1
|
Hu J, He H, Xu M, Qi X, Fu C, Yi H, Lei A. Adduct-catalyzed tandem electro-thermal synthesis of organophosphorus (III) compounds from white phosphorus. Natl Sci Rev 2025; 12:nwaf008. [PMID: 40041030 PMCID: PMC11879454 DOI: 10.1093/nsr/nwaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 03/06/2025] Open
Abstract
Electrooxidation strategies for synthesizing readily oxidizable products face notable challenges, especially when the oxidation potential of the products is lower than that of the reactants or when high current densities are necessary. The electrooxidation synthesis of trivalent organophosphorus compounds (OPCs (III)) from white phosphorus (P4) has demonstrated potential but is hindered by selectivity issues due to over-oxidation. Herein, we report a tandem electro-thermal synthesis pathway that addresses these challenges in producing OPCs (III) from P4. The process begins with an electrooxidation step that generates a stable trivalent phosphorus transfer reagent, then thermochemically converted into various high-value OPCs (III). Utilizing hexafluoroisopropanol (HFIP) as the nucleophile and optimizing a tetrabutylammonium iodide (TBAI)-4-dimethylaminopyridine (DMAP)-adduct catalytic system, we developed an efficient electrophilic phosphorus transfer reagent via electrosynthesis. The adduct facilitates the oxidation of P4 and enhances the nucleophilicity of HFIP, thereby improving the electrooxidation process. This approach supports high current density, scales up to the hundred-gram level without yield loss, and remains compatible with fluctuating green electricity.
Collapse
Affiliation(s)
- Jingcheng Hu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Haoyu He
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Minghao Xu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Chao Fu
- Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China
| | - Hong Yi
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Ghosh D, Samal AK, Parida A, Ikbal M, Jana A, Jana R, Sahu PK, Giri S, Samanta S. Progress in Electrochemically Empowered C-O Bond Formation: Unveiling the Pathway of Efficient Green Synthesis. Chem Asian J 2024:e202400116. [PMID: 38584137 DOI: 10.1002/asia.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
(C-X) bonds (X=C, N, O) are the main backbone for making different skeleton in the organic synthetic transformations. Among all the sustainable techniques, electro-organic synthesis for C-X bond formation is the advanced tool as it offers a greener and more cost-effective approach to chemical reactions by utilizing electrons as reagents. In this review, we want to explore the recent advancements in electrochemical C-O bond formation. The electrochemically driven C-O bond formation represents an emerging and exciting area of research. In this context, electrochemical techniques offers numerous advantages, including higher yields, cost-efficient production, and simplified work-up procedures. This method enables the continuous and consistent formation of C-O bonds in molecules, significantly enhancing overall reaction yields. Furthermore, both intramolecular and intermolecular C-O bond forming reaction provided valuable products of O-containing acyclic/cyclic analogue. Hence, carbonyl (C=O), ether -O-), and ester (-COOR) functionalization in both cyclic/acyclic analogues have been prepared continuously via this innovative pathway. In this context, we want to discuss one-decade electrochemical synthetic pathways of various C-O bond contains functional group in chronological manner. This review focused on all the synthetic aspects including mechanistic path and has also mentioned overall critical finding regarding the C-O bond formation via electrochemical pathways.
Collapse
Affiliation(s)
- Debosmit Ghosh
- Department of Chemistry, Bidhannagar College, Kolkata, 700064, India
| | - Aroop Kumar Samal
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | - Anita Parida
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | - Mohammed Ikbal
- Department of Chemistry, Berhampore Girls' College, Berhampore, 742101, India
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, Mohanpur741246, India
| | - Rathin Jana
- Department of Chemistry, Shahid Matangini Hazra Govt. General Degree College for women, West Bengal, India
| | - Pradeepta Kumar Sahu
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | - Soumen Giri
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | | |
Collapse
|
3
|
Xu Y, Li Q, Ye R, Xu B, Zhou X. Electrochemical Oxidative C-H Amination through a Ritter-Type Reaction. J Org Chem 2023. [PMID: 37262003 DOI: 10.1021/acs.joc.3c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A straightforward strategy for direct benzylic C-H bond amination via an electrochemical Ritter-type reaction is developed. The reaction demonstrates simpler and milder reaction conditions over the existing methods without extra mediator. Moderate to excellent yields up to 94% of the desired amide products were obtained with a broad substrate scope. The removal of the Ac group by a simple step can afford NH-free benzylic amines, providing a suitable approach for the late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Yiwen Xu
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| | - Qiang Li
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| | - Runyou Ye
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| | - Buyi Xu
- National Anti-Drug Laboratory Sichuan Regional Center, 36 Yunling Road, Chengdu, Sichuan 610200, P.R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| |
Collapse
|
4
|
Roychowdhury P, Samanta S, Tan H, Powers DC. N-Amino Pyridinium Salts in Organic Synthesis. Org Chem Front 2023; 10:2563-2580. [PMID: 37840843 PMCID: PMC10569450 DOI: 10.1039/d3qo00190c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
C-N bond forming reactions hold immense significance to synthetic organic chemistry. In pursuit of efficient methods for the introduction of nitrogen in organic small molecules, myriad synthetic methods have been developed, and methods based on both nucleophilic and electrophilic aminating reagents have received sustained research effort. In response to continued challenges - the need for substrate prefunctionalization, the requirement for vestigial N-activating groups, and the need to incorporate nitrogen in ever more complex molecular settings - the development of novel aminating reagents remains a central challenge in method development. N-aminopyridinums and their derivatives have recently emerged as a class of bifunctional aminating reagents, which combine N-centered nucleophilicity with latent electrophilic or radical reactivity by virtue of the reducible N-N bond, with broad synthetic potential. Here, we summarize the synthesis and reactivity of N-aminopyridinium salts relevant to organic synthesis. The preparation and application of these reagents in photocatalyzed and metal-catalyzed transformations is discussed, showcasing the reactivity in the context of bifunctional platform and its potential for innovation in the field.
Collapse
Affiliation(s)
- Pritam Roychowdhury
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Samya Samanta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Hao Tan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
5
|
Lodh J, Paul S, Sun H, Song L, Schöfberger W, Roy S. Electrochemical organic reactions: A tutorial review. Front Chem 2023; 10:956502. [PMID: 36704620 PMCID: PMC9871948 DOI: 10.3389/fchem.2022.956502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Although the core of electrochemistry involves simple oxidation and reduction reactions, it can be complicated in real electrochemical organic reactions. The principles used in electrochemical reactions have been derived using physical organic chemistry, which drives other organic/inorganic reactions. This review mainly comprises two themes: the first discusses the factors that help optimize an electrochemical reaction, including electrodes, supporting electrolytes, and electrochemical cell design, and the second outlines studies conducted in the field over a period of 10 years. Electrochemical reactions can be used as a versatile tool for synthetically important reactions by modifying the constant electrolysis current.
Collapse
Affiliation(s)
- Joyeeta Lodh
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - Shounik Paul
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - He Sun
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Luyang Song
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| |
Collapse
|
6
|
Choi I, Trenerry MJ, Lee KS, King N, Berry JF, Schomaker JM. Divergent C-H Amidations and Imidations by Tuning Electrochemical Reaction Potentials. CHEMSUSCHEM 2022; 15:e202201662. [PMID: 36166327 DOI: 10.1002/cssc.202201662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical C-H functionalizations are attractive transformations, as they are capable of avoiding the use of transition metals, pre-oxidized precursors, or suprastoichiometric amounts of terminal oxidants. Herein an electrochemically tunable method was developed that enabled the divergent formation of cyclic amines or imines by applying different reaction potentials. Detailed cyclic voltammetry analyses, coupled with chronopotentiometry experiments, were carried out to provide insight into the mechanism, while atom economy was assessed through a paired electrolysis. Selective C-H amidations and imidations were achieved to afford five- to seven-membered sulfonamide motifs that could be employed for late-stage modifications.
Collapse
Affiliation(s)
- Isaac Choi
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
- Present address, Department of Chemistry, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28644, Republic of Korea
| | - Michael J Trenerry
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - Ken S Lee
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - Nicholas King
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, United States
| |
Collapse
|
7
|
Ji H, Wang Z, Zhan H, Fang Z, Zhang Q, Li D. Copper-catalyzed benzylic C–H amidation of toluene derivatives with N-(8-quinolyl)amides through C(sp3)–H/N–H cross dehydrogenative coupling. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Stangier M, Scheremetjew A, Ackermann L. Chemo- and Site-Selective Electro-Oxidative Alkane Fluorination by C(sp 3 )-H Cleavage. Chemistry 2022; 28:e202201654. [PMID: 35844078 PMCID: PMC9804291 DOI: 10.1002/chem.202201654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 01/05/2023]
Abstract
Electrochemical fluorinations of C(sp3 )-H bonds with a nucleophilic fluoride source have been accomplished in a chemo- and site-selective fashion, avoiding the use of electrophilic F+ sources and stoichiometric oxidants. The introduced metal-free strategy exhibits high functional group tolerance, setting the stage for late-stage fluorinations of biorelevant motifs. The synthetic utility of the C(sp3 )-H fluorination was reflected by subsequent one-pot arylation of the generated benzylic fluorides.
Collapse
Affiliation(s)
- Maximilian Stangier
- Institut für Organische und Biomolekulare Chemie Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare Chemie Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
9
|
Ji H, Zhan H, Chen S, Fang Z, Zhang Q, Li D. Copper‐catalyzed C(sp
3
)−H/N−H Cross Dehydrogenative Coupling Between Toluene Derivatives and Picolinamides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huihui Ji
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering Hubei University of Technology Wuhan 430068 China
| | - Hongju Zhan
- Hubei Provincial Key Laboratory of Drug Synthesis and Optimization Jingchu University of Technology Jingmen 448000 China
| | - Shumin Chen
- Hubei Provincial Key Laboratory of Drug Synthesis and Optimization Jingchu University of Technology Jingmen 448000 China
| | - Zeguo Fang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering Hubei University of Technology Wuhan 430068 China
| | - Qian Zhang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering Hubei University of Technology Wuhan 430068 China
| | - Dong Li
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering Hubei University of Technology Wuhan 430068 China
- Hubei Provincial Key Laboratory of Drug Synthesis and Optimization Jingchu University of Technology Jingmen 448000 China
| |
Collapse
|
10
|
Motsch BJ, Wengryniuk SE. Site-Selective Synthesis of N-Benzyl 2,4,6-Collidinium Salts by Electrooxidative C-H Functionalization. Org Lett 2022; 24:6060-6065. [PMID: 35938890 DOI: 10.1021/acs.orglett.2c02376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-alkylpyridinium salts are versatile pseudohalides for SET-mediated cross couplings. However, the common 2,4,6-triphenylpyridinium salt is plagued by poor atom economy and high cost of synthesis. Thus, there is a growing need for more practical scaffolds and innovative strategies for pyridinium salt formation. Herein, we report the synthesis of benzylic 2,4,6-collidinium salts via electrooxidative C-H functionalization. This method provides a complementary approach to tradtional strategies relying on substitution and condensation of prefunctionalized substrates.
Collapse
Affiliation(s)
- Bill J Motsch
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadephia, Pennsylvania 19122, United States
| | - Sarah E Wengryniuk
- Temple University, Department of Chemistry, 1901 North 13th Street, Philadephia, Pennsylvania 19122, United States
| |
Collapse
|
11
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
12
|
Abstract
The development of sustainable C(sp3)-H functionalization methods is of great interest to the pharmaceutical and agrochemical industries. Anodic oxidation is an efficient means of producing benzylic cations that can undergo subsequent in situ nucleophilic attack to afford functionalized benzylic products. Herein, we demonstrate the suitability of carboxylic acids as nucleophiles to yield benzylic esters. This method employs a series of secondary benzylic substrates and functionalized carboxylic acids and is demonstrated on a gram scale in flow.
Collapse
Affiliation(s)
- Alexander P Atkins
- University of Bristol, School of Chemistry, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Albert C Rowett
- University of Bristol, School of Chemistry, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - David M Heard
- University of Bristol, School of Chemistry, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Joseph A Tate
- Syngenta, Jealott's Hill International Research Centre, Bracknell RG42 6EY, United Kingdom
| | - Alastair J J Lennox
- University of Bristol, School of Chemistry, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
13
|
Roychowdhury P, Herrera RG, Tan H, Powers DC. Traceless Benzylic C-H Amination via Bifunctional N-Aminopyridinium Intermediates. Angew Chem Int Ed Engl 2022; 61:e202200665. [PMID: 35483017 PMCID: PMC9256810 DOI: 10.1002/anie.202200665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/06/2022]
Abstract
C-H amination reactions provide the opportunity to streamline the synthesis of nitrogen-containing organic small molecules. The impact of intermolecular C-H amination methods, however, is currently limited the frequent requirement for the amine precursors to bear activating groups, such as N-sulfonyl substituents, that are both challenging to remove and not useful synthetic handles for subsequent derivatization. Here, we introduce traceless nitrogen activation for C-H amination-which enables application of selective C-H amination chemistry to the preparation of diverse N-functionalized products-via sequential benzylic C-H N-aminopyridylation followed by Ni-catalyzed C-N cross-coupling with aryl boronic acids. Unlike many C-H amination reactions that provide access to protected amines, the current method installs an easily diversifiable synthetic handle that serves as a lynchpin for C-H amination, deaminative N-N functionalization sequences.
Collapse
Affiliation(s)
- Pritam Roychowdhury
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Roberto G Herrera
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Hao Tan
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
14
|
Roychowdhury P, Herrera RG, Tan H, Powers DC. Traceless Benzylic C−H Amination via Bifunctional
N
‐Aminopyridinium Intermediates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Roberto G. Herrera
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Hao Tan
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - David C. Powers
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| |
Collapse
|
15
|
Tang S, Guillot R, Grimaud L, Vitale MR, Vincent G. Electrochemical Benzylic C-H Functionalization with Isocyanides. Org Lett 2022; 24:2125-2130. [PMID: 35286094 DOI: 10.1021/acs.orglett.2c00364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report the challenging direct carbamoylation or cyanation of benzylic C(sp3)-H bonds with an isocyanide via an electrochemical process giving rise to structures that are encountered in several biologically relevant compounds and drugs. This transformation proceeds under mild conditions without the need for any external oxidant and avoids the necessity to start from a prefunctionalized benzylic substrate or the deployment of the cation pool method. The anodic oxidation of the benzylic position and the subsequent addition of the isocyanide lead to the formation of a C-C bond and to a nitrilium cation that hydrolyzes to yield α-aryl acetamide derivatives, whereas the elimination of a t-butyl cation delivers α-aryl acetonitrile derivatives.
Collapse
Affiliation(s)
- Shanyu Tang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Laurence Grimaud
- Laboratoire des Biomolécules (LBM), Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Maxime R Vitale
- Laboratoire des Biomolécules (LBM), Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| |
Collapse
|
16
|
Zhang S, Li Y, Wang T, Li M, Wen L, Guo W. Electrochemical Benzylic C(sp 3)-H Isothiocyanation. Org Lett 2022; 24:1742-1746. [PMID: 35200030 DOI: 10.1021/acs.orglett.2c00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Selective C(sp3)-H isothiocyanation represents a significant strategy for the synthesis of isothiocyanate derivatives. We report herein an electrochemical benzylic isothiocyanation in a highly chemo- and site-selective manner under external oxidant-free conditions. The high chemoselectivity is attributed to the facile in situ isomerization of benzylic thiocyanates to isothiocyanates. Notably, the method exhibits high functional group compatibility and is suitable for late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Shanxue Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yufeng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Tao Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lirong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Weisi Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
17
|
Zhang M, Shi Y, zhang J. A Convergent Paired Electrolysis Strategy Enables Cross-Coupling of Methylarenes with Imines. Org Chem Front 2022. [DOI: 10.1039/d2qo00085g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we have developed a metal-free convergent paired electrolysis strategy for α-benzyl amine synthesis from readily available imines and methylarenes, taking advantage of both anodic oxidation and cathodic...
Collapse
|
18
|
Liu D, Zhang Z, Yu J, Chen H, Lin X, Li M, Wen LR, Guo WS. Site-selective electrochemical thiocyanation of benzylic C–H bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo00201a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct benzylic C(sp3)−H thiocyanation is explored as a straightforward strategy toward the synthesis of thiocyanate derivatives. We report herein an electrochemical protocol for site-selective benzylic C(sp3)−H thiocyanation under mild reaction...
Collapse
|
19
|
Buglioni L, Beslać M, Noël T. Dehydrogenative Azolation of Arenes in a Microflow Electrochemical Reactor. J Org Chem 2021; 86:16195-16203. [PMID: 34455793 PMCID: PMC8609577 DOI: 10.1021/acs.joc.1c01409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The electrochemical
synthesis of aryl azoles was performed for
the first time in a microflow reactor. The reaction relies on the
anodic oxidation of the arene partners making these substrates susceptible
for C–H functionalization with azoles, thus requiring no homogeneous
transition-metal-based catalysts. The synthetic protocol benefits
from the implementation of a microflow setup, leading to shorter residence
times (10 min), compared to previously reported batch systems. Various
azolated compounds (22 examples) are obtained in good to excellent
yields.
Collapse
Affiliation(s)
- Laura Buglioni
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Marko Beslać
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Timothy Noël
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park, 904 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
20
|
Rafiee M, Mayer MN, Punchihewa BT, Mumau MR. Constant Potential and Constant Current Electrolysis: An Introduction and Comparison of Different Techniques for Organic Electrosynthesis. J Org Chem 2021; 86:15866-15874. [PMID: 34546751 DOI: 10.1021/acs.joc.1c01391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrosynthesis involves transferring charge between two electrodes to promote chemical reactions by applying potential. The modes of controlling the current and potential can affect the reaction mechanism, product distribution and yields, and add a control factor for reaction optimization. In this Synopsis, theoretical discussion is applied to specific case studies from the literature to illustrate methods of adjusting and tracking electrical parameters for the optimization and monitoring of electroorganic reactions.
Collapse
Affiliation(s)
- Mohammad Rafiee
- Department of Chemistry, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, Missouri 64110, United States
| | - Mikayla N Mayer
- Department of Chemistry, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, Missouri 64110, United States
| | - Buwanila T Punchihewa
- Department of Chemistry, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, Missouri 64110, United States
| | - Matthew R Mumau
- Department of Chemistry, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, Missouri 64110, United States
| |
Collapse
|
21
|
Oliva M, Coppola GA, Van der Eycken EV, Sharma UK. Photochemical and Electrochemical Strategies towards Benzylic C−H Functionalization: A Recent Update. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001581] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Monica Oliva
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Guglielmo A. Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya street RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
22
|
Abstract
An organocatalytic site-selective electrochemical method for the benzylic C–H amination of alkylarenes with azoles through hydrogen evolution has been developed.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Laiqiang Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
23
|
Meng Z, Feng C, Xu K. Recent Advances in the Electrochemical Formation of Carbon-Nitrogen Bonds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Shao Z, Wang F, Shi J, Ma L, Li Z. Synergetic copper/TEMPO-catalysed benzylic C–H imidation with N-fluorobenzenesulfonimide at room temperature and tandem conversions with alcohols or arenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00340b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A remote carbamate-directed benzylic C–H imidation with NFSI at room temperature through synergetic CuCl-TEMPO catalysis and tandem alkoxylation or arylation with alcohols or arenes are described.
Collapse
Affiliation(s)
- Zhong Shao
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Fang Wang
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jingqi Shi
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
25
|
Wesenberg LJ, Diehl E, Zähringer TJB, Dörr C, Schollmeyer D, Shimizu A, Yoshida J, Hellmich UA, Waldvogel SR. Metal-Free Twofold Electrochemical C-H Amination of Activated Arenes: Application to Medicinally Relevant Precursor Synthesis. Chemistry 2020; 26:17574-17580. [PMID: 32866328 PMCID: PMC7839481 DOI: 10.1002/chem.202003852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/28/2020] [Indexed: 01/13/2023]
Abstract
The efficient production of many medicinally or synthetically important starting materials suffers from wasteful or toxic precursors for the synthesis. In particular, the aromatic non-protected primary amine function represents a versatile synthetic precursor, but its synthesis typically requires toxic oxidizing agents and transition metal catalysts. The twofold electrochemical amination of activated benzene derivatives via Zincke intermediates provides an alternative sustainable strategy for the formation of new C-N bonds of high synthetic value. As a proof of concept, we use our approach to generate a benzoxazinone scaffold that gained attention as a starting structure against castrate-resistant prostate cancer. Further improvement of the structure led to significantly increased cancer cell line toxicity. Thus, exploiting environmentally benign electrooxidation, we present a new versatile and powerful method based on direct C-H activation that is applicable for example the production of medicinally relevant compounds.
Collapse
Affiliation(s)
- Lars J. Wesenberg
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Erika Diehl
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt/MGermany
| | - Till J. B. Zähringer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Carolin Dörr
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akihiro Shimizu
- Department Materials Engineering ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka 560–8531Japan
| | - Jun‐ichi Yoshida
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Ute A. Hellmich
- Department of ChemistryJohannes Gutenberg University MainzJohann-Joachim Becherweg 3055128MainzGermany
- Center for Biomolecular Magnetic Resonance (BMRZ)Goethe-University FrankfurtMax-von-Laue Str. 960438Frankfurt/MGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
26
|
Hou Z, Liu D, Xiong P, Lai X, Song J, Xu H. Site‐Selective Electrochemical Benzylic C−H Amination. Angew Chem Int Ed Engl 2020; 60:2943-2947. [DOI: 10.1002/anie.202013478] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Zhong‐Wei Hou
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou 318000 P. R. China
| | - Ding‐Jin Liu
- Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Peng Xiong
- Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Xiao‐Li Lai
- Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Hai‐Chao Xu
- Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
27
|
Hou Z, Liu D, Xiong P, Lai X, Song J, Xu H. Site‐Selective Electrochemical Benzylic C−H Amination. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013478] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhong‐Wei Hou
- Advanced Research Institute and Department of Chemistry Taizhou University Taizhou 318000 P. R. China
| | - Ding‐Jin Liu
- Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Peng Xiong
- Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Xiao‐Li Lai
- Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Hai‐Chao Xu
- Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
28
|
Xu Z, Li Y, Mo G, Zheng Y, Zeng S, Sun PH, Ruan Z. Electrochemical Oxidative Phosphorylation of Aldehyde Hydrazones. Org Lett 2020; 22:4016-4020. [DOI: 10.1021/acs.orglett.0c01343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongnan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yueheng Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Guangquan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yucheng Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shaogao Zeng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Ping-Hua Sun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
29
|
Ashikari Y, Saito K, Nokami T, Yoshida JI, Nagaki A. Oxo-Thiolation of Cationically Polymerizable Alkenes Using Flow Microreactors. Chemistry 2019; 25:15239-15243. [PMID: 31414708 DOI: 10.1002/chem.201903426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/14/2019] [Indexed: 01/11/2023]
Abstract
The present study describes the cationic oxo-thiolation of polymerizable alkenes by using highly reactive cationic species generated by anodic oxidation. These highly reactive cations were able to activate alkenes before their polymerization. Fast mixing in flow microreactors effectively controlled chemoselectivity, enabling higher reaction temperatures.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kodai Saito
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology and Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori, 680-8552, Japan
| | - Jun-Ichi Yoshida
- National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie, 510-0294, Japan
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
30
|
Chiral donor-acceptor azetines as powerful reactants for synthesis of amino acid derivatives. Nat Commun 2019; 10:5328. [PMID: 31757976 PMCID: PMC6874555 DOI: 10.1038/s41467-019-13326-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Coupling reactions of amines and alcohols are of central importance for applications in chemistry and biology. These transformations typically involve the use of a reagent, activated as an electrophile, onto which nucleophile coupling results in the formation of a carbon-nitrogen or a carbon–oxygen bond. Several promising reagents and procedures have been developed to achieve these bond forming processes in high yields with excellent stereocontrol, but few offer direct coupling without the intervention of a catalyst. Herein, we report the synthesis of chiral donor–acceptor azetines by highly enantioselective [3 + 1]-cycloaddition of enoldiazoacetates with aza-ylides and their selective coupling with nitrogen and oxygen nucleophiles via 3-azetidinones to form amino acid derivatives, including those of peptides and natural products. The overall process is general for a broad spectrum of nucleophiles, has a high degree of electronic and steric selectivity, and retains the enantiopurity of the original azetine. Chiral 3-azetidinones are structural analogues of medicinally relevant β-lactams, however their synthesis and reactivity are underexplored. Here, the authors show a highly enantioselective copper-catalyzed [3 + 1]-cycloaddition generating 2-azetidines, which react with nucleophiles yielding amino acids via 3-azetidinones.
Collapse
|
31
|
Marichev KO, Wang K, Dong K, Greco N, Massey LA, Deng Y, Arman H, Doyle MP. Synthesis of Chiral Tetrasubstituted Azetidines from Donor-Acceptor Azetines via Asymmetric Copper(I)-Catalyzed Imido-Ylide [3+1]-Cycloaddition with Metallo-Enolcarbenes. Angew Chem Int Ed Engl 2019; 58:16188-16192. [PMID: 31496021 DOI: 10.1002/anie.201909929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 01/05/2023]
Abstract
The all-cis stereoisomers of tetrasubstituted azetidine-2-carboxylic acids and derivatives that possess three chiral centers have been prepared in high yield and stereocontrol from silyl-protected Z-γ-substituted enoldiazoacetates and imido-sulfur ylides by asymmetric [3+1]-cycloaddition using chiral sabox copper(I) catalysis followed by Pd/C catalytic hydrogenation. Hydrogenation of the chiral p-methoxybenzyl azetine-2-carboxylates occurs with both hydrogen addition to the C=C bond and hydrogenolysis of the ester.
Collapse
Affiliation(s)
- Kostiantyn O Marichev
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Kan Wang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Kuiyong Dong
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicole Greco
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Lynée A Massey
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Yongming Deng
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
32
|
Marichev KO, Wang K, Dong K, Greco N, Massey LA, Deng Y, Arman H, Doyle MP. Synthesis of Chiral Tetrasubstituted Azetidines from Donor–Acceptor Azetines via Asymmetric Copper(I)‐Catalyzed Imido‐Ylide [3+1]‐Cycloaddition with Metallo‐Enolcarbenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kostiantyn O. Marichev
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Kan Wang
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Kuiyong Dong
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Nicole Greco
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Lynée A. Massey
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Yongming Deng
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi Arman
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Michael P. Doyle
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
33
|
Wang X, Li C, Zhang Y, Zhang B, Sun K. Direct methyl C(sp 3)-H azolation of thioanisoles via oxidative radical coupling. Org Biomol Chem 2019; 17:8364-8368. [PMID: 31478050 DOI: 10.1039/c9ob01530b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A method for metal-free, 1,3-dibromo-5,5-dimethylhydantoin mediated methyl C(sp3)-H bond azolation of thioanisoles has been developed, affording a facile route for the construction of nitrogen-functionalized thioanisoles, possibly via a nitrogen-centered radical process. This reaction represents an important addition to the limited number of existing methods for the methyl C(sp3)-H bond functionalization of thioanisoles, and may find practical application in the synthesis of nitrogen-alkylated azoles.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China. and College of Chemistry and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Changhao Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China.
| | - Yixiao Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China.
| | - Bing Zhang
- College of Chemistry and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China.
| |
Collapse
|
34
|
Wang JH, Lei T, Nan XL, Wu HL, Li XB, Chen B, Tung CH, Wu LZ. Regioselective Ortho Amination of an Aromatic C–H Bond by Trifluoroacetic Acid via Electrochemistry. Org Lett 2019; 21:5581-5585. [DOI: 10.1021/acs.orglett.9b01910] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jing-Hao Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Lei Nan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao-Lin Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
35
|
Xiao X, Huang S, Tang S, Jia G, Ou G, Li Y. Ligand-Free, Quinoline N-Assisted Copper-Catalyzed Nitrene Transfer Reaction To Synthesize 8-Quinolylsulfimides. J Org Chem 2019; 84:7618-7629. [PMID: 31122019 DOI: 10.1021/acs.joc.9b00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient copper-catalyzed, quinolyl N-directed nitrene transfer reaction to 8-quinolylsulfides was described. A variety of 8-quinolylsulfimides with different functional groups were synthesized in moderate to high yields. The obtained 8-quinolylsulfimides were proved to be promising novel type of bidentate ligands in Pd(II)-catalyzed allylic alkylation.
Collapse
Affiliation(s)
- Xinsheng Xiao
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering , Hunan University of Science and Engineering , Yongzhou 425199 , China
| | - Sanping Huang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering , Hunan University of Science and Engineering , Yongzhou 425199 , China
| | - Shanshan Tang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering , Hunan University of Science and Engineering , Yongzhou 425199 , China
| | - Guokai Jia
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering , Hunan University of Science and Engineering , Yongzhou 425199 , China
| | - Guangchuan Ou
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering , Hunan University of Science and Engineering , Yongzhou 425199 , China
| | - Yangyan Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering , Hunan University of Science and Engineering , Yongzhou 425199 , China
| |
Collapse
|
36
|
Robertson JC, Coote ML, Bissember AC. Synthetic applications of light, electricity, mechanical force and flow. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0094-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Luo M, Liu B, Li Y, Hu M, Li J. Electrochemical Three‐Component 1,2‐Aminosulfonylation of Alkenes: Entry to 2‐sulfonylethan‐1‐amines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801492] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mu‐Jia Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Bang Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Jin‐Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
38
|
SHIMIZU A. Development of Electroorganic Reactions Utilizing Stabilized Reactive Species and Its Application to Organic Energy Storage Materials. ELECTROCHEMISTRY 2018. [DOI: 10.5796/electrochemistry.18-6-e2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Akihiro SHIMIZU
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
39
|
Gao Y, Mei H, Han J, Pan Y. Electrochemical Alkynyl/Alkenyl Migration for the Radical Difunctionalization of Alkenes. Chemistry 2018; 24:17205-17209. [DOI: 10.1002/chem.201804157] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/11/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Yongyuan Gao
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
| | - Haibo Mei
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
- Jiangsu Key Laboratory of Advanced Organic Materials; Nanjing University; Nanjing 210093 P. R. China
| | - Yi Pan
- School of Chemistry and Chemical Engineering; State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing 210093 P. R. China
- Jiangsu Key Laboratory of Advanced Organic Materials; Nanjing University; Nanjing 210093 P. R. China
| |
Collapse
|
40
|
Hayashi R, Shimizu A, Davies JA, Ishizaki Y, Willis C, Yoshida JI. Metal- and Oxidant-Free Alkenyl C−H/Aromatic C−H Cross-Coupling Using Electrochemically Generated Iodosulfonium Ions. Angew Chem Int Ed Engl 2018; 57:12891-12895. [DOI: 10.1002/anie.201807592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/06/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Ryutaro Hayashi
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Akihiro Shimizu
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | | | - Yu Ishizaki
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Chris Willis
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Jun-ichi Yoshida
- National Institute of Technology; Suzuka College; Suzuka Mie 510-0294 Japan
| |
Collapse
|
41
|
Hayashi R, Shimizu A, Davies JA, Ishizaki Y, Willis C, Yoshida JI. Metal- and Oxidant-Free Alkenyl C−H/Aromatic C−H Cross-Coupling Using Electrochemically Generated Iodosulfonium Ions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryutaro Hayashi
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Akihiro Shimizu
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | | | - Yu Ishizaki
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Chris Willis
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Jun-ichi Yoshida
- National Institute of Technology; Suzuka College; Suzuka Mie 510-0294 Japan
| |
Collapse
|
42
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 627] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
43
|
Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Modern Electrochemical Aspects for the Synthesis of Value-Added Organic Products. Angew Chem Int Ed Engl 2018; 57:6018-6041. [PMID: 29359378 PMCID: PMC6001547 DOI: 10.1002/anie.201712732] [Citation(s) in RCA: 617] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 11/11/2022]
Abstract
The use of electricity instead of stoichiometric amounts of oxidizers or reducing agents in synthesis is very appealing for economic and ecological reasons, and represents a major driving force for research efforts in this area. To use electron transfer at the electrode for a successful transformation in organic synthesis, the intermediate radical (cation/anion) has to be stabilized. Its combination with other approaches in organic chemistry or concepts of contemporary synthesis allows the establishment of powerful synthetic methods. The aim in the 21st Century will be to use as little fossil carbon as possible and, for this reason, the use of renewable sources is becoming increasingly important. The direct conversion of renewables, which have previously mainly been incinerated, is of increasing interest. This Review surveys many of the recent seminal important developments which will determine the future of this dynamic emerging field.
Collapse
Affiliation(s)
- Sabine Möhle
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Michael Zirbes
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Tile Gieshoff
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
| | - Anton Wiebe
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
| |
Collapse
|
44
|
Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Electrifying Organic Synthesis. Angew Chem Int Ed Engl 2018; 57:5594-5619. [PMID: 29292849 PMCID: PMC5969240 DOI: 10.1002/anie.201711060] [Citation(s) in RCA: 864] [Impact Index Per Article: 123.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/29/2017] [Indexed: 11/21/2022]
Abstract
The direct synthetic organic use of electricity is currently experiencing a renaissance. More synthetically oriented laboratories working in this area are exploiting both novel and more traditional concepts, paving the way to broader applications of this niche technology. As only electrons serve as reagents, the generation of reagent waste is efficiently avoided. Moreover, stoichiometric reagents can be regenerated and allow a transformation to be conducted in an electrocatalytic fashion. However, the application of electroorganic transformations is more than minimizing the waste footprint, it rather gives rise to inherently safe processes, reduces the number of steps of many syntheses, allows for milder reaction conditions, provides alternative means to access desired structural entities, and creates intellectual property (IP) space. When the electricity originates from renewable resources, this surplus might be directly employed as a terminal oxidizing or reducing agent, providing an ultra-sustainable and therefore highly attractive technique. This Review surveys recent developments in electrochemical synthesis that will influence the future of this area.
Collapse
Affiliation(s)
- Anton Wiebe
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Tile Gieshoff
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Sabine Möhle
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Michael Zirbes
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
45
|
Li J, Huang W, Chen J, He L, Cheng X, Li G. Electrochemical Aziridination by Alkene Activation Using a Sulfamate as the Nitrogen Source. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801106] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jin Li
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
| | - Wenhao Huang
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
| | - Jingzhi Chen
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
| | - Lingfeng He
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy; Nanjing University of Chinese Medicine; Nanjing China
- State Key Laboratory of Elemento-organic Chemistry; Nankai University; Tianjin China
| | - Guigen Li
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock, TX USA
| |
Collapse
|
46
|
Li J, Huang W, Chen J, He L, Cheng X, Li G. Electrochemical Aziridination by Alkene Activation Using a Sulfamate as the Nitrogen Source. Angew Chem Int Ed Engl 2018; 57:5695-5698. [DOI: 10.1002/anie.201801106] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/09/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jin Li
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
| | - Wenhao Huang
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
| | - Jingzhi Chen
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
| | - Lingfeng He
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy; Nanjing University of Chinese Medicine; Nanjing China
- State Key Laboratory of Elemento-organic Chemistry; Nankai University; Tianjin China
| | - Guigen Li
- Institute of Chemistry and Biomedical Sciences; Jiangsu Key Laboratory of Advanced Organic Materials; School of Chemistry and Chemical Engineering; National Demonstration Center for Experimental Chemistry Education; Nanjing University; Nanjing 210023 China
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock, TX USA
| |
Collapse
|
47
|
Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Moderne Aspekte der Elektrochemie zur Synthese hochwertiger organischer Produkte. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712732] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sabine Möhle
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Michael Zirbes
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Eduardo Rodrigo
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Tile Gieshoff
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Deutschland
| | - Anton Wiebe
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Max Planck Graduate Center Staudingerweg 9 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Deutschland
- Max Planck Graduate Center Staudingerweg 9 55128 Mainz Deutschland
| |
Collapse
|
48
|
Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Elektrifizierung der organischen Synthese. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711060] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anton Wiebe
- Max Planck Graduate Center; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Tile Gieshoff
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Sabine Möhle
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Eduardo Rodrigo
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Michael Zirbes
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Max Planck Graduate Center; Staudingerweg 9 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| |
Collapse
|
49
|
Metal-free remote oxidative benzylic C−H amination of 4-methylanilides with N -fluorobenzenesulfonimide. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Song C, Dong X, Yi H, Chiang CW, Lei A. DDQ-Catalyzed Direct C(sp3)–H Amination of Alkylheteroarenes: Synthesis of Biheteroarenes under Aerobic and Metal-Free Conditions. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04434] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunlan Song
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xin Dong
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hong Yi
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chien-Wei Chiang
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Aiwen Lei
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
- National
Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| |
Collapse
|