1
|
Zhu M, Tian Y, Sha J, Fu W. Photocatalytic radical cascade cyclization of
N
‐(o–cyanobiaryl) acrylamides: access to CF
2
H‐functionalized pyrido[4,3,2‐gh] phenanthridines. ChemistrySelect 2022. [DOI: 10.1002/slct.202203986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mei Zhu
- College of Food and Drug Luoyang Normal University 471934 Luoyang P. R. China
| | - Yunfei Tian
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Fuction-Oriented Porous Materials Luoyang Normal University 471022 Luoyang P. R. China
| | - Jinyu Sha
- College of Food and Drug Luoyang Normal University 471934 Luoyang P. R. China
| | - Weijun Fu
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Fuction-Oriented Porous Materials Luoyang Normal University 471022 Luoyang P. R. China
| |
Collapse
|
2
|
Liu F, Zhang K, Zhao XF, Meng QX, Zhao TS, Tian WF, He YQ. Photoinduced Stereoselective Hydroalkylation of Terminal Arylalkynes via C(sp3)-H Functionalization. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Paveliev SA, Segida OO, Mulina OM, Krylov IB, Terent’ev AO. Decatungstate-Catalyzed Photochemical Synthesis of Enaminones from Vinyl Azides and Aldehydes. Org Lett 2022; 24:8942-8947. [DOI: 10.1021/acs.orglett.2c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Stanislav A. Paveliev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Oleg O. Segida
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Olga M. Mulina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Igor B. Krylov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander O. Terent’ev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
4
|
Li J, Wang S, Zhao J, Li P. Visible Light-Promoted Radical-Mediated Ring-Opening/Cyclization of Vinyl Benzotriazoles: An Alternative Approach to Phenanthridines. Org Lett 2022; 24:5977-5981. [PMID: 35943433 DOI: 10.1021/acs.orglett.2c02249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible light-promoted radical-mediated ring-opening/cyclization of vinyl benzotriazoles has been developed. The method provides an efficient and practical approach to synthesize functionalized phenanthridines from vinyl benzotriazoles with alkyl bromides under mild conditions. Significantly, the readily available and bench-stable vinyl benzotriazoles can serve as valuable alternative radical acceptors during the synthesis of phenanthridines.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Shichong Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jingjing Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
5
|
Liu L, Zhang Q, Wang C. Redox-Neutral Generation of Iminyl Radicals by N-Heterocyclic Carbene Catalysis: Rapid Access to Phenanthridines from Vinyl Azides. Org Lett 2022; 24:5913-5917. [PMID: 35925779 DOI: 10.1021/acs.orglett.2c02118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An N-heterocyclic carbene-catalyzed oxidant-, metal- and light-free iminyl radical generation pathway stemming from the reaction of vinyl azide and α-bromo ester is uncovered. This newly developed methodology is successfully applied to the redox-neutral construction of a number of diversified phenanthridine derivatives with nice functional group compatibility. Insights from the mechanism study reveal that this NHC-catalyzed transformation potentially proceeds through an alkyl radical addition-initiated HAS process, with the iminyl radical as an active intermediate.
Collapse
Affiliation(s)
- Lixia Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong511443, China
| | - Qijing Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong511443, China
| | - Chengming Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong511443, China
| |
Collapse
|
6
|
Zhan Y, Dai C, Zhu Z, Liu P, Sun P. Electrochemical Decarboxylative Cyclization of α‐Amino‐Oxy Acids to Access Phenanthridine Derivatives. Chem Asian J 2022; 17:e202101388. [DOI: 10.1002/asia.202101388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yanling Zhan
- Nanjing Normal University Chemistry Nanjing CHINA
| | - Changhui Dai
- Nanjing Normal University Chemistry Nanjing CHINA
| | - Zitong Zhu
- Nanjing Normal University Chemistry Nanjing CHINA
| | - Ping Liu
- Nanjing Normal University Chemistry Nanjing CHINA
| | - Peipei Sun
- Nanjing Normal University Chemistry Ninghai Road 210097 Nanjing CHINA
| |
Collapse
|
7
|
Chen JY, Huang J, Sun K, He WM. Recent advances in transition-metal-free trifluoromethylation with Togni's reagents. Org Chem Front 2022. [DOI: 10.1039/d1qo01504d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition-metal-free trifluoromethylations have attracted significant research interest driven by the increasing importance of CF3-containing compounds.
Collapse
Affiliation(s)
- Jin-Yang Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jing Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
8
|
Gao Y, Zhao Q, Li L, Ma YN. Synthesis of Six-Membered N-Heterocycle Frameworks Based on Intramolecular Metal-Free N-Centered Radical Chemistry. CHEM REC 2021; 22:e202100218. [PMID: 34618405 DOI: 10.1002/tcr.202100218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
The formation of intramolecular C-N bond represents a powerful strategy in organic transformation as the great importance of N-heterocycles in the fields of natural products and bioactive molecules. This personal account describes the synthesis of cyclic phosphinamidation, benzosultam, benzosulfoximine, phenanthridine and their halogenated compounds through transition-metal-free intramolecular oxidative C-N bond formation. Mechanism study reveals that N-X bond is initially formed under the effect of hypervalent halogen, which is very unstable and easily undergoes thermal or light homolytic cleavage to generate nitrogen radical. Then the nitrogen radical is trapped by the arene to give aryl radical. Rearomatization of aryl radical under the oxidant to provide corresponding N-heterocycle. Under suitable conditions, the N-heterocycles can be further transformed to halogenated N-heterocycles.
Collapse
Affiliation(s)
- Yan Gao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Qianyi Zhao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Lixin Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
| | - Yan-Na Ma
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
9
|
Li C, Wang J, Yang SD. Visible-light-facilitated P-center radical addition to C[double bond, length as m-dash]X (X = C, N) bonds results in cyclizations. Chem Commun (Camb) 2021; 57:7997-8002. [PMID: 34319325 DOI: 10.1039/d1cc02604f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visible-light-facilitated phosphorus radical reactions have been developed as a powerful and sustainable tool for the synthesis of various organophosphorus compounds. In general, these reactions require stoichiometric amounts of oxidants, and reductants, bases, and radical initiators, leading to uneconomical and complicated processes. Progress has been made over the past few years toward using reactions that proceed under eco-benign and mild reaction conditions. Furthermore, these reactions have broad functional group tolerance, with some facile and economical pathways. Herein, we summarize the discoveries and achievements pertaining to C-P bond formation through a visible light photocatalysis procedure with high atom economy, made by our group and other research groups. It was established that greener and more environmentally friendly approaches do not require an additional oxidant or base. Moreover, we have designed and synthesized a new type of P-radical precursor, which can take part in reactions without the requirement for any additional bases, oxidants, and additives. This breakthrough, pertaining to novel visible-light-induced transformations, will be discussed and a plausible mechanism is proposed, based on corresponding experiments and the literature.
Collapse
Affiliation(s)
- Chong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | |
Collapse
|
10
|
Liang Q, Lin L, Li G, Kong X, Xu B. Synthesis of Phenanthridine and Quinoxaline Derivatives
via
Copper‐Catalyzed
Radical Cyanoalkylation of Cyclobutanone Oxime Esters and Vinyl Azides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qi Liang
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| | - Long Lin
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| | - Guodong Li
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| | - Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology No. 666 Liaohe Road Changzhou Jiangsu 213032 China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| |
Collapse
|
11
|
Zhou N, Wu S, Kuang K, Wu M, Zhang M. Ni-Catalyzed radical cyclization of vinyl azides with cyclobutanone oxime esters to access cyanoalkyl containing quinoxalin-2(1 H)-ones. Org Biomol Chem 2021; 19:4697-4700. [PMID: 33982738 DOI: 10.1039/d1ob00610j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed cascade addition/cyclization of 2-azido-N-arylacrylamides and cyclobutanone oxime esters for the construction of 3-cyanoalkylated quinoxalin-2(1H)-ones is developed. This reaction proceeds under mild conditions with good functional group tolerance and broad substrate scope. A preliminary mechanistic experiment indicated that the cyanoalkyl radical might be involved in this transformation.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
12
|
Lin L, Liang Q, Kong X, Chen Q, Xu B. Electrochemical Tandem Fluoroalkylation-Cyclization of Vinyl Azides: Access to Trifluoroethylated and Difluoroethylated N-Heterocycles. J Org Chem 2020; 85:15708-15716. [PMID: 33226809 DOI: 10.1021/acs.joc.0c02213] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transition-metal- and oxidant-free electrochemical strategy for radical fluoroalkylation of vinyl azides was developed. The reaction was carried out under mild conditions by using inexpensive and bench-stable RfSO2Na (Rf = CF3, CF2H) as fluorination reagents. Depending on the starting material, both the electrochemical radical cyclization and dearomatization products could be obtained. This method provides a green and safe approach to synthesize fluorinated nitrogen heterocycles.
Collapse
Affiliation(s)
- Long Lin
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qi Liang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianqiang Kong
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
13
|
Nagode SB, Kant R, Rastogi N. Hantzsch Ester-Mediated Synthesis of Phenanthridines under Visible-Light Irradiation. Chem Asian J 2020; 15:3513-3518. [PMID: 32935472 DOI: 10.1002/asia.202000888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/09/2020] [Indexed: 01/08/2023]
Abstract
An efficient photocatalytic synthesis of phenanthridines mediated by an organo-photoredox initiator Hantzsch ester has been developed via denitrogenative intramolecular annulation of benzotriazolyl chalcones. The highly reducing photoactivated Hantzsch ester facilitates the transformation of benzotriazolyl chalcones into phenanthridinyl chalcones through photoinduced electron transfer (PET) and hydrogen atom transfer (HAT) processes. The mild reaction conditions utilizing inexpensive Hantzsch ester as photosensitizer, wide reaction scope and excellent functional group tolerance are notable attributes of the methodology.
Collapse
Affiliation(s)
- Savita B Nagode
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sec. 10, JankipuramExtension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ruchir Kant
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sec. 10, JankipuramExtension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
14
|
Paveliev SA, Alimkhanova LS, Sergeeva AV, Terent'ev AO. Cerium(IV) ammonium nitrate promoted synthesis of O-phthalimide oximes from vinyl azides and N-hydroxyphthalimide. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Li G, Kong X, Liang Q, Lin L, Yu K, Xu B, Chen Q. Metal‐Free Electrochemical Coupling of Vinyl Azides: Synthesis of Phenanthridines and
β
‐Ketosulfones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guodong Li
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Xianqiang Kong
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
- School of Chemical Engineering and Materials Changzhou Institute of Technology No. 666 Liaohe Road 213032 Changzhou China
| | - Qi Liang
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Long Lin
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Ke Yu
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Bo Xu
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| |
Collapse
|
16
|
Gao Y, Jing Y, Li L, Zhang J, Chen X, Ma YN. Synthesis of Phenanthridines through Iodine-Supported Intramolecular C–H Amination and Oxidation under Visible Light. J Org Chem 2020; 85:12187-12198. [DOI: 10.1021/acs.joc.0c01390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yan Gao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi Jing
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lixin Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan-Na Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Paveliev SA, Churakov AI, Alimkhanova LS, Segida OO, Nikishin GI, Terent'ev AO. Electrochemical Synthesis of
O
‐Phthalimide Oximes from
α
‐Azido Styrenes
via
Radical Sequence: Generation, Addition and Recombination of Imide‐
N
‐Oxyl and Iminyl Radicals with C−O/N−O Bonds Formation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stanislav A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Artem I. Churakov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Liliya S. Alimkhanova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| |
Collapse
|
18
|
Terhorst S, Tiwari DP, Meister D, Petran B, Rissanen K, Bolm C. Syntheses of Trifluoroethylated N-Heterocycles from Vinyl Azides and Togni's Reagent Involving 1, n-Hydrogen-Atom Transfer Reactions. Org Lett 2020; 22:4766-4770. [PMID: 32496070 DOI: 10.1021/acs.orglett.0c01566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2,2,2-Trifluoroethyl-substituted 3-oxazolines, 3-thiazolines, and 5,6-dihydro-2H-1,3-oxazines have been obtained by reacting substituted vinyl azides with a combination of Togni's reagent and substoichiometric amounts of iron(II) chloride. The results of density functional theory calculations support the proposed mechanism involving 1,n-hydrogen-atom transfer reactions.
Collapse
Affiliation(s)
- Steven Terhorst
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Deo Prakash Tiwari
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Daniela Meister
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Benedict Petran
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, FI-40014 Jyväskylä, Finland
| | - Carsten Bolm
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
19
|
Fan J, Li L, Zhang J, Xie M. Expeditious synthesis of phenanthridines through a Pd/MnO2-mediated C–H arylation/oxidative annulation cascade from aldehydes, aryl iodides and amino acids. Chem Commun (Camb) 2020; 56:2775-2778. [PMID: 32022095 DOI: 10.1039/d0cc00300j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The expeditious access to phenanthridines through a Pd/MnO2-mediated arylation/oxidative annulation cascade from aldehydes, aryl iodides and amino acids is described.
Collapse
Affiliation(s)
- Jian Fan
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Li Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| |
Collapse
|
20
|
Matsushita Y, Ochi R, Tanaka Y, Koike T, Akita M. Energy transfer-driven regioselective synthesis of functionalized phenanthridines by visible-light Ir photocatalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00271b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A photocatalytic strategy for selective synthesis of 2-substituted phenanthridines from N-iminylpyridinium salts has been developed.
Collapse
Affiliation(s)
- Yuki Matsushita
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Rika Ochi
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
- School of Materials and Chemical Technology
| | - Takashi Koike
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
- School of Materials and Chemical Technology
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
- School of Materials and Chemical Technology
| |
Collapse
|
21
|
Qu CH, Song GT, Xu J, Yan W, Zhou CH, Li HY, Chen ZZ, Xu ZG. Merging Visible Light with Cross-Coupling: The Photochemical Direct C–H Difluoroalkylation of Imidazopyridines. Org Lett 2019; 21:8169-8173. [DOI: 10.1021/acs.orglett.9b02487] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chuan-Hua Qu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Gui-Ting Song
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jia Xu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Zhong-Zhu Chen
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Zhi-Gang Xu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| |
Collapse
|
22
|
Kawamura S, Sodeoka M. Fluoroalkylation Methods for Synthesizing Versatile Building Blocks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shintaro Kawamura
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Tang YQ, Yang JC, Wang L, Fan M, Guo LN. Ni-Catalyzed Redox-Neutral Ring-Opening/Radical Addition/Ring-Closing Cascade of Cycloketone Oxime Esters and Vinyl Azides. Org Lett 2019; 21:5178-5182. [DOI: 10.1021/acs.orglett.9b01773] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu-Qi Tang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jun-Cheng Yang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Le Wang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Mingjin Fan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Li-Na Guo
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
24
|
Shen MH, Liang XC, Li C, Wu H, Qu HY, Wang FM, Xu HD. Rhodium promoted intramolecular [4 + 2] cycloaddition of 2-azidodiene with alkyne: A transition metal catalysis approach to challenging fused bicyclic vinyl azide. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Zhu M, Fu W, Guo W, Tian Y, Wang Z, Ji B. Visible-light-induced radical trifluoromethylthiolation of N-(o-cyanobiaryl)acrylamides. Org Biomol Chem 2019; 17:3374-3380. [PMID: 30860236 DOI: 10.1039/c9ob00342h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient and general visible-light-mediated trifluoromethylthiolation of N-(o-cyanobiaryl)acrylamides has been successfully accomplished using N-trifluoromethylthiosaccharin as an effective source of SCF3 radicals. The reaction was proposed to proceed via a domino radical trifluoromethylthiolation/cyano insertion/cyclization to afford the corresponding SCF3-containing ring-fused phenanthridine derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Mei Zhu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan 471022, P. R. China.
| | | | | | | | | | | |
Collapse
|
26
|
Cao X, Cai BG, Xu GY, Xuan J. Radical Addition/Cyclization Reaction of 2-Vinylanilines with Alkynes: Synthesis of Naphthalenes via Electron Catalysis. Chem Asian J 2018; 13:3855-3858. [DOI: 10.1002/asia.201801496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/05/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Xia Cao
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; Hefei Anhui 230601 China
| | - Bao-Gui Cai
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; Hefei Anhui 230601 China
| | - Guo-Yong Xu
- Institute of Physical Science and Information Technology; Anhui University; Hefei Anhui 230601 China
| | - Jun Xuan
- Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; Hefei Anhui 230601 China
- Institute of Physical Science and Information Technology; Anhui University; Hefei Anhui 230601 China
| |
Collapse
|
27
|
Zhao H, Xu P, Song J, Xu H. Cathode Material Determines Product Selectivity for Electrochemical C−H Functionalization of Biaryl Ketoximes. Angew Chem Int Ed Engl 2018; 57:15153-15156. [DOI: 10.1002/anie.201809679] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Huai‐Bo Zhao
- State Key Laboratory of Physical Chemistry of Solid SurfacesInnovative Collaboration Center of Chemistry for Energy MaterialsKey Laboratory of Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Pin Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesInnovative Collaboration Center of Chemistry for Energy MaterialsKey Laboratory of Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- Fujian Institute of Research on Structure of MatterChinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesInnovative Collaboration Center of Chemistry for Energy MaterialsKey Laboratory of Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
28
|
Zhao H, Xu P, Song J, Xu H. Cathode Material Determines Product Selectivity for Electrochemical C−H Functionalization of Biaryl Ketoximes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809679] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huai‐Bo Zhao
- State Key Laboratory of Physical Chemistry of Solid SurfacesInnovative Collaboration Center of Chemistry for Energy MaterialsKey Laboratory of Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Pin Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesInnovative Collaboration Center of Chemistry for Energy MaterialsKey Laboratory of Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- Fujian Institute of Research on Structure of MatterChinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesInnovative Collaboration Center of Chemistry for Energy MaterialsKey Laboratory of Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
29
|
Zhou B, Zheng L, Xu Z, Jin H, Wu Q, Li T, Liu Y. Synthesis of Functionalized Phenathridine-6-carbonitriles via Copper-catalyzed Annulation of Vinyl Azides and NaN3
in the Presence of PhI(OAc)2. ChemistrySelect 2018. [DOI: 10.1002/slct.201801772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Limeng Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Zheng Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Qingan Wu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering; Nanyang Normal University, Nangyang, Henan; 473061 P. R. China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| |
Collapse
|
30
|
Yang JC, Zhang JY, Zhang JJ, Duan XH, Guo LN. Metal-Free, Visible-Light-Promoted Decarboxylative Radical Cyclization of Vinyl Azides with N-Acyloxyphthalimides. J Org Chem 2018; 83:1598-1605. [DOI: 10.1021/acs.joc.7b02861] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jun-Cheng Yang
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jia-Yu Zhang
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jin-Jiang Zhang
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Li-Na Guo
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
31
|
Mao LL, Zheng DG, Zhu XH, Zhou AX, Yang SD. Visible-light-induced sulfonylation/cyclization of vinyl azides: one-pot construction of 6-(sulfonylmethyl)phenanthridines. Org Chem Front 2018. [DOI: 10.1039/c7qo00790f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A facile and efficient protocol has been developed for sulfonylation/cyclization of vinyl azides under photoredox conditions.
Collapse
Affiliation(s)
- Liu-Liang Mao
- Key Laboratory of Applied Organic Chemistry
- Higher Institutions of Jiangxi Province
- Shangrao Normal University
- Shangrao 334001
- P. R. China
| | - Da-Gui Zheng
- Key Laboratory of Applied Organic Chemistry
- Higher Institutions of Jiangxi Province
- Shangrao Normal University
- Shangrao 334001
- P. R. China
| | - Xian-Hong Zhu
- Key Laboratory of Applied Organic Chemistry
- Higher Institutions of Jiangxi Province
- Shangrao Normal University
- Shangrao 334001
- P. R. China
| | - An-Xi Zhou
- Key Laboratory of Applied Organic Chemistry
- Higher Institutions of Jiangxi Province
- Shangrao Normal University
- Shangrao 334001
- P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
32
|
Li Y, Zhu Y, Yang SD. Visible-light-induced tandem phosphorylation cyclization of vinyl azides under mild conditions. Org Chem Front 2018. [DOI: 10.1039/c7qo01004d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This method provides a visible-light-induced radical tandem cyclization for the synthesis of phosphorus phenanthridines with various nitrogen-containing substrates.
Collapse
Affiliation(s)
- Yonghong Li
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yuanyuan Zhu
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
33
|
Wang X, Li Y, Qiu G, Wu J. Synthesis of 6-(sulfonylmethyl)phenanthridines through a reaction of aryldiazonium tetrafluoroborates, sulfur dioxide, and vinyl azides. Org Chem Front 2018. [DOI: 10.1039/c8qo00679b] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthesis of 6-(sulfonylmethyl)phenanthridines through a three-component reaction of aryldiazonium tetrafluoroborates, a sulfur dioxide surrogate of DABCO·(SO2)2, and vinyl azides under metal- and additive-free conditions is achieved.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Yuewen Li
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
34
|
Liu X, Wu Z, Zhang Z, Liu P, Sun P. Synthesis of trifluoroalkyl or difluoroalkyl phenanthridine derivatives via cascade reaction using an intramolecular cyano group as a radical acceptor under photoredox catalysis. Org Biomol Chem 2018; 16:414-423. [DOI: 10.1039/c7ob02804k] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the presence of Ru(phen)3Cl2 or fac-Ir(ppy)3 under visible-light irradiation, the addition of fluorinated radicals to N-arylacrylamides followed by an intramolecular cyano group insertion cascade cyclization process produced the target compounds in moderate to good yields.
Collapse
Affiliation(s)
- Xu Liu
- College of Chemistry and Materials Science
- Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Nanjing 210023
- China
| | - Zhongjie Wu
- College of Chemistry and Materials Science
- Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Nanjing 210023
- China
| | - Zeguo Zhang
- College of Chemistry and Materials Science
- Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Nanjing 210023
- China
| | - Ping Liu
- College of Chemistry and Materials Science
- Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Nanjing 210023
- China
| | - Peipei Sun
- College of Chemistry and Materials Science
- Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Nanjing 210023
- China
| |
Collapse
|
35
|
Lübbesmeyer M, Leifert D, Schäfer H, Studer A. Electrochemical initiation of electron-catalyzed phenanthridine synthesis by trifluoromethylation of isonitriles. Chem Commun (Camb) 2018; 54:2240-2243. [DOI: 10.1039/c7cc09302k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Electrochemical initiation of the trifluoromethylation of biaryl isonitriles verifies the electron's catalytic character in the examined cascade reaction.
Collapse
Affiliation(s)
- M. Lübbesmeyer
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - D. Leifert
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - H. Schäfer
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - A. Studer
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
36
|
Hayashi H, Kaga A, Chiba S. Application of Vinyl Azides in Chemical Synthesis: A Recent Update. J Org Chem 2017; 82:11981-11989. [DOI: 10.1021/acs.joc.7b02455] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hirohito Hayashi
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Atsushi Kaga
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Shunsuke Chiba
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
37
|
Ning Y, Zhao XF, Wu YB, Bi X. Radical Enamination of Vinyl Azides: Direct Synthesis of N-Unprotected Enamines. Org Lett 2017; 19:6240-6243. [DOI: 10.1021/acs.orglett.7b03204] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xue-Feng Zhao
- Key
Laboratory of Materials for Energy Conversion and Storage of Shanxi
Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yan-Bo Wu
- Key
Laboratory of Materials for Energy Conversion and Storage of Shanxi
Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Zhao H, Liu Z, Song J, Xu H. Reagent‐Free C−H/N−H Cross‐Coupling: Regioselective Synthesis of N‐Heteroaromatics from Biaryl Aldehydes and NH
3. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Huai‐Bo Zhao
- iChEM State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Zhan‐Jiang Liu
- iChEM State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- Fujian Institute of Research on Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Hai‐Chao Xu
- iChEM State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
39
|
Zhao H, Liu Z, Song J, Xu H. Reagent‐Free C−H/N−H Cross‐Coupling: Regioselective Synthesis of N‐Heteroaromatics from Biaryl Aldehydes and NH
3. Angew Chem Int Ed Engl 2017; 56:12732-12735. [DOI: 10.1002/anie.201707192] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Huai‐Bo Zhao
- iChEM State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Zhan‐Jiang Liu
- iChEM State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- Fujian Institute of Research on Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Hai‐Chao Xu
- iChEM State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
40
|
Tang J, Sivaguru P, Ning Y, Zanoni G, Bi X. Silver-Catalyzed Tandem C≡C Bond Hydroazidation/Radical Addition/Cyclization of Biphenyl Acetylene: One-Pot Synthesis of 6-Methyl Sulfonylated Phenanthridines. Org Lett 2017; 19:4026-4029. [DOI: 10.1021/acs.orglett.7b01771] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jiawei Tang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department
of Chemistry, University of Pavia, Via le Taramelli 12, 27100 Pavia, Italy
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Abstract
![]()
The chemistry of hypervalent iodine(III) compounds
has gained great interest over the past 30 years. Hypervalent iodine(III)
compounds show valuable ionic reactivity due to their high electrophilicity
but also express radical reactivity as single electron oxidants for
carbon and heteroatom radical generation. Looking at ionic chemistry,
these iodine(III) reagents can act as electrophiles to efficiently
construct C–CF3, X–CF3 (X = heteroatom),
C–Rf (Rf = perfluoroalkyl), X–Rf, C–N3, C–CN, S–CN, and C–X
bonds. In some cases, a Lewis or a Bronsted acid is necessary to increase
their electrophilicity. In these transformations, the iodine(III)
compounds react as formal “CF3+”,
“Rf+”, “N3+”, “Ar+”, “CN+”, and “X+” equivalents. On the other
hand, one electron reduction of the I(III) reagents opens the door
to the radical world, which is the topic of this Account that focuses
on radical reactivity of hypervalent iodine(III) compounds such as
the Togni reagent, Zhdankin reagent, diaryliodonium salts, aryliodonium
ylides, aryl(cyano)iodonium triflates, and aryl(perfluoroalkyl)iodonium
triflates. Radical generation starting with I(III) reagents can also
occur via thermal or light mediated homolysis of the weak hypervalent
bond in such reagents. This reactivity can be used for alkane C–H
functionalization. We will address important pioneering work in the
area but will mainly focus on studies that have been conducted by
our group over the last 5 years. We entered the field by investigating
transition metal free single electron reduction of Togni type reagents
using the readily available sodium 2,2,6,6-tetramethylpiperidine-1-oxyl
salt (TEMPONa) as an organic one electron reductant for clean generation
of the trifluoromethyl radical and perfluoroalkyl radicals. That valuable
approach was later successfully also applied to the generation of
azidyl and aryl radicals starting with the corresponding benziodoxole
(Zhdankin reagent) and iodonium salts. In the presence of alkenes
as radical acceptors, vicinal trifluoromethyl-, azido-, and arylaminoxylation
products result via a sequence comprising radical addition to the
alkene and subsequent TEMPO trapping. Electron-rich arenes also react
with I(III) reagents via single electron transfer (SET) to give arene
radical cations, which can then engage in arylation reactions. We
also recognized that the isonitrile functionality in aryl isonitriles
is a highly efficient perfluoroalkyl radical acceptor, and reaction
of Rf-benziodoxoles (Togni type reagents) in the presence
of a radical initiator provides various perfluoroalkylated N-heterocycles (indoles, phenanthridines, quinolines, etc.).
We further found that aryliodonium ylides, previously used as carbene
precursors in metal-mediated cyclopropanation reactions, react via
SET reduction with TEMPONa to the corresponding aryl radicals. As
a drawback of all these transformations, we realized that only one
ligand of the iodine(III) reagent gets transferred to the substrate.
To further increase atom-economy of such conversions, we identified
cyano or perfluoroalkyl iodonium triflate salts as valuable reagents
for stereoselective vicinal alkyne difunctionalization, where two
ligands from the I(III) reagent are sequentially transferred to an
alkyne acceptor. Finally, we will discuss alkynyl-benziodoxoles
as radical acceptors for alkynylation reactions. Similar reactivity
was found for the Zhdankin reagent that has been successfully applied
to azidation of C-radicals, and also cyanation is possible with a
cyano I(III) reagent. To summarize, this Account focuses on the design,
development, mechanistic understanding, and synthetic application
of hypervalent iodine(III) reagents in radical chemistry.
Collapse
Affiliation(s)
- Xi Wang
- Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
42
|
Qu C, Wu Z, Li W, Du H, Zhu C. Electron Catalytic Photochemical Cascade Carbodifluoroalkylation/Radical Cyclization of Methylene-2-oxazolines. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700104] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chuanhua Qu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 People's Republic of China
| | - Zhongkai Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 People's Republic of China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 People's Republic of China
| | - Hongbin Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 People's Republic of China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; Shanghai 200032 People's Republic of China
| |
Collapse
|
43
|
Fu J, Zanoni G, Anderson EA, Bi X. α-Substituted vinyl azides: an emerging functionalized alkene. Chem Soc Rev 2017; 46:7208-7228. [DOI: 10.1039/c7cs00017k] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vinyl azides are highly versatile synthons that provide access to numerous N-heterocycles and other functional groups.
Collapse
Affiliation(s)
- Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Giuseppe Zanoni
- Department of Chemistry
- University of Pavia
- 10-27100 Pavia
- Italy
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
44
|
Li D, Mao T, Huang J, Zhu Q. A one-pot synthesis of [1,2,3]triazolo[1,5-a]quinoxalines from 1-azido-2-isocyanoarenes with high bond-forming efficiency. Chem Commun (Camb) 2017; 53:1305-1308. [DOI: 10.1039/c6cc08543a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An efficient approach to prepare 1,2,3-triazolo[1,5-a]quinoxaline scaffolds, starting from 1-azido-2-isocyanoarenes and terminal acetylenes or substituted acetaldehydes, has been developed.
Collapse
Affiliation(s)
- Dengke Li
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| | - Tingting Mao
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| | - Jinbo Huang
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| |
Collapse
|
45
|
Yang T, Wang W, Wei D, Zhang T, Han B, Yu W. Synthesis of quinazolinones via radical cyclization of α-azidyl benzamides. Org Chem Front 2017. [DOI: 10.1039/c6qo00656f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under visible light irradiation with N-bromosuccinimide, α-azidyl benzamides can be transformed into quinazolinones in high efficiency via cascade radical processes.
Collapse
Affiliation(s)
- Tonghao Yang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Weixia Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Dian Wei
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Tianqi Zhang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|
46
|
Li M, Wang Y, Xue XS, Cheng JP. A Systematic Assessment of Trifluoromethyl Radical Donor Abilities of Electrophilic Trifluoromethylating Reagents. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600539] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Man Li
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 China
| | - Ya Wang
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 China
- Center of Basic Molecular Science; Department of Chemistry; Tsinghua University; Beijing 100084 China
| |
Collapse
|
47
|
Zhao HB, Hou ZW, Liu ZJ, Zhou ZF, Song J, Xu HC. Amidinyl Radical Formation through Anodic N−H Bond Cleavage and Its Application in Aromatic C−H Bond Functionalization. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610715] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Huai-Bo Zhao
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Zhong-Wei Hou
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Zhan-Jiang Liu
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Ze-Feng Zhou
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Jinshuai Song
- Fujian Institute of Research on Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Hai-Chao Xu
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| |
Collapse
|
48
|
Zhao HB, Hou ZW, Liu ZJ, Zhou ZF, Song J, Xu HC. Amidinyl Radical Formation through Anodic N−H Bond Cleavage and Its Application in Aromatic C−H Bond Functionalization. Angew Chem Int Ed Engl 2016; 56:587-590. [DOI: 10.1002/anie.201610715] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Huai-Bo Zhao
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Zhong-Wei Hou
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Zhan-Jiang Liu
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Ze-Feng Zhou
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Jinshuai Song
- Fujian Institute of Research on Structure of Matter; Chinese Academy of Sciences; Fuzhou 350002 P.R. China
| | - Hai-Chao Xu
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Chemical Biology of Fujian Province and; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| |
Collapse
|
49
|
Xuan J, Daniliuc CG, Studer A. Construction of Polycyclic γ-Lactams and Related Heterocycles via Electron Catalysis. Org Lett 2016; 18:6372-6375. [PMID: 27978670 PMCID: PMC5168651 DOI: 10.1021/acs.orglett.6b03267] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Cascade radical cyclization of 1,6-enynes
for the construction
of biologically important polycyclic γ-lactams and related heterocycles
is reported. In these radical cascade processes, three new C–C
bonds are formed and transition metals are not required to run these
sequences. The mild reaction conditions, broad substrate scope, and
the importance of the heterocyclic products render the approach valuable.
Collapse
Affiliation(s)
- Jun Xuan
- Department of Chemistry, Anhui University , Hefei, Anhui 230601, China.,Organisch-Chemisches Institut, Westfälische Wilhelms-Universität , Corrensstraβe 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität , Corrensstraβe 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität , Corrensstraβe 40, 48149 Münster, Germany
| |
Collapse
|
50
|
Perfluoroalkylation of Alkenes by Frustrated Lewis Pairs. Chemistry 2016; 22:17177-17181. [DOI: 10.1002/chem.201604414] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 11/07/2022]
|