1
|
Mahammed A, Gray HB, Gross Z. Silver Anniversary of the Renaissance in Metallocorrole Chemistry. Chem Rev 2025. [PMID: 39937445 DOI: 10.1021/acs.chemrev.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The 1999 discovery of one-pot corrole synthesis opened the floodgates for research on these unique macrocyclic chelating agents. The enormous impact of this discovery has been documented in numerous reviews describing advances in the synthetic chemistry of corroles and selected applications in which corroles are key components. Our silver anniversary review focuses on the structures and reactions of all well characterized corrole-chelated d- and p-block metal complexes, including discussions of their electronic excited-state physics and chemistry. Emphasis is placed on electronic structure of the trinegative N4 coordination core, which stabilizes high-valent metals and activates low-valent ones, and, importantly, profoundly influences ground- and excited-state reactivity. Our story highlights the unique properties of corroles that have made them the molecular components of choice in a plethora of applications. These include their utility for sensing gases and anions, rescue of vital biomolecules from oxidative damage, destruction of cancerous cells, and catalysis of reactions critical for organic synthesis, as well as those involved in clean energy processes such as production of hydrogen and reduction of oxygen. In our view, research on corroles will continue to grow by leaps and bounds, most especially in areas of human health research and renewable energy science and technology.
Collapse
Affiliation(s)
- Atif Mahammed
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States!
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
2
|
Alemayehu AB, Ghosh A. Phenol- and resorcinol-appended metallocorroles and their derivatization with fluorous tags. Sci Rep 2022; 12:19256. [PMID: 36357501 PMCID: PMC9649713 DOI: 10.1038/s41598-022-23889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Boron tribromide-mediated demethylation of rhenium-oxo and gold meso-tris(4-methoxyphenyl)corrole and meso-tris(3,5-dimethoxyphenylcorrole), M[TpOMePC] and M[T(3,5-OMe)PC] (M = ReO, Au), have yielded the corresponding phenol- and resorcinol-appended metallocorroles, M[TpOHPC] and M[T(3,5-OH)PC], in good yields. The latter compounds proved insoluble in dichloromethane and chloroform but soluble in THF. The M[T(3,5-OH)PC] derivatives also proved moderately soluble in 0.05 M aqueous KOH. Unlike oxidation-prone aminophenyl-substituted corroles, the phenol- and resorcinol-appended metallocorroles could be readily handled in air without special precautions. The phenolic metallocorroles could be readily alkylated with 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl iodide ("FtI") to afford the fluorous-tagged metallocorroles M[TpOFtPC] and M[T(3,5-OFt)PC] in > 90% yields. The simplicity of the synthetic protocols promise a wide range of phenolic and fluorous-tagged porphyrin analogues with potential applications to diverse fields such as sensors, catalysis, and photodynamic therapy, among others.
Collapse
Affiliation(s)
- Abraham B. Alemayehu
- grid.10919.300000000122595234Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- grid.10919.300000000122595234Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
3
|
Bartoli F, Eckelman WC, Boyd M, Mairs RJ, Erba PA. Principles of Molecular Targeting for Radionuclide Therapy. NUCLEAR ONCOLOGY 2022:41-93. [DOI: 10.1007/978-3-031-05494-5_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Einrem RF, Jonsson ET, Teat SJ, Settineri NS, Alemayehu AB, Ghosh A. Regioselective formylation of rhenium-oxo and gold corroles: substituent effects on optical spectra and redox potentials. RSC Adv 2021; 11:34086-34094. [PMID: 35497316 PMCID: PMC9042328 DOI: 10.1039/d1ra05525a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Vilsmeier-Haack formylation of ReO and Au meso-triarylcorroles over 16-18 hours affords moderate to good yields (47-65%) of the ReO-3-formyl and Au-3,17-diformyl derivatives in a highly regioselective manner. Formylation was found to effect substantial upshifts for redox potentials (especially the reduction potentials) as well as significant to dramatic redshifts for both the Soret and Q bands.
Collapse
Affiliation(s)
- Rune F Einrem
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Einar Torfi Jonsson
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720-8229 USA
| | - Nicholas S Settineri
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720-8229 USA
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| | - Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| |
Collapse
|
5
|
Alemayehu AB, Thomas KE, Einrem RF, Ghosh A. The Story of 5d Metallocorroles: From Metal-Ligand Misfits to New Building Blocks for Cancer Phototherapeutics. Acc Chem Res 2021; 54:3095-3107. [PMID: 34297542 PMCID: PMC8382219 DOI: 10.1021/acs.accounts.1c00290] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Porphyrin chemistry is Shakespearean: over a
century of study has
not withered the field’s apparently infinite variety. Heme
proteins continually astonish us with novel molecular mechanisms,
while new porphyrin analogues bowl us over with unprecedented optical,
electronic, and metal-binding properties. Within the latter domain,
corroles occupy a special place, exhibiting a unique and rich coordination
chemistry. The 5d metallocorroles are arguably the icing on that cake. New Zealand chemist Penny Brothers has used the word “misfit”
to describe the interactions of boron, a small atom with a predilection
for tetrahedral coordination, and porphyrins, classic square-planar
ligands. Steve Jobs lionized misfits as those who see things differently
and push humanity forward. Both perspectives have inspired us. The
5d metallocorroles are misfits in that they encapsulate a large 5d
transition metal ion within the tight cavity of a contracted porphyrin
ligand. Given the steric mismatch inherent in their structures,
the syntheses
of some 5d metallocorroles are understandably capricious,
proceeding under highly specific conditions and affording poor yields.
Three broad approaches may be distinguished. (a) In the metal–alkyl approach, a free-base
corrole is exposed to an alkyllithium and the resulting lithio-corrole
is treated with an early transition metal chloride; a variant of the
method eschews alkyllithium and deploys a transition metal–alkyl
instead, resulting in elimination of the alkyl group as an alkane
and insertion of the metal into the corrole. This approach is useful
for inserting transition metals from groups 4, 5, and, to some extent,
6, as well as lanthanides and actinides. (b) In our laboratory,
we have often deployed a low-valent
organometallic approach for the middle transition elements
(groups 6, 7, 8, and 9). The reagents are low-valent metal–carbonyl
or −olefin complexes, which lose one or more carbon ligands
at high temperature, affording coordinatively unsaturated, sticky
metal fragments that are trapped by the corrole nitrogens. (c)
Finally, a metal acetate approach provides
the method of choice for gold and platinum insertion (groups 10 and
11). This Account provides a first-hand perspective
of the three approaches, focusing on the last two, which were largely
developed in our laboratory. In general, the products were characterized
with X-ray crystallography, electrochemistry, and a variety of spectroscopic
methods. The physicochemical data, supplemented by relativistic DFT
calculations, have provided fascinating insights into periodic trends
and relativistic effects. An unexpected feature of many 5d metallocorroles,
given their misfit
character, is their remarkable stability under thermal, chemical,
and photochemical stimulation. Many of them also exhibit long triplet
lifetimes on the order of 100 μs and effectively sensitize singlet
oxygen formation. Many exhibit phosphorescence in the near-infrared
under ambient conditions. Furthermore, water-soluble ReO and Au corroles
exhibit impressive photocytotoxicity against multiple cancer cell
lines, promising potential applications as cancer phototherapeutics.
We thus envision a bright future for the compounds as rugged building
blocks for new generations of therapeutic and diagnostic (theranostic)
agents.
Collapse
Affiliation(s)
- Abraham B. Alemayehu
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromso, Norway
| | - Kolle E. Thomas
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromso, Norway
| | - Rune F. Einrem
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromso, Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromso, Norway
| |
Collapse
|
6
|
Braband H, Benz M, Spingler B, Conradie J, Alberto R, Ghosh A. Relativity as a Synthesis Design Principle: A Comparative Study of [3 + 2] Cycloaddition of Technetium(VII) and Rhenium(VII) Trioxo Complexes with Olefins. Inorg Chem 2021; 60:11090-11097. [PMID: 34255507 PMCID: PMC8388117 DOI: 10.1021/acs.inorgchem.1c00995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
The difference in [3 + 2] cycloaddition reactivity between fac-[MO3(tacn)]+ (M = Re, 99Tc; tacn = 1,4,7-triazacyclononane) complexes has been reexamined
with a selection of unsaturated substrates including sodium 4-vinylbenzenesulfonate,
norbornene, 2-butyne, and 2-methyl-3-butyn-2-ol (2MByOH). None of
the substrates was found to react with the Re cation in water at room
temperature, whereas the 99Tc reagent cleanly yielded the [3 + 2] cycloadducts. Interestingly,
a bis-adduct was obtained as the sole product for 2MByOH, reflecting
the high reactivity of a 99TcO-enediolato monoadduct. On
the basis of scalar relativistic and nonrelativistic density functional
theory calculations of the reaction pathways, the dramatic difference
in reactivity between the two metals has now been substantially attributed to differences in relativistic effects, which are much
larger for the 5d metal. Furthermore, scalar-relativistic ΔG values were found to decrease along the series propene
> norbornene > 2-butyne > dimethylketene, indicating major variations
in the thermodynamic driving force as a function of the unsaturated
substrate. The suggestion is made that scalar-relativistic effects,
consisting of greater destabilization of the valence electrons of
the 5d elements compared with those of the 4d elements, be viewed
as a new design principle for novel 99mTc/Re radiopharmaceuticals,
as well as more generally in heavy-element coordination chemistry. Room temperature cycloaddition reactivity of fac-[99TcO3(tacn)]+ (tacn = 1,4,7-triazacyclononane)
with a variety of unsaturated substrates and the lack of such reactivity
for fac-[ReO3(tacn)]+ appears
largely attributable to much stronger relativistic effects for Re
relative to Tc, based on relativistic density functional theory calculations.
Collapse
Affiliation(s)
- Henrik Braband
- Department of Chemistry, University of Zurich, Zürich 8057, Switzerland
| | - Michael Benz
- Department of Chemistry, University of Zurich, Zürich 8057, Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Zürich 8057, Switzerland
| | - Jeanet Conradie
- Department of Chemistry, UiT-The Arctic University of Norway, Tromsø N-9037, Norway.,Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Zürich 8057, Switzerland
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Norway, Tromsø N-9037, Norway
| |
Collapse
|
7
|
Alemayehu AB, McCormick-McPherson LJ, Conradie J, Ghosh A. Rhenium Corrole Dimers: Electrochemical Insights into the Nature of the Metal-Metal Quadruple Bond. Inorg Chem 2021; 60:8315-8321. [PMID: 33998801 PMCID: PMC8278387 DOI: 10.1021/acs.inorgchem.1c00986] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
interaction of free-base triarylcorroles with Re2(CO)10 in 1,2-dichlorobenzene in the presence of 2,6-lutidine
at 180 °C under strict anerobic conditions afforded approximately
10% yields of rhenium corrole dimers. The compounds exhibited diamagnetic 1H NMR spectra consistent with a metal–metal quadruple
bond with a σ2π4δ2 orbital occupancy. One of the compounds proved amenable to single-crystal
X-ray structure determination, yielding a metal–metal distance
of ∼2.24 Å, essentially identical to that in triple-bonded
osmium corrole dimers. On the other hand, the electrochemical properties
of Re and Os corrole dimers proved to be radically different. Thus,
the reduction potentials of the Re corrole dimers are some 800 mV
upshifted relative to those of their Os counterparts. Stated differently,
the Re corrole dimers are dramatically easier to reduce, reflecting
electron addition to δ* versus π* molecular orbitals for
Re and Os corrole dimers, respectively. The data also imply electrochemical
HOMO-LUMO gaps of only 1.0–1.1 V for rhenium corrole dimers,
compared with values of 1.85–1.90 V for their Os counterparts.
These HOMO–LUMO gaps rank among the first such values reported
for quadruple-bonded transition-metal dimers for any type of supporting
ligand, porphyrin-type or not. The first metal−metal
quadruple-bonded metallocorrole
dimers have been synthesized in the form of three rhenium meso-triarylcorrole dimers. The compounds exhibit electrochemical
HOMO−LUMO gaps of 1.0−1.1 V, which is some 750 mV smaller
than those of their triple-bonded Os counterparts.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Laura J McCormick-McPherson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Jeanet Conradie
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway.,Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
8
|
Abstract
Metallocorroles involving 5d transition metals are currently of interest as near-IR phosphors and as photosensitizers for oxygen sensing and photodynamic therapy. Their syntheses, however, are often bedeviled by capricious and low-yielding protocols. Against this backdrop, we describe rhenium-imido corroles, a new class of 5d metallocorroles, synthesized simply and in respectable (∼30%) yields via the interaction of a free-base corrole, Re2(CO)10, K2CO3, and aniline in 1,2,4-trichlorobenzene at ∼190 °C in a sealed vial under strict anaerobic conditions. The generality of the method was shown by the synthesis of six derivatives, including those derived from meso-tris(pentafluorophenyl)corrole, H3[TPFPC], and five different meso-tris(p-X-phenyl)corroles, H3[TpXPC], where X = CF3, F, H, CH3, OCH3. Single-crystal X-ray structures obtained for two of the complexes, Re[TpFPC](NPh) and Re[TpCF3PC](NPh), revealed relatively unstrained equatorial Re-N distances of ∼2.00 Å, a ∼ 0.7-Å displacement of the Re from the mean plane of the corrole nitrogens, and an Re-Nimido distance of ∼1.72 Å. Details of the corrole skeletal bond distances, diamagnetic 1H NMR spectra, relatively substituent-independent Soret maxima, and electrochemical HOMO-LUMO gaps of ∼2.2 V all indicated an innocent corrole macrocycle. Surprisingly, unlike several other classes of 5d metallocorroles, the Re-imido complexes proved nonemissive in solution at room temperature and also failed to sensitize singlet oxygen formation, indicating rapid radiationless deactivation of the triplet state, presumably via the rapidly rotating axial phenyl group. By analogy with other metal-oxo and -imido corroles, we remain hopeful that the Re-imido group will prove amenable to further elaboration and thereby contribute to the development of a somewhat challenging area of coordination chemistry.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
9
|
Okoye NC, Baumeister JE, Najafi Khosroshahi F, Hennkens HM, Jurisson SS. Chelators and metal complex stability for radiopharmaceutical applications. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Diagnostic and therapeutic nuclear medicine relies heavily on radiometal nuclides. The most widely used and well-known radionuclide is technetium-99m (99mTc), which has dominated diagnostic nuclear medicine since the advent of the 99Mo/99mTc generator in the 1960s. Since that time, many more radiometals have been developed and incorporated into potential radiopharmaceuticals. One critical aspect of radiometal-containing radiopharmaceuticals is their stability under in vivo conditions. The chelator that is coordinated to the radiometal is a key factor in determining radiometal complex stability. The chelators that have shown the most promise and are under investigation in the development of diagnostic and therapeutic radiopharmaceuticals over the last 5 years are discussed in this review.
Collapse
Affiliation(s)
| | | | | | - Heather M. Hennkens
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
- University of Missouri Research Reactor Center , Columbia, MO 65211 , USA
| | - Silvia S. Jurisson
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| |
Collapse
|
10
|
Abstract
Noninnocent ligands do not allow an unambiguous definition of the oxidation state of a coordinated atom. When coordinated, the ligands also cannot be adequately represented by a classic Lewis structure. A noninnocent system thus harbors oxidizing (holes) or reducing equivalents (electrons) that are delocalized over both the ligand and the coordinated atom. To a certain degree, that is true of all complexes, but the phenomenon is arguably most conspicuous in complexes involving ligands with extended π-systems. The electronic structures of such systems have often been mischaracterized, thereby muddying the chemical literature to the detriment of students and newcomers to the field. In recent years, we have investigated the electronic structures of several metallocorrole families, several of which have turned out to be noninnocent. Our goal here, however, is not to present a systematic account of the different classes of metallocorroles, but rather to focus on seven major tools (in a nod to A. G. Cairns-Smith's Seven Clues to the Origin of Life) that led us to recognize noninnocent behavior and subsequently to characterize the phenomenon in depth. (1) The optical probe: For a series of noninnocent meso-triarylcorrole derivatives with different para substituents X, the Soret maxima are typically exquisitely sensitive to the nature of X, red-shifting with increasing electron-donating character of the group. No such substituent sensitivity is observed for the Soret maxima of innocent triarylcorrole derivatives. (2) Quantum chemistry: Spin-unrestricted density functional theory calculations permit a simple and quick visualization of ligand noninnocence in terms of the spin density profile. Even for an S = 0 complex, the broken-symmetry method often affords a spin density profile that, its fictitious character notwithstanding, helps visualize the intramolecular spin couplings. (3) NMR and EPR spectroscopy: In principle, these two techniques afford experimental probes of the electronic spin density. (4) Structure/X-ray crystallography. Ligand noninnocence in metallocorroles is often reflected in small but distinct skeletal bond length alternations in and around the bipyrrole part of the macrocycle. In addition, for Cu and some Ag corroles, ligand noninnocence manifests itself via a strong saddling of the macrocycle. (5) Vibrational spectroscopy. Unsurprisingly, the aforementioned bond length alternations translate to structure-sensitive vibrational marker bands. (6) Electrochemistry. Noninnocent metallocorroles exhibit characteristically high reduction potentials, but caution should be exercised in turning the logic around. A high reduction potential does not necessarily signify a noninnocent metallocorrole; certain high-valent metal centers also undergo metal-centered reduction at quite high potentials. (7) X-ray absorption spectroscopy (XAS). By focusing on a given element, typically the central atom in a coordination complex, X-ray absorption near-edge spectroscopy (XANES) can provide uniquely detailed local information on oxidation and spin states, ligand field strength, and degree of centrosymmetry. For metallocorroles, some of the most clear-cut distinctions between innocent and noninnocent systems have come from the K-edge XANES of Mn and Fe corroles. For researchers faced with a new, potentially noninnocent system, the take-home message is to employ a good majority (i.e., at least four) of the above methods to arrive at a reliable conclusion vis-à-vis noninnocence.
Collapse
Affiliation(s)
- Sumit Ganguly
- Department of Chemistry and Arctic Center for Sustainable Energy, UiT−The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department of Chemistry and Arctic Center for Sustainable Energy, UiT−The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
11
|
|
12
|
Lim H, Thomas KE, Hedman B, Hodgson KO, Ghosh A, Solomon EI. X-ray Absorption Spectroscopy as a Probe of Ligand Noninnocence in Metallocorroles: The Case of Copper Corroles. Inorg Chem 2019; 58:6722-6730. [PMID: 31046257 PMCID: PMC6644708 DOI: 10.1021/acs.inorgchem.9b00128] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The question of ligand noninnocence in Cu corroles has long been a topic of discussion. Presented herein is a Cu K-edge X-ray absorption spectroscopy (XAS) study, which provides a direct probe of the metal oxidation state, of three Cu corroles, Cu[TPC], Cu[Br8TPC], and Cu[(CF3)8TPC] (TPC = meso-triphenylcorrole), and the analogous Cu(II) porphyrins, Cu[TPP], Cu[Br8TPP], and Cu[(CF3)8TPP] (TPP = meso-tetraphenylporphyrin). The Cu K rising-edges of the Cu corroles were found to be about 0-1 eV upshifted relative to the analogous porphyrins, which is substantially lower than the 1-2 eV shifts typically exhibited by authentic Cu(II)/Cu(III) model complex pairs. In an unusual twist, the Cu K pre-edge regions of both the Cu corroles and the Cu porphyrins exhibit two peaks split by 0.8-1.3 eV. Based on time-dependent density functional theory calculations, the lower- and higher-energy peaks were assigned to a Cu 1s → 3d x2- y2 transition and a Cu 1s → corrole/porphyrin π* transition, respectively. From the Cu(II) porphyrins to the corresponding Cu corroles, the energy of the Cu 1s → 3d x2- y2 transition peak was found to upshift by 0.6-0.8 eV. This shift is approximately half that observed between Cu(II) to Cu(III) states for well-defined complexes. The Cu K-edge XAS spectra thus show that although the metal sites in the Cu corroles are more oxidized relative to those in their Cu(II) porphyrin analogues, they are not oxidized to the Cu(III) level, consistent with the notion of a noninnocent corrole. The relative importance of σ-donation versus corrole π-radical character is discussed.
Collapse
Affiliation(s)
- Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kolle E. Thomas
- Department of Chemistry, UiT — The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Abhik Ghosh
- Department of Chemistry, UiT — The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
13
|
Demissie TB, Conradie J, Vazquez-Lima H, Ruud K, Ghosh A. Rare and Nonexistent Nitrosyls: Periodic Trends and Relativistic Effects in Ruthenium and Osmium Porphyrin-Based {MNO} 7 Complexes. ACS OMEGA 2018; 3:10513-10516. [PMID: 31459176 PMCID: PMC6645279 DOI: 10.1021/acsomega.8b01434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/14/2018] [Indexed: 05/26/2023]
Abstract
Relativistic and nonrelativistic density functional theory calculations were used to investigate rare or nonexistent ruthenium and osmium analogues of nitrosylhemes. Strong ligand field effects and, to a lesser degree, relativistic effects were found to destabilize {RuNO}7 porphyrins relative to their {FeNO}7 analogues. Substantially stronger relativistic effects account for the even greater instability and/or nonexistence of {OsNO}7 porphyrin derivatives.
Collapse
Affiliation(s)
- Taye B. Demissie
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
- Materials
Science Program, Department of Chemistry, Addis Ababa University, Addis
Ababa, Ethiopia
| | - Jeanet Conradie
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
- Department
of Chemistry, University of the Free State, P.O. Box 339, 9300 Bloemfontein, Republic of South Africa
| | - Hugo Vazquez-Lima
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Kenneth Ruud
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
14
|
Alemayehu AB, Vazquez-Lima H, McCormick LJ, Ghosh A. Relativistic effects in metallocorroles: comparison of molybdenum and tungsten biscorroles. Chem Commun (Camb) 2018; 53:5830-5833. [PMID: 28497147 DOI: 10.1039/c7cc01549f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The homoleptic sandwich compounds - Mo and W biscorroles - have afforded a novel platform for experimental studies of relativistic effects. A 200 mV difference in reduction potential and a remarkable 130 nm shift of a near-IR spectral feature have been identified as manifestations of relativistic effects on the properties of these complexes.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.
| | | | | | | |
Collapse
|
15
|
Schies C, Alemayehu AB, Vazquez-Lima H, Thomas KE, Bruhn T, Bringmann G, Ghosh A. Metallocorroles as inherently chiral chromophores: resolution and electronic circular dichroism spectroscopy of a tungsten biscorrole. Chem Commun (Camb) 2018; 53:6121-6124. [PMID: 28530281 DOI: 10.1039/c7cc02027a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An inherently chiral metallocorrole has been resolved for the first time by means of HPLC on a chiral stationary phase. For the compound in question, a homoleptic tungsten biscorrole, the absolute configurations of the enantiomers were assigned using online HPLC-ECD measurements in conjunction with time-dependent CAM-B3LYP calculations, which provided accurate simulations of the ECD spectra.
Collapse
Affiliation(s)
- Christine Schies
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ganguly S, Conradie J, Bendix J, Gagnon KJ, McCormick LJ, Ghosh A. Electronic Structure of Cobalt–Corrole–Pyridine Complexes: Noninnocent Five-Coordinate Co(II) Corrole–Radical States. J Phys Chem A 2017; 121:9589-9598. [DOI: 10.1021/acs.jpca.7b09440] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumit Ganguly
- Department
of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jeanet Conradie
- Department
of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| | - Jesper Bendix
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Kevin J. Gagnon
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Laura J. McCormick
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Abhik Ghosh
- Department
of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
17
|
Ganguly S, Renz D, Giles LJ, Gagnon KJ, McCormick LJ, Conradie J, Sarangi R, Ghosh A. Cobalt- and Rhodium-Corrole-Triphenylphosphine Complexes Revisited: The Question of a Noninnocent Corrole. Inorg Chem 2017; 56:14788-14800. [DOI: 10.1021/acs.inorgchem.7b01828] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumit Ganguly
- Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Diemo Renz
- Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Logan J. Giles
- Structural Molecular Biology, Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94306, United States
| | - Kevin J. Gagnon
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Laura J. McCormick
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| | - Ritimukta Sarangi
- Structural Molecular Biology, Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94306, United States
| | - Abhik Ghosh
- Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
18
|
Ganguly S, Giles LJ, Thomas KE, Sarangi R, Ghosh A. Ligand Noninnocence in Iron Corroles: Insights from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox Potentials. Chemistry 2017; 23:15098-15106. [PMID: 28845891 PMCID: PMC5710759 DOI: 10.1002/chem.201702621] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 11/11/2022]
Abstract
Two new series of iron meso-tris(para-X-phenyl)corrole (TpXPC) complexes, Fe[TpXPC]Ph and Fe[TpXPC]Tol, in which X=CF3 , H, Me, and OMe, and Tol=p-methylphenyl (p-tolyl), have been synthesized, allowing a multitechnique electronic-structural comparison with the corresponding FeCl, FeNO, and Fe2 (μ-O) TpXPC derivatives. Optical spectroscopy revealed that the Soret maxima of the FePh and FeTol series are insensitive to the phenyl para substituent, consistent with the presumed innocence of the corrole ligand in these compounds. Accordingly, we may be increasingly confident in the ability of the substituent effect criterion to serve as a probe of corrole noninnocence. Furthermore, four complexes-Fe[TPC]Cl, Fe[TPC](NO), {Fe[TPC]}2 O, and Fe[TPC]Ph-were selected for a detailed XANES investigation of the question of ligand noninnocence. The intensity-weighted average energy (IWAE) positions were found to exhibit rather modest variations (0.8 eV over the series of corroles). The integrated Fe-K pre-edge intensities, on the other hand, vary considerably, with a 2.5 fold increase for Fe[TPC]Ph relative to Fe[TPC]Cl and Fe[TPC](NO). Given the approximately C4v local symmetry of the Fe in all the complexes, the large increase in intensity for Fe[TPC]Ph may be attributed to a higher number of 3d holes, consistent with an expected FeIV -like description, in contrast to Fe[TPC]Cl and Fe[TPC](NO), in which the Fe is thought to be FeIII -like. These results afford strong validation of XANES as a probe of ligand noninnocence in metallocorroles. Electrochemical redox potentials, on the other hand, were found not to afford a simple probe of ligand noninnocence in Fe corroles.
Collapse
Affiliation(s)
- Sumit Ganguly
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Logan J Giles
- Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94306, USA
| | - Kolle E Thomas
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Ritimukta Sarangi
- Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94306, USA
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-, The Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
19
|
Alemayehu AB, Vazquez-Lima H, Gagnon KJ, Ghosh A. Stepwise Deoxygenation of Nitrite as a Route to Two Families of Ruthenium Corroles: Group 8 Periodic Trends and Relativistic Effects. Inorg Chem 2017; 56:5285-5294. [PMID: 28422487 DOI: 10.1021/acs.inorgchem.7b00377] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Given the many applications of ruthenium porphyrins, the rarity of ruthenium corroles and the underdeveloped state of their chemistry are clearly indicative of an area ripe for significant breakthroughs. The tendency of ruthenium corroles to form unreactive metal-metal-bonded dimers has been recognized as a key impediment in this area. Herein, by exposing free-base meso-tris(p-X-phenyl)corroles, H3[TpXPC] (X = CF3, H, Me, and OMe), and [Ru(COD)Cl2]x in refluxing 2-methoxyethanol to nitrite, we have been able to reliably intercept the series Ru[TpXPC](NO) in a matter of seconds to minutes and subsequently RuVI[TpXPC](N), the products of a second deoxygenation, over some 16 h. Two of the RuVIN complexes and one ruthenium corrole dimer could be crystallographically analyzed; the Ru-Nnitrido distance was found to be ∼1.61 Å, consistent with the triple-bonded character of the RuVIN units and essentially identical with the Os-Nnitrido distance in analogous osmium corroles. Spectroscopic and density functional theory (DFT) calculations suggest that the RuNO corroles are best viewed as innocent {RuNO}6 complexes, whereas the analogous FeNO corroles are noninnocent, i.e., best viewed as {FeNO}7-corrole•2-. Both RuVIN and OsVIN corroles exhibit sharp Soret bands, suggestive of an innocent macrocycle. A key difference between the two metals is that the Soret maxima of the OsVIN corroles are red-shifted some 25 nm relative to those of the RuVIN complexes. Careful time-dependent DFT studies indicate that this difference is largely attributable to relativistic effects in OsVIN corroles. The availability of two new classes of mononuclear ruthenium corroles potentially opens the door to new applications, in such areas as catalysis and cancer therapy.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , N-9037 Tromsø, Norway
| | - Hugo Vazquez-Lima
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , N-9037 Tromsø, Norway
| | - Kevin J Gagnon
- Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720-8229, United States
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , N-9037 Tromsø, Norway
| |
Collapse
|
20
|
Ghosh A. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem Rev 2017; 117:3798-3881. [PMID: 28191934 DOI: 10.1021/acs.chemrev.6b00590] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Presented herein is a comprehensive account of the electronic structure of corrole derivatives. Our knowledge in this area derives from a broad range of methods, including UV-vis-NIR absorption and MCD spectroscopies, single-crystal X-ray structure determination, vibrational spectroscopy, NMR and EPR spectroscopies, electrochemistry, X-ray absorption spectroscopy, and quantum chemical calculations, the latter including both density functional theory and ab initio multiconfigurational methods. The review is organized according to the Periodic Table, describing free-base and main-group element corrole derivatives, then transition-metal corroles, and finally f-block element corroles. Like porphyrins, corrole derivatives with a redox-inactive coordinated atom follow the Gouterman four-orbital model. A key difference from porphyrins is the much wider prevalence of noninnocent electronic structures as well as full-fledged corrole•2- radicals among corrole derivatives. The most common orbital pathways mediating ligand noninnocence in transition-metal corroles are the metal(dz2)-corrole("a2u") interaction (most commonly observed in Mn and Fe corroles) and the metal(dx2-y2)-corrole(a2u) interaction in coinage metal corroles. Less commonly encountered is the metal(dπ)-corrole("a1u") interaction, a unique feature of formal d5 metallocorroles. Corrole derivatives exhibit a rich array of optical properties, including substituent-sensitive Soret maxima indicative of ligand noninnocence, strong fluorescence in the case of lighter main-group element complexes, and room-temperature near-IR phosphorescence in the case of several 5d metal complexes. The review concludes with an attempt at identifying gaps in our current knowledge and potential future directions of electronic-structural research on corrole derivatives.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , 9037 Tromsø, Norway
| |
Collapse
|
21
|
Conradie J, Ghosh A. The Blue-Violet Color of Pentamethylbismuth: A Visible Spin-Orbit Effect. ChemistryOpen 2017; 6:15-17. [PMID: 28168144 PMCID: PMC5288750 DOI: 10.1002/open.201600131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
Two-component relativistic time-dependent density functional theory calculations with spin-orbit coupling predict yellow and orange-red absorption for BiPh5 and BiMe5, respectively, providing an excellent explanation for their respective violet and blue-violet colors. According to the calculations, the visible absorption is clearly attributable to a single transition from a ligand-based HOMO to a low-energy LUMO with a significant contribution from a relativistically stabilized Bi 6s orbital. Surprisingly, scalar releativistic calculations completely fail to reproduce the observed visible absorption and place it at the violet/near-UV borderline instead.
Collapse
Affiliation(s)
- Jeanet Conradie
- Department of ChemistryUniversity of the Free State9300BloemfonteinRepublic of South Africa
| | - Abhik Ghosh
- Department of ChemistryUiT–The Arctic University of Norway9037TromsøNorway
| |
Collapse
|