vincent Sol
- Laboratoire PEIRENE EA7500, Faculté de Pharmacie , Université de Limoges , 2 rue du Dr Marcland , 87025 Limoges , France
| | - Bertrand Liagre
- Laboratoire PEIRENE EA7500, Faculté de Pharmacie , Université de Limoges , 2 rue du Dr Marcland , 87025 Limoges , France
| | | | | |
Collapse
|
14
|
Siewert B, Stuppner H. The photoactivity of natural products - An overlooked potential of phytomedicines? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152985. [PMID: 31257117 DOI: 10.1016/j.phymed.2019.152985] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Photoactivity, though known for centuries, is only recently shifting back into focus as a treatment option against cancer and microbial infections. The external factor light is the ingenious key-component of this therapy: Since light activates the drug locally, a high level of selectivity is reached and side effects are avoided. The first reported photoactive medicines were plant extracts. Synthetic entities (so-called photosensitizers PSs), however, paved the route towards the clinical approval of the so-called photodynamic therapy (PDT), and thus natural PSs took a backseat in the past. HYPOTHESIS Many isolated bioactive phytochemicals hold a hidden photoactive potential, which is overlooked due to the reduced common awareness of photoactivity. METHODS A systematic review of reported natural PSs and their supposed medicinal application was conducted by employing PubMed, Scifinder, and Web of Science. The identified photoactive natural products were compiled including information about their natural sources, their photoyield, and their pharmacological application. Furthermore, the common chemical scaffolds of natural PS are shown to enable the reader to recognize potentially overlooked natural PSs. RESULTS The literature review revealed over 100 natural PS, excluding porphyrins. The PSs were classified according to their scaffold. Thereby it was shown that some PS-scaffolds were analyzed in a detailed way, while other classes were only scarcely investigated, which leaves space for future discoveries. In addition, the literature revealed that many PSs are phytoalexins, thus the selection of the starting material significantly matters in order to find new PSs. CONCLUSION Photoactive principles are ubiquitous and can be found in various plant extracts. With the increasing availability of light-irradiation setups for the identification of photoactive natural products, we anticipate the discovery of many new natural PSs in the near future. With the accumulation of chemically diverse PSs, PDT itself might finally reach its clinical breakthrough as a promising alternative treatment against multi-resistant microbes and cancer types.
Collapse
Affiliation(s)
- Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
| |
Collapse
|
15
|
Schattschneider C, Doniz Kettenmann S, Hinojosa S, Heinrich J, Kulak N. Biological activity of amphiphilic metal complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Rohrabaugh TN, Collins KA, Xue C, White JK, Kodanko JJ, Turro C. New Ru(ii) complex for dual photochemotherapy: release of cathepsin K inhibitor and 1O 2 production. Dalton Trans 2018; 47:11851-11858. [PMID: 29741184 DOI: 10.1039/c8dt00876k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new complex, [Ru(tpy)(dppn)(Cbz-Leu-NHCH2CN)]2+ (1, tpy = 2,2':6',2''-terpyridine, dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) was synthesized and its photochemical properties were investigated. This complex undergoes photorelease of the Cbz-Leu-NHCH2CN ligand, a known cathepsin K inhibitor, with a quantum yield, Φ450, of 0.0012(4) in water (λirr = 450 nm). In addition, 1 sensitizes the production of singlet oxygen upon visible light irradiation with quantum yield, ΦΔ, of 0.64(3) in CH3OH. The photophysical properties of 1 were compared with those of [Ru(tpy)(bpy)(Cbz-Leu-NHCH2CN)]2+ (2, bpy = 2,2'-bipyridine), [Ru(tpy)(dppn)(CH3CN)]2+ (3), and [Ru(tpy)(bpy)(CH3CN)]2+ (4) to evaluate the effect of the release of the Cbz-Leu-NHCH2CN inhibitor relative to the CH3CN ligand, as well as the role of dppn as the bidentate ligand for 1O2 production instead of bpy. Nanosecond transient absorption spectroscopy confirms the formation of the long-lived dppn-centered 3ππ* state in 1 and 3 with a maximum at ∼540 nm and τ ∼20 μs in deaerated acetonitrile. Complexes 1 and 3 are able to cause photoinduced damage to DNA (λirr ≥ 395 nm), whereas 2 and 4 do not photocleave DNA under similar experimental conditions. These results suggest that 1 is a promising agent for dual activity, both releasing a drug and producing singlet oxygen, and is poised to exhibit enhanced biological activity in phototochemotherapy upon irradiation with visible light.
Collapse
Affiliation(s)
- Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The success of platinum-based anticancer agents has motivated the exploration of novel metal-based drugs for several decades, whereas problems such as drug-resistance and systemic toxicity hampered their clinical applications and efficacy. Stimuli-responsiveness of some metal complexes offers a good opportunity for designing site-specific prodrugs to maximize the therapeutic efficacy and minimize the side effect of metallodrugs. This review presents a comprehensive and up-to-date overview on the therapeutic stimuli-responsive metallodrugs that have appeared in the past two decades, where stimuli such as redox, pH, enzyme, light, temperature, and so forth were involved. The compounds are classified into three major categories based on the nature of stimuli, that is, endo-stimuli-responsive metallodrugs, exo-stimuli-responsive metallodrugs, and dual-stimuli-responsive metallodrugs. Representative examples of each type are discussed in terms of structure, response mechanism, and potential medical applications. In the end, future opportunities and challenges in this field are tentatively proposed. With diverse metal complexes being introduced, the foci of this review are pointed to platinum and ruthenium complexes.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Nafees Muhammad
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
18
|
Siewert B, Langerman M, Pannwitz A, Bonnet S. Synthesis and Avidin Binding of Ruthenium Complexes Functionalized with a Light-Cleavable Free Biotin Moiety. Eur J Inorg Chem 2018; 2018:4117-4124. [PMID: 31031567 PMCID: PMC6473509 DOI: 10.1002/ejic.201800644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 01/01/2023]
Abstract
In this work the synthesis, photochemistry, and streptavidin interaction of new [Ru(tpy)(bpy)(SRR')](PF6)2 complexes where the R' group contains a free biotin ligand, are described. Two different ligands SRR' were investigated: An asymmetric ligand 1 where the Ru-bound thioether is a N-acetylmethionine moiety linked to the free biotin fragment via a triethylene glycol spacer and a symmetrical ligand 2 containing two identical biotin moieties. The coordination of these two ligands to the precursor [Ru(tpy)(bpy)Cl]Cl was studied in water at 80 °C. In such conditions the coordination of the asymmetric ligand 1 occurred under thermodynamic control. After the reaction, a mononuclear and a binuclear complex were isolated. In the mononuclear complex, the ratio of methionine- {[6](PF6)2} vs. biotin-bound {[7](PF6)2} regioisomer was 5.3 and the free biotin fragment of [6](PF6)2 allowed to purify it from its isomer [7](PF6)2 at small scales using avidin affinity chromatography. Coordination of the symmetrical ligand 2 afforded [Ru(tpy)(bpy)(2)](PF6)2 {[8](PF6)2} in synthetically useful scales (100 mg), good yield (82 %), and without traces of the binuclear impurity. In this complex, one of the biotin remains free whereas the second one is coordinated to ruthenium. Photochemical release of ligand 2 from [8](PF6)2 occurred upon blue light irradiation (465 nm) with a photosubstitution quantum yield of 0.011 that was independent of the binding of streptavidin to the free biotin ligand.
Collapse
Affiliation(s)
- Bianka Siewert
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55233CCLeidenThe Netherlands
| | - Michiel Langerman
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55233CCLeidenThe Netherlands
| | - Andrea Pannwitz
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55233CCLeidenThe Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55233CCLeidenThe Netherlands
| |
Collapse
|
19
|
Vernooij RR, Joshi T, Horbury MD, Graham B, Izgorodina EI, Stavros VG, Sadler PJ, Spiccia L, Wood BR. Spectroscopic Studies on Photoinduced Reactions of the Anticancer Prodrug, trans,trans,trans-[Pt(N 3 ) 2 (OH) 2 (py) 2 ]. Chemistry 2018; 24:5790-5803. [PMID: 29314368 PMCID: PMC5947305 DOI: 10.1002/chem.201705349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Indexed: 02/05/2023]
Abstract
The photodecomposition mechanism of trans,trans,trans-[Pt(N3 )2 (OH)2 (py)2 ] (1, py=pyridine), an anticancer prodrug candidate, was probed using complementary Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR), transient electronic absorption, and UV/Vis spectroscopy. Data fitting using Principal Component Analysis (PCA) and Multi-Curve Resolution Alternating Least Squares, suggests the formation of a trans-[Pt(N3 )(py)2 (OH/H2 O)] intermediate and trans-[Pt(py)2 (OH/H2 O)2 ] as the final product upon 420 nm irradiation of 1 in water. Rapid disappearance of the hydroxido ligand stretching vibration upon irradiation is correlated with a -10 cm-1 shift to the antisymmetric azido vibration, suggesting a possible second intermediate. Experimental proof of subsequent dissociation of azido ligands from platinum is presented, in which at least one hydroxyl radical is formed in the reduction of PtIV to PtII . Additionally, the photoinduced reaction of 1 with the nucleotide 5'-guanosine monophosphate (5'-GMP) was comprehensively studied, and the identity of key photoproducts was assigned with the help of ATR-FTIR spectroscopy, mass spectrometry, and density functional theory calculations. The identification of marker bands for some of these photoproducts (e.g., trans-[Pt(N3 )(py)2 (5'-GMP)] and trans-[Pt(py)2 (5'-GMP)2 ]) will aid elucidation of the chemical and biological mechanism of anticancer action of 1. In general, these studies demonstrate the potential of vibrational spectroscopic techniques as promising tools for studying such metal complexes.
Collapse
Affiliation(s)
- Robbin R. Vernooij
- School of Chemistry and Centre for BiospectroscopyMonash UniversityClayton3800VICAustralia
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Tanmaya Joshi
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-Rossendorf01328DresdenGermany
| | - Michael D. Horbury
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Bim Graham
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVIC3052Australia
| | | | - Vasilios G. Stavros
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Leone Spiccia
- School of Chemistry and Centre for BiospectroscopyMonash UniversityClayton3800VICAustralia
| | - Bayden R. Wood
- School of Chemistry and Centre for BiospectroscopyMonash UniversityClayton3800VICAustralia
| |
Collapse
|
20
|
Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev 2018; 46:7706-7756. [PMID: 29177281 DOI: 10.1039/c7cs00680b] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruthenium(ii) [Ru(ii)] polypyridyl complexes have been the focus of intense investigations since work began exploring their supramolecular interactions with DNA. In recent years, there have been considerable efforts to translate this solution-based research into a biological environment with the intention of developing new classes of probes, luminescent imaging agents, therapeutics and theranostics. In only 10 years the field has expanded with diverse applications for these complexes as imaging agents and promising candidates for therapeutics. In light of these efforts this review exclusively focuses on the developments of these complexes in biological systems, both in cells and in vivo, and hopes to communicate to readers the diversity of applications within which these complexes have found use, as well as new insights gained along the way and challenges that researchers in this field still face.
Collapse
Affiliation(s)
- Fergus E Poynton
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
21
|
Lameijer LN, Brevé TG, van Rixel VHS, Askes SHC, Siegler MA, Bonnet S. Effects of the Bidentate Ligand on the Photophysical Properties, Cellular Uptake, and (Photo)cytotoxicity of Glycoconjugates Based on the [Ru(tpy)(NN)(L)] 2+ Scaffold. Chemistry 2018; 24:2709-2717. [PMID: 29220545 PMCID: PMC5838788 DOI: 10.1002/chem.201705388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Ruthenium polypyridyl complexes have received widespread attention as potential chemotherapeutics in photodynamic therapy (PDT) and in photochemotherapy (PACT). Here, we investigate a series of sixteen ruthenium polypyridyl complexes with general formula [Ru(tpy)(N-N)(L)]+/2+ (tpy=2,2':6',2''-terpyridine, N-N=bpy (2,2'-bipyridine), phen (1,10-phenanthroline), dpq (pyrazino[2,3-f][1,10]phenanthroline), dppz (dipyrido[3,2-a:2',3'-c]phenazine, dppn (benzo[i]dipyrido[3,2-a:2',3'-c]phenazine), pmip (2-(4-methylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), pymi ((E)-N-phenyl-1-(pyridin-2-yl)methanimine), or azpy (2-(phenylazo)pyridine), L=Cl- or 2-(2-(2-(methylthio)ethoxy)ethoxy)ethyl-β-d-glucopyranoside) and their potential for either PDT or PACT. We demonstrate that although increased lipophilicity is generally related to increased uptake of these complexes, it does not necessarily lead to increased (photo)cytotoxicity. However, the non-toxic complexes are excellent candidates as PACT carriers.
Collapse
Affiliation(s)
- Lucien N. Lameijer
- Leiden Institute of ChemistryLeiden University, Gorlaeus Laboratories, P.O. Box 95022300 RALeidenThe Netherlands
| | - Tobias G. Brevé
- Leiden Institute of ChemistryLeiden University, Gorlaeus Laboratories, P.O. Box 95022300 RALeidenThe Netherlands
| | - Vincent H. S. van Rixel
- Leiden Institute of ChemistryLeiden University, Gorlaeus Laboratories, P.O. Box 95022300 RALeidenThe Netherlands
| | - Sven H. C. Askes
- Leiden Institute of ChemistryLeiden University, Gorlaeus Laboratories, P.O. Box 95022300 RALeidenThe Netherlands
| | - M. A. Siegler
- Departement of ChemistryJohns Hopkins UniversityBaltimoreMaryland21218USA
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden University, Gorlaeus Laboratories, P.O. Box 95022300 RALeidenThe Netherlands
| |
Collapse
|
22
|
Mitra K. Platinum complexes as light promoted anticancer agents: a redefined strategy for controlled activation. Dalton Trans 2018; 45:19157-19171. [PMID: 27883129 DOI: 10.1039/c6dt03665a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Site-specific delivery and amenable activation of prodrugs are indispensible criteria for designing novel anticancer agents. Platinum based drugs vanguard the chemotherapeutic regimes and over the years significant attention has been paid to achieve more efficacious drugs with fewer adverse effects. The switch from platinum(ii) drugs to the inert platinum(iv) analogues proved advantageous but the new prodrugs still suffered from unspecific cytotoxic actions. Thus the photoactivation of an inert platinum prodrug specifically within neoplastic cells provided the desired spatio-temporal control over drug activation by means of illumination, thereby limiting the cytotoxic events to only at the targeted tumors. This article collates research on platinum complexes which exhibit potential light mediated anticancer effects and provides insights into the underlying mechanisms of activation. Fine tuning of the coordination sphere results in dramatic alteration of the redox and spectral properties of both ground and excited states and the cellular properties of the molecules. This concise article highlights the various light promoted strategies employed to attain a controlled release of active platinum(ii) and/or reactive oxygen species such as photoreduction, photocaging, photodissociation and photosensitization. Such dual action photoactive metal complexes with improved aqueous solubility and versatility are promising candidates for combination therapy which is likely to be the future of anticancer research.
Collapse
Affiliation(s)
- Koushambi Mitra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560-012, India.
| |
Collapse
|
23
|
Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 2017; 46:5771-5804. [PMID: 28654103 PMCID: PMC5624840 DOI: 10.1039/c7cs00195a] [Citation(s) in RCA: 749] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Collapse
Affiliation(s)
- Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Jang HJ, Hopkins SL, Siegler MA, Bonnet S. Frontier orbitals of photosubstitutionally active ruthenium complexes: an experimental study of the spectator ligands' electronic properties influence on photoreactivity. Dalton Trans 2017; 46:9969-9980. [PMID: 28726891 DOI: 10.1039/c7dt01540b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The synthesis and characterization of [Ru(tpy)(R2bpy)(L)](X)n complexes (tpy = 2,2':6',2''-terpyridine, R2bpy = 4,4'-dimethyl-2,2'-bipyridine (dmbpy), or 4,4'-bis(trifluoromethyl)-2,2'-bipyridine (tfmbpy), X = Cl- or PF6-, and n = 1 or 2) are described. The dmbpy and tfmbpy bidentate ligands allow for investigating the effects of electron-donating and electron-withdrawing ligands, respectively, on the frontier orbital energetics as well as the photoreactivity of these ruthenium polypyridyl complexes for five prototypical monodentate ligands L = Cl-, H2O, CH3CN, 2-(methylthio)ethanol (Hmte), or pyridine. According to spectroscopic and electrochemical studies, the dmbpy analogues displayed a singlet metal-to-ligand charge transfer (1MLCT) transition at higher energy than the tfmbpy analogues. The shift of the 1MLCT to higher energy results from the lowest unoccupied molecular orbital (LUMO) for the dmbpy analogues being tpy-based, whereas for the tfmbpy analogues orbital inversion occurs resulting in a tfmbpy-based LUMO. The energy level of the highest occupied molecular orbital (HOMO) was considerably affected by the nature of the monodentate ligand. Visible light irradiation of the complexes demonstrated that the tfmbpy analogue increased the rate and quantum yields of photosubstitution reactions, compared to the dmbpy analogue, suggesting that the electron-withdrawing substituents allowed better thermal accessibility of the triplet metal-centered (3MC) state from the photochemically generated triplet metal-to-ligand charge transfer (3MLCT) excited state. A correlation between the photolability of the monodentate ligands and the electrochemical reversibility of the metal-based oxidation is also reported.
Collapse
Affiliation(s)
- Hyo Jin Jang
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
25
|
Sun W, Thiramanas R, Slep LD, Zeng X, Mailänder V, Wu S. Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go? Chemistry 2017; 23:10832-10837. [DOI: 10.1002/chem.201701224] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Wen Sun
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Raweewan Thiramanas
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Leonardo D. Slep
- Departamento de Química Inorgánica; Analítica y Química Física; Facultad de Ciencias Exactas y Naturales, and; INQUIMAE Universidad de Buenos Aires/ CONICET; Pabellón 2, 3er piso, Ciudad Universitaria C1428EHA Ciudad Autónoma de Buenos Aires Argentina
| | - Xiaolong Zeng
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Center for Translational Nanomedicine, Dermatology Clinic; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstr. 1 55131 Mainz Germany
| | - Si Wu
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
26
|
Chow MJ, Alfiean M, Pastorin G, Gaiddon C, Ang WH. Apoptosis-independent organoruthenium anticancer complexes that overcome multidrug resistance: self-assembly and phenotypic screening strategies. Chem Sci 2017; 8:3641-3649. [PMID: 30155208 PMCID: PMC6094174 DOI: 10.1039/c7sc00497d] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/22/2017] [Indexed: 01/20/2023] Open
Abstract
Multidrug resistance is a major impediment to chemotherapy and limits the efficacies of conventional anticancer drugs. A strategy to bypass multidrug resistance is to develop new drug candidates capable of inducing apoptosis-independent programmed cell death. However, cellular pathways implicated in alternative programmed cell death are not well-elucidated and multifactorial, making a target-based discovery approach a challenge. Here, we show that a coordination-directed three-component assembly and phenotypic screening strategy could be employed as a viable alternative for the identification of apoptosis-independent organoruthenium anticancer agents. Through an on-plate synthesis and screening of 195 organoruthenium complexes against apoptosis-sensitive and -resistant cancers, we identified two apoptosis-independent hits. Subsequent validation of the two hits showed a lack of induction of apoptotic biomarkers, a caspase-independent activity and an equal efficacy in both apoptosis-sensitive and -resistant colorectal cancers. This validated their apoptosis-independent modes-of-action, paving the way as potential candidates for the treatment of highly-refractory cancer phenotypes.
Collapse
Affiliation(s)
- Mun Juinn Chow
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , 117543 Singapore .
| | - Mohammad Alfiean
- School of Chemistry and Life Sciences , Nanyang Polytechnic , Singapore
| | - Giorgia Pastorin
- Department of Pharmacy , National University of Singapore , 3 Science Drive 3 , 117543 Singapore
- NUS Graduate School for Integrative Sciences and Engineering , Singapore . ; Tel: +65 6516 5131
| | - Christian Gaiddon
- Université de Strasbourg , Strasbourg , France
- U1113 INSERM , 3 Avenue Molière , Strasbourg 67200 , France
| | - Wee Han Ang
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , 117543 Singapore .
- NUS Graduate School for Integrative Sciences and Engineering , Singapore . ; Tel: +65 6516 5131
| |
Collapse
|
27
|
Siewert B, Langerman M, Hontani Y, Kennis JTM, van Rixel VHS, Limburg B, Siegler MA, Talens Saez V, Kieltyka RE, Bonnet S. Turning on the red phosphorescence of a [Ru(tpy)(bpy)(Cl)]Cl complex by amide substitution: self-aggregation, toxicity, and cellular localization of an emissive ruthenium-based amphiphile. Chem Commun (Camb) 2017; 53:11126-11129. [DOI: 10.1039/c7cc02989f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dodecylamide functionalization of [Ru(tpy)(bpy)Cl]Cl led to an emissive, self-assembling, and cytotoxic complex targeting membranes.
Collapse
Affiliation(s)
- B. Siewert
- Leiden Institute of Chemistry
- Leiden University
- 233CC Leiden
- The Netherlands
- Institute of Pharmacy
| | - M. Langerman
- Leiden Institute of Chemistry
- Leiden University
- 233CC Leiden
- The Netherlands
| | - Y. Hontani
- Department of Physics and Astronomy
- Vrije Universiteit
- De Boelelaan 1081
- 1081HV Amsterdam
- The Netherlands
| | - J. T. M. Kennis
- Department of Physics and Astronomy
- Vrije Universiteit
- De Boelelaan 1081
- 1081HV Amsterdam
- The Netherlands
| | - V. H. S. van Rixel
- Leiden Institute of Chemistry
- Leiden University
- 233CC Leiden
- The Netherlands
| | - B. Limburg
- Leiden Institute of Chemistry
- Leiden University
- 233CC Leiden
- The Netherlands
| | - M. A. Siegler
- Small Molecule X-ray Facility, Department of Chemistry Johns Hopkins University
- Baltimore
- USA
| | - V. Talens Saez
- Leiden Institute of Chemistry
- Leiden University
- 233CC Leiden
- The Netherlands
| | - R. E. Kieltyka
- Leiden Institute of Chemistry
- Leiden University
- 233CC Leiden
- The Netherlands
| | - S. Bonnet
- Leiden Institute of Chemistry
- Leiden University
- 233CC Leiden
- The Netherlands
| |
Collapse
|
28
|
Lameijer LN, Hopkins SL, Brevé TG, Askes SHC, Bonnet S. d- Versus l-Glucose Conjugation: Mitochondrial Targeting of a Light-Activated Dual-Mode-of-Action Ruthenium-Based Anticancer Prodrug. Chemistry 2016; 22:18484-18491. [PMID: 27859843 PMCID: PMC5214309 DOI: 10.1002/chem.201603066] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 12/13/2022]
Abstract
Light-activated ruthenium polypyridyl anticancer prodrugs often suffer from poor water solubility, poor selectivity, and/or ill-defined intracellular targets. Coordination of the d- or l-glucose thioether ligand 3 (2-(2-(2-(methylthio)ethoxy)ethoxy)ethyl-β-glucopyranoside) to the highly lipophilic ruthenium complex [Ru(tpy)(dppn)(H2 O)]2+ ([1]2+ ; dppn=benzo[i]dipyrido-[3,2-a:2',3'-c]phenazine, tpy=2,2':6',2''-terpyridine) solved all these problems at once. The two enantiomers of [Ru(tpy)(dppn)(3)][PF6 ]2 , [d-2][PF6 ]2 and [l-2][PF6 ]2 , were soluble in water, which allowed the influence of the chirality of the glucose moiety on uptake, toxicity, and intracellular localization of the prodrug to be probed without changing any other physicochemical properties. Both compounds showed mild, but different, cytotoxicity in A549 (human lung carcinoma) and MCF-7 (human breast adenocarcinoma) cancer cells in the dark, whereas following low doses of visible light irradiation (3.1 J cm-2 at λ = 454 nm), a similar, but high cytotoxicity (EC50 < 1 μm), was observed. Irrespective of the chirality, both slightly emissive Ru complexes were found in the mitochondria, and two modes of action may contribute to light-induced cell death: 1) the glucose thioether ligand is photosubstituted by water, thus [1]2+ , which interacts with DNA at an exceptionally high 400:1 base pair/Ru ratio, is released; 2) both [1]2+ and [2]2+ produce massive amounts of singlet oxygen, which leads to very efficient photodynamic DNA cleavage.
Collapse
Affiliation(s)
- Lucien N. Lameijer
- Leiden Institute of ChemistryLeiden UniversityGorlaeus Laboratories, P.O. Box 95022300 RALeidenThe Netherlands
| | - Samantha L. Hopkins
- Leiden Institute of ChemistryLeiden UniversityGorlaeus Laboratories, P.O. Box 95022300 RALeidenThe Netherlands
| | - Tobias G. Brevé
- Leiden Institute of ChemistryLeiden UniversityGorlaeus Laboratories, P.O. Box 95022300 RALeidenThe Netherlands
| | - Sven H. C. Askes
- Leiden Institute of ChemistryLeiden UniversityGorlaeus Laboratories, P.O. Box 95022300 RALeidenThe Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden UniversityGorlaeus Laboratories, P.O. Box 95022300 RALeidenThe Netherlands
| |
Collapse
|
29
|
Siewert B, van Rixel VHS, van Rooden EJ, Hopkins SL, Moester MJB, Ariese F, Siegler MA, Bonnet S. Chemical Swarming: Depending on Concentration, an Amphiphilic Ruthenium Polypyridyl Complex Induces Cell Death via Two Different Mechanisms. Chemistry 2016; 22:10960-8. [PMID: 27373895 PMCID: PMC5096026 DOI: 10.1002/chem.201600927] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 01/08/2023]
Abstract
The crystal structure and in vitro cytotoxicity of the amphiphilic ruthenium complex [3](PF6 )2 are reported. Complex [3](PF6 )2 contains a Ru-S bond that is stable in the dark in cell-growing medium, but is photosensitive. Upon blue-light irradiation, complex [3](PF6 )2 releases the cholesterol-thioether ligand 2 and an aqua ruthenium complex [1](PF6 )2 . Although ligand 2 and complex [1](PF6 )2 are by themselves not cytotoxic, complex [3](PF6 )2 was unexpectedly found to be as cytotoxic as cisplatin in the dark, that is, with micromolar effective concentrations (EC50 ), against six human cancer cell lines (A375, A431, A549, MCF-7, MDA-MB-231, and U87MG). Blue-light irradiation (λ=450 nm, 6.3 J cm(-2) ) had little influence on the cytotoxicity of [3](PF6 )2 after 6 h of incubation time, but it increased the cytotoxicity of the complex by a factor 2 after longer (24 h) incubation. Exploring the unexpected biological activity of [3](PF6 )2 in the dark elucidated an as-yet unknown bifaceted mode of action that depended on concentration, and thus, on the aggregation state of the compound. At low concentration, it acts as a monomer, inserts into the membrane, and can deliver [1](2+) inside the cell upon blue-light activation. At higher concentrations (>3-5 μm), complex [3](PF6 )2 forms supramolecular aggregates that induce non-apoptotic cell death by permeabilizing cell membranes and extracting lipids and membrane proteins.
Collapse
Affiliation(s)
- Bianka Siewert
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, Netherlands), FAX
| | - Vincent H S van Rixel
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, Netherlands), FAX
| | - Eva J van Rooden
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, Netherlands), FAX
| | - Samantha L Hopkins
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, Netherlands), FAX
| | - Miriam J B Moester
- Department of Physics & Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Freek Ariese
- Department of Physics & Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Maxime A Siegler
- Small Molecule X-ray Crystallography Facility, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, Netherlands), FAX.
| |
Collapse
|