1
|
Hou J, Liu H, Gao M, Pan Q, Zhao Y. Triazine-Based Large-Sized Single-Crystalline Two-Dimensional Covalent Organic Framework for High-Performance Lithium-Ion Batteries. Angew Chem Int Ed Engl 2025; 64:e202414566. [PMID: 39212155 DOI: 10.1002/anie.202414566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
A large-sized single crystalline 2D COFs with excellent crystallinity and stability was prepared through the traditional thermal solvent method. The electrochemical performance can be significantly enhanced using a straightforward hybrid approach that involves in situ growth of the 2D COFs on multi-walled carbon nanotubes (MWCNTs). Both the advantages of COFs and CNTs are mutually enhanced. The single-crystalline feature of the obtained COFs improves the structural integrity and brings excellent chemical and electrochemical stabilities for lithium-ion battery applications. The resultant COF-CNT core-shell hybrids greatly improved the conductivity and demonstrated excellent lithium-ion storage performance with a high capacity of 228 mAh g-1 (0.2 A g-1).
Collapse
Affiliation(s)
- Jiaheng Hou
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, Qingdao, 266042, China
| | - Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, Qingdao, 266042, China
| | - Meng Gao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, Qingdao, 266042, China
| | - Qingyan Pan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, Qingdao, 266042, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, Qingdao, 266042, China
| |
Collapse
|
2
|
Yan X, Liu N, Liu W, Zeng J, Liu C, Chen S, Yang Y, Gui X, Yu D, Yang G, Zeng Z. Recent advances on COF-based single-atom and dual-atom sites for oxygen catalysis. Chem Commun (Camb) 2024; 60:12787-12802. [PMID: 39391942 DOI: 10.1039/d4cc03535f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as promising platforms for the construction of single-atom and dual-atom catalysts (SACs and DACs), owing to their well-defined structures, tunable pore sizes, and abundant active sites. In recent years, the development of COF-based SACs and DACs as highly efficient catalysts has witnessed a remarkable surge. The synergistic interplay between the metal active sites and the COF has established the design and fabrication of COF-based SACs and DACs as a prominent research area in electrocatalysis. These catalytic materials exhibit promising prospects for applications in energy storage and conversion devices. This review summarizes recent advances in the design, synthesis, and applications of COF-based SACs and DACs for oxygen catalysis. The catalytic mechanisms of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are comprehensively explored, providing a comparative analysis to elucidate the correlation between the structure and performance, as well as their functional attributes in battery devices. This review highlights a promising approach for future research, emphasizing the necessity of rational design, breakthroughs, and in-situ characterization to further advance the development of high-performance COF-based SACs and DACs for sustainable energy applications.
Collapse
Affiliation(s)
- Xinru Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ning Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Wencai Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jiajun Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Cong Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shufen Chen
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yuhua Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Li X, Sun M, Feng Y, Liu Y, Wang Y, Feng J, Sun M. Ionic liquid-functionalized covalent organic frameworks on the surface of silica for online solid-phase extraction. J Chromatogr A 2024; 1732:465200. [PMID: 39096780 DOI: 10.1016/j.chroma.2024.465200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/22/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Abstract
A covalent organic framework (COF) was gown on porous silica with 1,3,5-tri(4-aminophenyl)benzene and 2,5-divinyl-1,4-phenyldiformaldehyde as monomers, and two ionic liquids were grafted to COF by a click reaction. The materials before and after the modification of ionic liquids were separately packed into solid-phase extraction columns (10 × 4.6 mm, i.d.), which were coupled with liquid chromatography to construct online analysis systems. The extraction mechanisms of polycyclic aromatic hydrocarbons, bisphenols, diphenylalkanes and benzoic acids were investigated on these materials. There were π-π, hydrogen-bond and electrostatic interactions on ionic liquid-functionalized sorbents. After the comparison among these materials, the best sorbent was used, and the analytical method was established and successfully applied to the detection of some estrogens from actual samples. For the analytical method, the detection limit was as low as 0.005 μg L-1, linear range was as wide as 0.017-10.0 μg L-1, and enrichment ratio was as high as 3635. The recoveries in actual samples were 70 %-129 %.
Collapse
Affiliation(s)
- Xiaomin Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Mingxia Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yang Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yanming Liu
- Shandong Institute for Food and Drug Control, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Jinan 250101, PR China
| | - Yanli Wang
- Shandong Institute for Food and Drug Control, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Jinan 250101, PR China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
4
|
Wang HY, Su J, Zuo JL. Porous Crystalline Materials Based on Tetrathiafulvalene and Its Analogues: Assembly, Charge Transfer, and Applications. Acc Chem Res 2024; 57:1851-1869. [PMID: 38902854 DOI: 10.1021/acs.accounts.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
ConspectusThe directed synthesis and functionalization of porous crystalline materials pose significant challenges for chemists. The synergistic integration of different functionalities within an ordered molecular material holds great significance for expanding its applications as functional materials. The presence of coordination bonds connected by inorganic and organic components in molecular materials can not only increase the structural diversity of materials but also modulate the electronic structure and band gap, which further regulates the physical and chemical properties of molecular materials. In fact, porous crystalline materials with coordination bonds, which inherit the merits of both organic and inorganic materials, already showcase their superior advantages in optical, electrical, and magnetic applications. In addition to the inorganic components that provide structural rigidity, organic ligands of various types serve as crucial connectors in the construction of functional porous crystalline materials. In addition, redox activity can endow organic linkers with electrochemical activity, thereby making them a perfect platform for the study of charge transfer with atom-resolved single-crystal structures, and they can additionally serve as stimuli-responsive sites in sensor devices and smart materials.In this Account, we introduce the synthesis, structural characteristics, and applications of porous crystalline materials based on the famous redox-active units, tetrathiafulvalene (TTF) and its analogues, by primarily focusing on metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). TTF, a sulfur-rich conjugated molecule with two reversible and easily accessible oxidation states (i.e., radical TTF•+ cation and TTF2+ dication), and its analogues boast special electrical characteristics that enable them to display switchable redox activity and stimuli-responsive properties. These inherent properties contribute to the enhancement of the optical, electrical, and magnetic characteristics of the resultant porous crystalline materials. Moreover, delving into the charge transfer phenomena, which is key for the electrochemical process within these materials, uncovers a myriad of potential functional applications. The Account is organized into five main sections that correspond to the different properties and applications of these materials: optical, electrical, and magnetic functionalities; energy storage and conversion; and catalysis. Each section provides detailed discussions of synthetic methods, structural characteristics, the physical and chemical properties, and the functional performances of highlighted examples. The Account also discusses future directions by emphasizing the exploration of novel organic units, the transformation between radical cation TTF•+ and dication TTF2+, and the integration of multifunctionalities within these frameworks to foster the development of smart materials for enhanced performance across diverse applications. Through this Account, we aim to highlight the massive potential of TTF and its analogues-based porous crystals in chemistry and material science.
Collapse
Affiliation(s)
- Hai-Ying Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Zhang X, Kazemi SA, Xu X, Hill JP, Wang J, Li H, Alshehri SM, Ahamad T, Bando Y, Yamauchi Y, Wang Y, Pan L. 14-Electron Redox Chemistry Enabled by Salen-Based π-Conjugated Framework Polymer Boosting High-Performance Lithium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309321. [PMID: 38528424 DOI: 10.1002/smll.202309321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/12/2024] [Indexed: 03/27/2024]
Abstract
A paucity of redox centers, poor charge transport properties, and low structural stability of organic materials obstruct their use in practical applications. Herein, these issues have been addressed through the use of a redox-active salen-based framework polymer (RSFP) containing multiple redox-active centers in π-conjugated configuration for applications in lithium-ion batteries (LIBs). Based on its unique architecture, RSFP exhibits a superior reversible capacity of 671.8 mAh g-1 at 0.05 A g-1 after 168 charge-discharge cycles. Importantly, the lithiation/de-lithiation performance is enhanced during operation, leading to an unprecedented reversible capacity of 946.2 mAh g-1 after 3500 cycles at 2 A g-1. The structural evolution of RSFP is studied ex situ using X-ray photoelectron spectroscopy, revealing multiple active C═N, C─O, and C═O sites and aromatic sites such as benzene rings. Remarkably, the emergence of C═O originated from C─O is triggered by an electrochemical process, which is beneficial for improving reversible lithiation/delithiation behavior. Furthermore, the respective strong and weak binding interactions between redox centers and lithium ions, corresponding to theoretical capacities of 670.1 and 938.2 mAh g-1, have been identified by density functional theory calculations manifesting 14-electron redox reactions. This work sheds new light on routes for the development of redox-active organic materials for energy storage applications.
Collapse
Affiliation(s)
- Xinlu Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Seyedeh Alieh Kazemi
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Southport, 4222, Australia
| | - Xingtao Xu
- Marine Science and Technology Collage, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jonathan P Hill
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jiachen Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Haibo Li
- Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Saad M Alshehri
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tansir Ahamad
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yoshio Bando
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya University, Nagoya, 464-8601, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yun Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Southport, 4222, Australia
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
6
|
Su AY, Apostol P, Wang J, Vlad A, Dincă M. Electrochemical Capacitance Traces with Interlayer Spacing in Two-dimensional Conductive Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202402526. [PMID: 38415379 DOI: 10.1002/anie.202402526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Electrically conductive metal-organic frameworks (MOFs) are promising candidates for electrochemical capacitors (EC) for fast energy storage due to their high specific surface areas and potential for redox activity. To maximize energy density, traditional inorganic pseudocapacitors have utilized faradaic processes in addition to double-layer capacitance. Although conductive MOFs are usually comprised of redox active ligands which allow faradaic reactions upon electrochemical polarization, systematic studies providing deeper understanding of the charge storage processes and structure-function relationships have been scarce. Here, we investigate the charge storage mechanisms of a series of triazatruxene-based 2D layered conductive MOFs with variable alkyl functional groups, Ni3(HIR3-TAT)2 (TAT=triazatruxene; R=H, Et, n-Bu, n-Pent). Functionalization of the triazatruxene core allows for systematic variation of structural parameters while maintaining in-plane conjugation between ligands and metals. Specifically, R groups modulate interlayer spacing, which in turn shifts the charge storage mechanism from double-layer capacitance towards pseudocapacitance, leading to an increase in molar specific capacitance from Ni3(HIH3-TAT)2 to Ni3(HIBu3-TAT)2. Partial exfoliation of Ni3(HIBu3-TAT)2 renders redox active ligand moieties more accessible, and thus increases the dominance of faradaic processes. Our strategy of controlling charge storage mechanism through tuning the accessibility of redox-active sites may motivate further design and engineering of electrode materials for EC.
Collapse
Affiliation(s)
- Alice Y Su
- Department of Chemistry, Massachusetts Institute of Technology, 02139, Cambridge, USA
| | - Petru Apostol
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium
| | - Jiande Wang
- Department of Chemistry, Massachusetts Institute of Technology, 02139, Cambridge, USA
| | - Alexandru Vlad
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 02139, Cambridge, USA
| |
Collapse
|
7
|
Cui S, Miao W, Peng H, Ma G, Lei Z, Zhu L, Xu Y. Covalent Organic Frameworks as Electrode Materials for Alkali Metal-ion Batteries. Chemistry 2024; 30:e202303320. [PMID: 38126628 DOI: 10.1002/chem.202303320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Covalent organic frameworks (COFs) are a class of porous crystalline polymeric materials constructed by linking organic small molecules through covalent bonds. COFs have the advantages of strong covalent bond network, adjustable pore structure, large specific surface area and excellent thermal stability, and have broad application prospects in various fields. Based on these advantages, rational COFs design strategies such as the introduction of active sites, construction of conjugated structures, and carbon material composite, etc. can effectively improve the conductivity and stability of the electrode materials in the field of batteries. This paper introduces the latest research results of high-performance COFs electrode materials in alkali metal-ion batteries (LIBs, SIBs, PIBs and LSBs) and other advanced batteries. The current challenges and future design directions of COFs-based electrode are discussed. It provides useful insights for the design of novel COFs structures and the development of high-performance alkali metal-ion batteries.
Collapse
Affiliation(s)
- Shuzhen Cui
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Wenxing Miao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Hui Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Guofu Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Polymer Materials Ministry of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, 432000, Hubei Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
8
|
Chafiq M, Chaouiki A, Ko YG. Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future. NANO-MICRO LETTERS 2023; 15:213. [PMID: 37736827 PMCID: PMC10516851 DOI: 10.1007/s40820-023-01180-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 09/23/2023]
Abstract
Porous organic frameworks (POFs) have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials, both in their pristine state and when subjected to various chemical and structural modifications. Metal-organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties, such as high crystallinity, intrinsic porosity, unique structural regularity, diverse functionality, design flexibility, and outstanding stability. This review provides an overview of the state-of-the-art research on base-stable POFs, emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials. Thereafter, the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements. It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category.
Collapse
Affiliation(s)
- Maryam Chafiq
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Abdelkarim Chaouiki
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Young Gun Ko
- Materials Electrochemistry Group, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
9
|
He W, Gan Y, Qi X, Wang H, Song H, Su P, Song J, Yang Y. Enhancing Enzyme Activity Using Hydrophilic Hollow Layered Double Hydroxides as Encapsulation Carriers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37440477 DOI: 10.1021/acsami.3c05237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Enzyme immobilization enables the fabrication of flexible and powerful biocatalytic systems that can meet the needs of green and efficient development in various fields. However, restricted electron and mass transfer during enzymatic reactions and disruption of the enzyme structure during encapsulation limit the wide application of the immobilized enzyme systems. Herein, we report an encapsulation strategy based on hollow-shell-layered double hydroxides (LDHs; ZnCo-LDH) for green and nondestructive enzyme immobilization. Benefiting from the protective and enzyme-friendly microenvironment provided by the hydrophilic hollow structure of ZnCo-LDH, the encapsulated enzyme maintains a nearly natural enzyme biostructure and enhanced stability. Notably, mesoporous ZnCo-LDH with excellent electrical properties considerably facilitates electron and mass transport during enzymatic reactions, exhibiting 5.56 times the catalytic efficiency of free enzymes or traditional enzyme encapsulation systems. The current study broadens the family of encapsulated carriers and alleviates the trade-off between enzyme stability and catalytic activity in the encapsulated state, presenting a promising avenue for the industrial application of the enzyme.
Collapse
Affiliation(s)
- Wenting He
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yijia Gan
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xingyi Qi
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Han Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Hanyue Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
10
|
Goujon N, Lahnsteiner M, Cerrón-Infantes DA, Moura HM, Mantione D, Unterlass MM, Mecerreyes D. Dual redox-active porous polyimides as high performance and versatile electrode material for next-generation batteries. MATERIALS HORIZONS 2023; 10:967-976. [PMID: 36633135 PMCID: PMC9986975 DOI: 10.1039/d2mh01335e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Energy storage will be a primordial actor of the ecological transition initiated in the energy and transport sectors. As such, innovative approaches to design high-performance electrode materials are crucial for the development of the next generation of batteries. Herein, a novel dual redox-active and porous polyimide network (MTA-MPT), based on mellitic trianhydride (MTA) and 3,7-diamino-N-methylphenothiazine (MPT) monomers, is proposed for applications in both high energy density lithium batteries and symmetric all-organic batteries. The MTA-MPT porous polyimide was synthesized using a novel environmentally-friendly hydrothermal polymerization method. Rooted in its dual redox proprieties, the MTA-MPT porous polyimide exhibits a high theoretical capacity making it a very attractive cathode material for high energy density battery applications. The cycling performance of this novel electrode material was assessed in both high energy density lithium batteries and light-weight symmetric all-organic batteries, displaying excellent rate capability and long-term cycling stability.
Collapse
Affiliation(s)
- Nicolas Goujon
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain.
| | - Marianne Lahnsteiner
- Universität Konstanz, Department of Chemistry, Solid State Chemistry, Universitatsstrasse 10, D-78464 Konstanz, Germany.
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Daniel A Cerrón-Infantes
- Universität Konstanz, Department of Chemistry, Solid State Chemistry, Universitatsstrasse 10, D-78464 Konstanz, Germany.
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Hipassia M Moura
- Universität Konstanz, Department of Chemistry, Solid State Chemistry, Universitatsstrasse 10, D-78464 Konstanz, Germany.
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Daniele Mantione
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain.
| | - Miriam M Unterlass
- Universität Konstanz, Department of Chemistry, Solid State Chemistry, Universitatsstrasse 10, D-78464 Konstanz, Germany.
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
11
|
Tao CA, Li Y, Wang J. The progress of electrochromic materials based on metal–organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
3D supramolecular assembly of Cu(II) CP containing 1D zig-zag chain and 2D paddle-wheel net: Structural elucidation and investigation of band gap. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Miao Z, Quainoo T, Czyszczon-Burton TM, Rotthowe N, Parr JM, Liu ZF, Inkpen MS. Charge Transport Across Dynamic Covalent Chemical Bridges. NANO LETTERS 2022; 22:8331-8338. [PMID: 36215246 PMCID: PMC9614958 DOI: 10.1021/acs.nanolett.2c03288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Relationships between chemical structure and conductivity in ordered polymers (OPs) are difficult to probe using bulk samples. We propose that conductance measurements of appropriate molecular-scale models can reveal trends in electronic coupling(s) between repeat units that may help inform OP design. Here, we apply the scanning tunneling microscope-based break-junction (STM-BJ) method to study transport through single-molecules comprising OP-relevant imine, imidazole, diazaborole, and boronate ester dynamic covalent chemical bridges. Notably, solution-stable boron-based compounds dissociate in situ unless measured under a rigorously inert glovebox atmosphere. We find that junction conductance negatively correlates with the electronegativity difference between bridge atoms, and corroborative first-principles calculations further reveal a different nodal structure in the transmission eigenchannels of boronate ester junctions. This work reaffirms expectations that highly polarized bridge motifs represent poor choices for the construction of OPs with high through-bond conductivity and underscores the utility of glovebox STM-BJ instrumentation for studies of air-sensitive materials.
Collapse
Affiliation(s)
- Zelin Miao
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Timothy Quainoo
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Thomas M. Czyszczon-Burton
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Nils Rotthowe
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Joseph M. Parr
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Zhen-Fei Liu
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Michael S. Inkpen
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
14
|
Atomic-resolution structures from polycrystalline covalent organic frameworks with enhanced cryo-cRED. Nat Commun 2022; 13:4016. [PMID: 35821216 PMCID: PMC9276740 DOI: 10.1038/s41467-022-31524-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
The pursuit of atomic precision structure of porous covalent organic frameworks (COFs) is the key to understanding the relationship between structures and properties, and further developing new materials with superior performance. Yet, a challenge of how to determine their atomic structures has always existed since the first COFs reported seventeen years ago. Here, we present a universal method for ab initio structure determination of polycrystalline three-dimensional (3D) COFs at atomic level using enhanced cryo-continuous rotation electron diffraction (cryo-cRED), which combines hierarchical cluster analysis with cryo-EM technique. The high-quality datasets possess not only up to 0.79-angstrom resolution but more than 90% completeness, leading to unambiguous solution and precise refinement with anisotropic temperature factors. With such a powerful method, the dynamic structures with flexible linkers, degree of interpenetration, position of functional groups, and arrangement of ordered guest molecules are successfully revealed with atomic precision in five 3D COFs, which are almost impossible to be obtained without atomic resolution structure solution. This study demonstrates a practicable strategy for determining the structures of polycrystalline COFs and other beam-sensitive materials and to help in the future discovery of novel materials on the other.
Collapse
|
15
|
|
16
|
Guo Y, Wang W, Lei H, Wang M, Jiao S. Alternate Storage of Opposite Charges in Multisites for High-Energy-Density Al-MOF Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110109. [PMID: 35112402 DOI: 10.1002/adma.202110109] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The limited active sites of cathode materials in aluminum-ion batteries restrict the storage of more large-sized Al-complex ions, leading to a low celling of theoretical capacity. To make the utmost of active sites, an alternate storage mechanism of opposite charges (AlCl4 - anions and AlCl2 + cations) in multisites is proposed herein to achieve an ultrahigh capacity in Al-metal-organic framework (MOF) battery. The bipolar ligands (oxidized from 18π to 16π electrons and reduced from 18π to 20π electrons in a planar cyclic conjugated system) can alternately uptake and release AlCl4 - anions and AlCl2 + cations in charge/discharge processes, which can double the capacity of unipolar ligands. Moreover, the high-density active Cu sites (Cu nodes) in the 2D Cu-based MOF can also store AlCl2 + cations for a higher capacity. The rigid and extended MOF structure can address the problems of high solubility and poor stability of small organic molecules. As a result, three-step redox reactions with two-electron transfer in each step are demonstrated in charge/discharge processes, achieving high reversible capacity (184 mAh g-1 ) and energy density (177 Wh kg-1 ) of the optimized cathode in an Al-MOF battery. The findings provide a new insight for the rational design of stable high-energy Al-MOF batteries.
Collapse
Affiliation(s)
- Yuxi Guo
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haiping Lei
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
17
|
Jin Z, Cheng Q, Evans AM, Gray J, Zhang R, Bao ST, Wei F, Venkataraman L, Yang Y, Nuckolls C. π-Conjugated redox-active two-dimensional polymers as organic cathode materials. Chem Sci 2022; 13:3533-3538. [PMID: 35432867 PMCID: PMC8943886 DOI: 10.1039/d1sc07157b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/02/2022] [Indexed: 01/21/2023] Open
Abstract
Redox-active two-dimensional polymers (RA-2DPs) are promising lithium battery organic cathode materials due to their regular porosities and high chemical stabilities. However, weak electrical conductivities inherent to the non-conjugated molecular motifs used thus far limit device performance and the practical relevance of these materials. We herein address this problem by developing a modular approach to construct π-conjugated RA-2DPs with a new polycyclic aromatic redox-active building block PDI-DA. Efficient imine-condensation between PDI-DA and two polyfunctional amine nodes followed by quantitative alkyl chain removal produced RA-2DPs TAPPy-PDI and TAPB-PDI as conjugated, porous, polycrystalline networks. In-plane conjugation and permanent porosity endow these materials with high electrical conductivity and high ion diffusion rates. As such, both RA-2DPs function as organic cathode materials with good rate performance and excellent cycling stability. Importantly, the improved design enables higher areal mass-loadings than were previously available, which drives a practical demonstration of TAPPy-PDI as the power source for a series of LED lights. Collectively, this investigation discloses viable synthetic methodologies and design principles for the realization of high-performance organic cathode materials.
Collapse
Affiliation(s)
- Zexin Jin
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Qian Cheng
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Austin M Evans
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Jesse Gray
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Ruiwen Zhang
- Department of Applied Physics and Applied Mathematics, Columbia University New York New York 10027 USA
| | - Si Tong Bao
- Department of Chemistry, Columbia University New York New York 10027 USA
| | - Fengkai Wei
- Department of Applied Physics and Applied Mathematics, Columbia University New York New York 10027 USA
| | - Latha Venkataraman
- Department of Chemistry, Columbia University New York New York 10027 USA
- Department of Applied Physics and Applied Mathematics, Columbia University New York New York 10027 USA
| | - Yuan Yang
- Department of Applied Physics and Applied Mathematics, Columbia University New York New York 10027 USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University New York New York 10027 USA
| |
Collapse
|
18
|
Han J, Pei L, Du Y, Zhu Y. Tripolycyanamide-2,4,6-triformyl pyrogallol covalent organic frameworks with many coordination sites for detection and removal of heavy metal ions. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Ezugwu CI, Sonawane JM, Rosal R. Redox-active metal-organic frameworks for the removal of contaminants of emerging concern. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Rohland P, Schröter E, Nolte O, Newkome GR, Hager MD, Schubert US. Redox-active polymers: The magic key towards energy storage – a polymer design guideline progress in polymer science. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Greb L. Valence Tautomerism of p-Block Element Compounds - An Eligible Phenomenon for Main Group Catalysis? Eur J Inorg Chem 2022; 2022:e202100871. [PMID: 35910784 PMCID: PMC9306562 DOI: 10.1002/ejic.202100871] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Indexed: 01/03/2023]
Abstract
Valence tautomerism has had a remarkable impact on several branches of transition metal chemistry. By switching between different valence tautomeric states, physicochemical properties and reactivities can be triggered reversibly. Is this phenomenon transferrable into the p-block - or is it already happening there? This Perspective collects observations of p-block element-ligand systems that might be assignable to valence tautomerism. Further, it discusses occurrences in p-block element compounds that exhibit the related effect of redox-induced electron transfer. As disclosed, the concept of valence tautomerism with p-block elements is at a very early stage. However, given the substantial disparity in the properties of those elements in different redox states, it might offer a valid extension for future developments in main group catalysis.
Collapse
Affiliation(s)
- Lutz Greb
- Anorganische ChemieFreie Universität BerlinFabeckstr. 34–3614195BerlinGermany
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
22
|
Mondal AK, Xu D, Wu S, Zou Q, Huang F, Ni Y. Design of Fe 3+-Rich, High-Conductivity Lignin Hydrogels for Supercapacitor and Sensor Applications. Biomacromolecules 2022; 23:766-778. [PMID: 35049296 DOI: 10.1021/acs.biomac.1c01194] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Preparation of natural polymer-based highly conductive hydrogels with tunable mechanical properties for applications in flexible electronics is still challenging. Herein, we report a facile method to prepare lignin-based Fe3+-rich, high-conductivity hydrogels via the following two-step process: (1) lignin hydrogels are prepared by cross-linking sulfonated lignin with poly(ethylene glycol) diglycidyl ether (PEGDGE) and (2) Fe3+ ions are impregnated into the lignin hydrogel by simply soaking in FeCl3. Benefiting from Fe3+ ion complexation with catechol groups and other functional groups in lignin, the resultant hydrogels exhibit unique properties, such as high conductivity (as high as 6.69 S·m-1) and excellent mechanical and hydrophobic properties. As a strain sensor, the as-prepared lignin hydrogel shows high sensitivity when detecting various human motions. With the flow of moist air, the Fe3+-rich lignin hydrogel generates an output voltage of 162.8 mV. The assembled supercapacitor of the hydrogel electrolyte demonstrates a high specific capacitance of 301.8 F·g-1, with a maximum energy density of 26.73 Wh·kg-1, a power density of 2.38 kW·kg-1, and a capacitance retention of 94.1% after 10 000 consecutive charge-discharge cycles. These results support the conclusion that lignin-based Fe3+-rich, high-conductivity hydrogels have promising applications in different fields, including sensors and supercapacitors, rendering a new platform for the value-added utilization of lignin.
Collapse
Affiliation(s)
- Ajoy Kanti Mondal
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.,Institute of Fuel Research and Development, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Dezhong Xu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Shuai Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Qiuxia Zou
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Fang Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Yonghao Ni
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.,Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada
| |
Collapse
|
23
|
Xu L, Zhao X, Yu K, Wang C, Lv J, Wang C, Zhou B. Simple preparation of Ag-BTC-modified Co 3Mo 7O 24 mesoporous material for capacitance and H 2O 2-sensing performances. CrystEngComm 2022. [DOI: 10.1039/d2ce00639a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
{Co3Mo7O24}@Ag-BTC-2 was synthesized by a grinding method, and it showed excellent performance in a supercapacitor and H2O2 sensing.
Collapse
Affiliation(s)
- Lijie Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Xinyu Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, P.R. China
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, P.R. China
| |
Collapse
|
24
|
Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021; 50:13498-13558. [PMID: 34787136 PMCID: PMC9264329 DOI: 10.1039/d1cs00600b] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure-property-performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
25
|
Tang J, Su C, Shao Z. Covalent Organic Framework (COF)-Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. SMALL METHODS 2021; 5:e2100945. [PMID: 34928017 DOI: 10.1002/smtd.202100945] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Indexed: 06/14/2023]
Abstract
Developing highly efficient electrocatalysts for renewable energy conversion and environment purification has long been a research priority in the past 15 years. Covalent organic frameworks (COFs) have emerged as a burgeoning family of organic materials internally connected by covalent bonds and have been explored as promising candidates in electrocatalysis. The reticular geometry of COFs can provide an excellent platform for precise incorporation of the active sites in the framework, and the fine-tuning hierarchical porous architectures can enable efficient accessibility of the active sites and mass transportation. Considerable advances are made in rational design and controllable fabrication of COF-based organic-inorganic hybrids, that containing organic frameworks and inorganic electroactive species to induce novel physicochemical properties, and take advantage of the synergistic effect for targeted electrocatalysis with the hybrid system. Branches of COF-based hybrids containing a diversity form of metals, metal compounds, as well as metal-free carbons have come to the fore as highly promising electrocatalysts. This review aims to provide a systematic and profound understanding of the design principles behind the COF-based hybrids for electrocatalysis applications. Particularly, the structure-activity relationship and the synergistic effects in the COF-based hybrid systems are discussed to shed some light on the future design of next-generation electrocatalysts.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
| | - Chao Su
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6102, Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
26
|
Zhang S, Panda DK, Yadav A, Zhou W, Saha S. Effects of intervalence charge transfer interaction between π-stacked mixed valent tetrathiafulvalene ligands on the electrical conductivity of 3D metal-organic frameworks. Chem Sci 2021; 12:13379-13391. [PMID: 34777756 PMCID: PMC8528024 DOI: 10.1039/d1sc04338b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022] Open
Abstract
Achieving a molecular-level understanding of how the structures and compositions of metal–organic frameworks (MOFs) influence their charge carrier concentration and charge transport mechanism—the two key parameters of electrical conductivity—is essential for the successful development of electrically conducting MOFs, which have recently emerged as one of the most coveted functional materials due to their diverse potential applications in advanced electronics and energy technologies. Herein, we have constructed four new alkali metal (Na, K, Rb, and Cs) frameworks based on an electron-rich tetrathiafulvalene tetracarboxylate (TTFTC) ligand, which formed continuous π-stacks, albeit with different π–π-stacking and S⋯S distances (dπ–π and dS⋯S). These MOFs also contained different amounts of aerobically oxidized TTFTC˙+ radical cations that were quantified by electron spin resonance (ESR) spectroscopy. Density functional theory calculations and diffuse reflectance spectroscopy demonstrated that depending on the π–π-interaction and TTFTC˙+ population, these MOFs enjoyed varying degrees of TTFTC/TTFTC˙+ intervalence charge transfer (IVCT) interactions, which commensurately affected their electronic and optical band gaps and electrical conductivity. Having the shortest dπ–π (3.39 Å) and the largest initial TTFTC˙+ population (∼23%), the oxidized Na-MOF 1-ox displayed the narrowest band gap (1.33 eV) and the highest room temperature electrical conductivity (3.6 × 10−5 S cm−1), whereas owing to its longest dπ–π (3.68 Å) and a negligible TTFTC˙+ population, neutral Cs-MOF 4 exhibited the widest band gap (2.15 eV) and the lowest electrical conductivity (1.8 × 10−7 S cm−1). The freshly prepared but not optimally oxidized K-MOF 2 and Rb-MOF 3 initially displayed intermediate band gaps and conductivity, however, upon prolonged aerobic oxidation, which raised the TTFTC˙+ population to saturation levels (∼25 and 10%, respectively), the resulting 2-ox and 3-ox displayed much narrower band gaps (∼1.35 eV) and higher electrical conductivity (6.6 × 10−5 and 4.7 × 10−5 S cm−1, respectively). The computational studies indicated that charge movement in these MOFs occurred predominantly through the π-stacked ligands, while the experimental results displayed the combined effects of π–π-interactions, TTFTC˙+ population, and TTFTC/TTFTC˙+ IVCT interaction on their electronic and optical properties, demonstrating that IVCT interactions between the mixed-valent ligands could be exploited as an effective design strategy to develop electrically conducting MOFs. Through-space charge movement enabled by intervalence charge transfer interactions between π-stacked mixed-valent tetrathiafulvalene ligands creates electrical conductivity in three-dimensional metal–organic frameworks.![]()
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | - Dillip K Panda
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | - Ashok Yadav
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg Maryland 20899 USA
| | - Sourav Saha
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| |
Collapse
|
27
|
Rambabu D, Lakraychi AE, Wang J, Sieuw L, Gupta D, Apostol P, Chanteux G, Goossens T, Robeyns K, Vlad A. An Electrically Conducting Li-Ion Metal-Organic Framework. J Am Chem Soc 2021; 143:11641-11650. [PMID: 34309388 DOI: 10.1021/jacs.1c04591] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal-organic frameworks (MOFs) have emerged as an important, yet highly challenging class of electrochemical energy storage materials. The chemical principles for electroactive MOFs remain, however, poorly explored because precise chemical and structural control is mandatory. For instance, no anionic MOF with a lithium cation reservoir and reversible redox (like a conventional Li-ion cathode) has been synthesized to date. Herein, we report on electrically conducting Li-ion MOF cathodes with the generic formula Li2-M-DOBDC (wherein M = Mg2+ or Mn2+; DOBDC4- = 2,5-dioxido-1,4-benzenedicarboxylate), by rational control of the ligand to transition metal stoichiometry and secondary building unit (SBU) topology in the archetypal CPO-27. The accurate chemical and structural changes not only enable reversible redox but also induce a million-fold electrical conductivity increase by virtue of efficient electronic self-exchange facilitated by mix-in redox: 10-7 S/cm for Li2-Mn-DOBDC vs 10-13 S/cm for the isoreticular H2-Mn-DOBDC and Li2-Mg-DOBDC, or the Mn-CPO-27 compositional analogues. This particular SBU topology also considerably augments the redox potential of the DOBDC4- linker (from 2.4 V up to 3.2 V, vs Li+/Li0), a highly practical feature for Li-ion battery assembly and energy evaluation. As a particular cathode material, Li2-Mn-DOBDC displays an average discharge potential of 3.2 V vs Li+/Li0, demonstrates excellent capacity retention over 100 cycles, while also handling fast cycling rates, inherent to the intrinsic electronic conductivity. The Li2-M-DOBDC material validates the concept of reversible redox activity and electronic conductivity in MOFs by accommodating the ligand's noncoordinating redox center through composition and SBU design.
Collapse
Affiliation(s)
- Darsi Rambabu
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alae Eddine Lakraychi
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Jiande Wang
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Louis Sieuw
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Deepak Gupta
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Petru Apostol
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Géraldine Chanteux
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Tom Goossens
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alexandru Vlad
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
28
|
Zhao J, Xu Y, Chen J, Tao L, Ou C, Lv W, Zhong S. A phthalocyanine-grafted MA-VA framework polymer as a high performance anode material for lithium/sodium-ion batteries. Dalton Trans 2021; 50:9858-9870. [PMID: 34195718 DOI: 10.1039/d1dt01400e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous MA-VA-PcNi polymer was prepared by grafting nickel phthalocyanine (PcNi) onto the main chain of a maleic anhydride-vinyl acetate (MA-VA) polymer, and an MA-VA-PcNi electrode is prepared by electrospinning technology to inhibit the agglomeration of the active powder effectively, which produces spherical particles with a diameter of 100-300 nm. The synthesized MA-VA-PcNi polymer is used as the anode for lithium-ion and sodium-ion batteries, exhibiting excellent energy storage behaviors. The MA-VA-PcNi/Li battery displays a high capacity of 610 mA h g-1 and can still remain at 507 mA h g-1 with a retention rate of 83.1% after 400 cycles at a current density of 200 mA g-1. Even at a high current density of 2 A g-1, the specific capacity can remain at 195 mA h g-1. In addition, the MA-VA-PcNi/Na battery displays a high capacity of 336 mA h g-1 and can still remain at 278 mA h g-1 with a retention rate of 82.7% after 400 cycles at a current density of 100 mA g-1. A high specific capacity of 164 mA h g-1 can also be achieved at a high current density of 1 A g-1. After nickel phthalocyanine (PcNi) was grafted onto the MA-VA polymer, aggregation between phthalocyanine rings was effectively prevented, and this exposes more active sites. At the same time, the spherical particles obtained by electrospinning technology further improve the dispersion and increase the number of active sites of the active materials. Finally, the electrode materials show excellent energy storage behavior for lithium-ion and sodium-ion batteries, which provides a new idea for designing high-performance energy storage materials for organic electrodes.
Collapse
Affiliation(s)
- Jianjun Zhao
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Yong Xu
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Jun Chen
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Lihong Tao
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Caixia Ou
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Weixia Lv
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Shengwen Zhong
- School of Materials Science and Engineering, Jiangxi Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| |
Collapse
|
29
|
Cai G, Yan P, Zhang L, Zhou HC, Jiang HL. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem Rev 2021; 121:12278-12326. [PMID: 34280313 DOI: 10.1021/acs.chemrev.1c00243] [Citation(s) in RCA: 459] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal-organic frameworks (MOFs) have been widely recognized as one of the most fascinating classes of materials from science and engineering perspectives, benefiting from their high porosity and well-defined and tailored structures and components at the atomic level. Although their intrinsic micropores endow size-selective capability and high surface area, etc., the narrow pores limit their applications toward diffusion-control and large-size species involved processes. In recent years, the construction of hierarchically porous MOFs (HP-MOFs), MOF-based hierarchically porous composites, and MOF-based hierarchically porous derivatives has captured widespread interest to extend the applications of conventional MOF-based materials. In this Review, the recent advances in the design, synthesis, and functional applications of MOF-based hierarchically porous materials are summarized. Their structural characters toward various applications, including catalysis, gas storage and separation, air filtration, sewage treatment, sensing and energy storage, have been demonstrated with typical reports. The comparison of HP-MOFs with traditional porous materials (e.g., zeolite, porous silica, carbons, metal oxides, and polymers), subsisting challenges, as well as future directions in this research field, are also indicated.
Collapse
Affiliation(s)
- Guorui Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Peng Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liangliang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Frontiers Science Center for Flexible Electronics (FSCFE), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi 710072, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
30
|
Duan X, Ouyang Y, Zeng Q, Ma S, Kong Z, Chen A, He Z, Yang T, Zhang Q. Two Carboxyl-Decorated Anionic Metal-Organic Frameworks as Solid-State Electrolytes Exhibiting High Li + and Zn 2+ Conductivity. Inorg Chem 2021; 60:11032-11037. [PMID: 34250806 DOI: 10.1021/acs.inorgchem.1c00744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly electronegative carboxyl-decorated anionic metal-organic framework (MOF), (Me2NH2)2[In2(THBA)2](CH3CN)9(H2O)21 (InOF; H4THBA = [1,1':4',1″-terphenyl]-2',3,3″,5,5',5″-hexacarboxylic acid), with high-density electronegative functional sites was designed and constructed. One unit cell of InOF possesses 12 negative sites that originate from the negatively charged secondary building unit [In(COO)4]- and exposed carboxyl groups on the ligand. The abundant electronegative sites can facilitate the hopping of ions in channels and thus result in highly efficient ion conductivities for various metal ions. Our results show that Li+-loaded materials have a remarkably high ion conductivity of 1.49 × 10-3 S/cm, an ion transference number of 0.78, and a relatively low activation energy of 0.19 eV. The Na+, K+, and Zn2+ ion conductivities of InOF are 7.97 × 10-4, 7.69 × 10-4, and 1.22 × 10-3 S/cm at 25 °C, respectively.
Collapse
Affiliation(s)
- Xing Duan
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Yuan Ouyang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Qinghan Zeng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shiyu Ma
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhe Kong
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Aqing Chen
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhiwei He
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Tao Yang
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qi Zhang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
31
|
Li J, Liu Y, Wang C, Jia Q, Zhang G, Huang X, Zhou N, Zhang Z. Determination of VEGF 165 using impedimetric aptasensor based on cyclohexanehexone-melem covalent-organic framework. Mikrochim Acta 2021; 188:211. [PMID: 34050442 DOI: 10.1007/s00604-021-04843-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
A porous nanostructured covalent-organic framework (COF) has been prepared via condensation polymerization between the two building blocks of melem and hexaketocyclohexane octahydrate (represented as M-HO-COF). Basic characterizations revealed that the M-HO-COF network was composed of C=N and highly conjugated aromatic moieties, along with a high surface area, large pore size, remarkable electrochemical activity, and strong bioaffinity toward aptamer strands. Given that the vascular endothelial growth factor 165 (VEGF165)-targeted aptamer was stably anchored over M-HO-COF via weak intermolecular forces, the prepared M-HO-COF network exhibited great potential as a sensitive and selective platform for the impedimetric VEGF165 aptasensor. Consequently, the M-HO-COF-based aptasensor displayed an ultralow limit of detection of 0.18 fg mL-1 within a wide range of VEGF165 concentrations from 1 fg mL-1 to 10 ng mL-1. Considering its strong fluorescence performance, excellent biocompatibility, and small nanosheet-like structure, the obtained COF-based aptasensor showed a superior sensing performance and regeneration capability after 7 regeneration cycles for the detection of osteosarcoma cells (K7M2 cells), which overexpressed with VEGF165, with a low limit of detection of 49 cells mL-1. For real f human serum samples, the obtained COF-based aptasensor exhibits acceptable mean apparent recoveries of 97.41% with a relative standard deviation of 4.60%. Furthermore, the proposed bifunctional aptasensor for the detection VEGF165 and K7M2 cells exhibited good stability, appropriate selectivity toward other biomarkers or normal cells, acceptable reproducibility, and applicability. A bifunctional sensing system was constructed for detecting osteosarcoma cells (K7M2 cells) and VEGF165 based on the a porous nanostructured covalent-organic framework (M-HO-COF) via condensation polymerization between melem and hexaketocyclohexane octahydrate. The M-HO-COF-based aptasensor displayed ultralow detection limit of 0.18 fg mL-1 toward VEGF165 and 49 cell mL-1 for K7M2 cells with high selectivity, acceptable reproducibility, and good stability.
Collapse
Affiliation(s)
- Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China
| | - Changbao Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Qiaojuan Jia
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Geyi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China
| | - Xiaoyu Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China.
| | - Zhihong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
32
|
Pei C, Wan J. Nanocomposite-Based Matrices in Laser Desorption/Ionization Mass Spectrometry for Small-Molecule Analysis. Chempluschem 2021; 85:2419-2427. [PMID: 33155769 DOI: 10.1002/cplu.202000619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Indexed: 12/17/2022]
Abstract
The efficient detection of small molecules is of significance for environmental monitoring, pharmacology, metabolomics, and lipidomics. The laser desorption/ionization mass spectrometry (LDI MS) platform enables high sensitivity, accuracy, resolution, and throughput in molecular analysis, but its analytical capability with respect to small molecules is limited due to inherent drawbacks arising from conventional organic matrices. The selection of an appropriate matrix is thus a precondition for small molecule detection by LDI MS. To date, various inorganic matrices have been developed, with a growing interest in composite materials displaying synergetic effects. This Minireview highlights the development of nanocomposites as LDI matrices driven by numerous innovations in material science, and their emerging use in small-molecule analysis.
Collapse
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
33
|
Meng C, Hu P, Chen H, Cai Y, Zhou H, Jiang Z, Zhu X, Liu Z, Wang C, Yuan A. 2D conductive MOFs with sufficient redox sites: reduced graphene oxide/Cu-benzenehexathiolate composites as high capacity anode materials for lithium-ion batteries. NANOSCALE 2021; 13:7751-7760. [PMID: 33861280 DOI: 10.1039/d0nr08549a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a superconductive metal-organic framework (MOF) material, Cu-BHT (BHT: benzenehexathiol) can exhibit outstanding electrochemical properties owing to the potential redox reactions of the cuprous ions, sulfur species and benzene rings of Cu-BHT, but its compact texture limits the specific capacity of Cu-BHT. To improve the dense feature of Cu-BHT, rGO/Cu-BHT (rGO: reduced graphene oxide) composite materials are fabricated via a facile route and they exhibit applicable conductivities, improved lithium ion diffusion kinetics compared to pristine Cu-BHT, and sufficient redox sites. The rGO/Cu-BHT composite materials maximize the potential capacity of Cu-BHT, and the rGO/Cu-BHT 1 : 1 material achieves outstanding reversible specific capacities of 1190.4, 1230.8, 1131.4, and 898.7 mA h g-1, at current densities of 100, 200, 500, and 1000 mA g-1, respectively, superior to those of pristine Cu-BHT and rGO. These results present the promising future of 2D conductive MOFs as functional materials for energy storage, based on the regulation of electronic conductivity, redox sites, and lithium ion diffusion kinetics.
Collapse
Affiliation(s)
- Chunfeng Meng
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Pinfei Hu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China.
| | - Hantao Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China.
| | - Yueji Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China.
| | - Hu Zhou
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China
| | - Zehong Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China.
| | - Xiang Zhu
- Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Zeyu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China.
| | - Chengyin Wang
- School of Chemical and Chemistry Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, P. R. China.
| |
Collapse
|
34
|
Donor-acceptor 2D covalent organic frameworks for efficient heterogeneous photocatalytic α-oxyamination. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9931-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Benecke J, Fuß A, Engesser TA, Stock N, Reinsch H. A Flexible and Porous Ferrocene‐Based Gallium MOF with MIL‐53 Architecture. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jannik Benecke
- Institute of Inorganic Chemistry Christian-Albrechts-Universität Max-Eyth Straße 2 24118 Kiel Germany
| | - Alexander Fuß
- Institute of Inorganic Chemistry Christian-Albrechts-Universität Max-Eyth Straße 2 24118 Kiel Germany
| | - Tobias A. Engesser
- Institute of Inorganic Chemistry Christian-Albrechts-Universität Max-Eyth Straße 2 24118 Kiel Germany
| | - Norbert Stock
- Institute of Inorganic Chemistry Christian-Albrechts-Universität Max-Eyth Straße 2 24118 Kiel Germany
| | - Helge Reinsch
- Institute of Inorganic Chemistry Christian-Albrechts-Universität Max-Eyth Straße 2 24118 Kiel Germany
| |
Collapse
|
37
|
Wang W, Zhao W, Xu H, Liu S, Huang W, Zhao Q. Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213616] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Shivakumar KI, Noro SI, Yamaguchi Y, Ishigaki Y, Saeki A, Takahashi K, Nakamura T, Hisaki I. A hydrogen-bonded organic framework based on redox-active tri(dithiolylidene)cyclohexanetrione. Chem Commun (Camb) 2021; 57:1157-1160. [PMID: 33411863 DOI: 10.1039/d0cc07776c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Redox-active hexakis(4-carboxyphenyl) tri(dithiolylidene)cyclohexanetrione (CPDC) was synthesized. The CPDC-based porous framework, constructed via anomalistic helical hydrogen-bonding, exhibites permanent porosity and photoconductivity.
Collapse
Affiliation(s)
- Kilingaru I Shivakumar
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cui C, Liu Y, Du Y. Recent Advancements of Hexaazatriphenylene-Based Materials for Energy Applications. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Li Y, Liu Z, Lu W, Zhao M, Xiao H, Hu T, Ma J, Zheng Z, Jia J, Wu H. A label-free electrochemical aptasensor based on the core-shell Cu-MOF@TpBD hybrid nanoarchitecture for the sensitive detection of PDGF-BB. Analyst 2020; 146:979-988. [PMID: 33554228 DOI: 10.1039/d0an01885f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As one of the significant serum cytokines, platelet-derived growth factor-BB (PDGF-BB) is a crucial protein biomarker overexpressed in human life-threatening tumors, the sensitive identification and quantification of which are urgently desired but challenging. Herein we report a novel core-shell nanoarchitecture consisting of Cu-based metal-organic frameworks (Cu-MOFs) and covalent organic frameworks (denoted as TpBD-COFs), which was used to prepare an aptasensor for the detection of platelet-derived growth factor-BB (PDGF-BB). The central Cu-MOFs function as signal labels with no need for extra redox media, whereas the porous TpBD serves as the shell to immobilize the PDGF-BB-targeted aptamer strands in abundance via strong interactions involving π-π stacking, electrostatic, and hydrogen bonding interactions. The proposed aptasensor based on Cu-MOF@TpBD can achieve a detection limit as low as 0.034 pg mL-1 within the dynamic detection range from 0.0001 to 60 ng mL-1. The hybridization of MOFs and COFs, together with the immobilization with the specific analyte targeted aptamer, provides a promising and propagable approach to prepare an aptasensor for the simple, sensitive, and selective detection of a specific biomarker in clinical diagnosis.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang Y, Chen L, Hou CC, Wei YS, Xu Q. Multiple catalytic sites in MOF-based hybrid catalysts for organic reactions. Org Biomol Chem 2020; 18:8508-8525. [PMID: 33043331 DOI: 10.1039/d0ob01729a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hybrid catalysis provides an effective pathway to improve the catalytic efficiency and simplify the synthesis operation, but multiple catalytic sites are required. Catalysts with multiple functions based on/derived from metal-organic frameworks (MOFs) have received growing attention in organic synthesis due to their wide variety and outstanding designability. This review provides an overview of significant advances in the field of organic reactions by MOF-based hybrid catalysts with emphasis on multiple catalytic sites and their synergies, including inherent sites on host frameworks, sites of MOF composites and metal sites in/on MOF-derived hybrid catalysts.
Collapse
Affiliation(s)
- Yu Wang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.
| | - Liyu Chen
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.
| | - Chun-Chao Hou
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan. and School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
42
|
Yu J, Han J, Li P, Huang Z, Chen S. Simultaneous Determination of Cd
2+
, Cu
2+
, Pb
2+
and Hg
2+
Based on 1,4‐Benzenedithiol‐2,5‐diamino‐hydrochloride‐1,3,5‐triformylbenzene Covalent‐Organic Frameworks. ChemistrySelect 2020. [DOI: 10.1002/slct.202003417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jingguo Yu
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Jiajia Han
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Pinghua Li
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Zhenzhong Huang
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Shouhui Chen
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| |
Collapse
|
43
|
Yadav A, Panda DK, Zhang S, Zhou W, Saha S. Electrically Conductive 3D Metal-Organic Framework Featuring π-Acidic Hexaazatriphenylene Hexacarbonitrile Ligands with Anion-π Interaction and Efficient Charge-Transport Capabilities. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40613-40619. [PMID: 32786221 PMCID: PMC10938260 DOI: 10.1021/acsami.0c12388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Semiconducting metal-organic frameworks (MOFs) show great potential to foster myriad advanced electronics and energy technologies, but they must possess adequate charge-carrier concentration and efficient charge-transport pathways in order to display useful electrical conductivity. A new intrinsically conducting 3D framework [Ag2(HATHCN)(CF3SO3)2]n was constructed by employing a highly π-acidic 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-hexacarbonitrile (HATHCN) ligand, which assumed a paramagnetic HATHCN•- radical anion character by acquiring electron density from the TfO- anions involved in the anion-π interaction and facilitated charge movement along the staircase-like [-Ag+-HATHCN-]∞ chains having ample Ag4d+-N2p orbital overlap in the valence band region. As a result, the MOF displayed a narrow band gap (1.35 eV) and promising electrical conductivity (7.3 × 10-4 S/cm, 293 K) that ranked very high among those recorded for 3D MOFs. This work presents a new strategy to construct intrinsically conductive 3D frameworks by exploiting the dual metal coordination and anion-π interaction capabilities of a highly π-acidic HATHCN ligand.
Collapse
Affiliation(s)
- Ashok Yadav
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dillip K Panda
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Shiyu Zhang
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sourav Saha
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
44
|
Wang Z, Jin W, Huang X, Lu G, Li Y. Covalent Organic Frameworks as Electrode Materials for Metal Ion Batteries: A Current Review. CHEM REC 2020; 20:1198-1219. [PMID: 32881320 DOI: 10.1002/tcr.202000074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
As the world moves toward electromobility, our daily lives are flooded with variety of lithium ion batteries (LIBs), and the concerns of cost, safety and environmental friendliness of LIBs spring up in the minds of scientists. Although organic electrodes have been considered as promising alternatives to their inorganic counterparts, some intrinsic weaknesses still plague scientists, such as high solubility, low conductivity and sluggish ion diffusion. The emergence of covalent organic frameworks (COFs) attracts our attention because of their robust networks and open pores that could facilitate the infiltration of electrolyte ions when used as electrodes for metal-ion batteries (MIBs). In this review, we summarized the recent progress of COFs as electrode materials, and the strategies toward enhancing electrochemical performance of COF-based electrode in MIBs are discussed. Hopefully, this review will provide a fundamental guidance for future development of COF-based electrodes.
Collapse
Affiliation(s)
- Zhaolei Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Weize Jin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China.,School of Physical Science & Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| |
Collapse
|
45
|
Affiliation(s)
- Xiudong Chen
- College of Chemistry and Environmental Engineering Jiujiang University Qianjin East Road 551 Jiujiang P. R. China 332005
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai P. R. China 200444
| | - Weiwei Sun
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai P. R. China 200444
| | - Yong Wang
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai P. R. China 200444
| |
Collapse
|
46
|
Hu J, Gupta SK, Ozdemir J, Beyzavi MH. Applications of Dynamic Covalent Chemistry Concept towards Tailored Covalent Organic Framework Nanomaterials: A Review. ACS APPLIED NANO MATERIALS 2020; 3:6239-6269. [PMID: 34327307 PMCID: PMC8317485 DOI: 10.1021/acsanm.0c01327] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are a rapidly developing class of materials that has been of immense research interest during the last ten years. Numerous reviews have been devoted to summarizing the synthesis and applications of COFs. However, the underlying dynamic covalent chemistry (DCC), which is the foundation of COFs synthesis, has never been systematically reviewed in this context. Dynamic covalent chemistry is the practice of using thermodynamic equilibriums to molecular assemblies. This Critical Review will cover the state-of-the-art use of DCC to both synthesize COFs and expand the applications of COFs. Five synthetic strategies for COF synthesis are rationalized, namely: modulation, mixed linker/linkage, sub-stoichiometric reaction, framework isomerism, and linker exchange, which highlight the dynamic covalent chemistry to regulate the growth and to modify the properties of COFs. Furthermore, the challenges in these approaches and potential future perspectives in the field of COF chemistry are also provided.
Collapse
Affiliation(s)
- Jiyun Hu
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Suraj K Gupta
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - John Ozdemir
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - M Hassan Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
47
|
Mancuso JL, Mroz AM, Le KN, Hendon CH. Electronic Structure Modeling of Metal-Organic Frameworks. Chem Rev 2020; 120:8641-8715. [PMID: 32672939 DOI: 10.1021/acs.chemrev.0c00148] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to their molecular building blocks, yet highly crystalline nature, metal-organic frameworks (MOFs) sit at the interface between molecule and material. Their diverse structures and compositions enable them to be useful materials as catalysts in heterogeneous reactions, electrical conductors in energy storage and transfer applications, chromophores in photoenabled chemical transformations, and beyond. In all cases, density functional theory (DFT) and higher-level methods for electronic structure determination provide valuable quantitative information about the electronic properties that underpin the functions of these frameworks. However, there are only two general modeling approaches in conventional electronic structure software packages: those that treat materials as extended, periodic solids, and those that treat materials as discrete molecules. Each approach has features and benefits; both have been widely employed to understand the emergent chemistry that arises from the formation of the metal-organic interface. This Review canvases these approaches to date, with emphasis placed on the application of electronic structure theory to explore reactivity and electron transfer using periodic, molecular, and embedded models. This includes (i) computational chemistry considerations such as how functional, k-grid, and other model variables are selected to enable insights into MOF properties, (ii) extended solid models that treat MOFs as materials rather than molecules, (iii) the mechanics of cluster extraction and subsequent chemistry enabled by these molecular models, (iv) catalytic studies using both solids and clusters thereof, and (v) embedded, mixed-method approaches, which simulate a fraction of the material using one level of theory and the remainder of the material using another dissimilar theoretical implementation.
Collapse
Affiliation(s)
- Jenna L Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Austin M Mroz
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Khoa N Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
48
|
Benecke J, Grape ES, Fuß A, Wöhlbrandt S, Engesser TA, Inge AK, Stock N, Reinsch H. Polymorphous Indium Metal-Organic Frameworks Based on a Ferrocene Linker: Redox Activity, Porosity, and Structural Diversity. Inorg Chem 2020; 59:9969-9978. [PMID: 32628458 DOI: 10.1021/acs.inorgchem.0c01124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metallocene-based linker molecule 1,1'-ferrocenedicarboxylic acid (H2FcDC) was used to synthesize four different polymorphs of composition [In(OH)(FeC12H8O4)]. Using conventional solvent-based synthesis methods and varying the synthetic parameters such as metal source, reaction temperature, and solvent, two different MOFs and one 1D-coordination polymer denoted as CAU-43 (1), In-MIL-53-FcDC_a (2), and In-FcDC (3) were obtained. Furthermore, thermal treatment of CAU-43 (1) at 190 °C under vacuum yielded a new polymorph of 2, In-MIL-53-FcDC_b (4). Both MOFs 2 and 4 crystallize in a MIL-53 type structure, but in different space groups C2/m for 2 and P1̅ for 4. The structures of the four title compounds were determined by single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), or a combination of three-dimensional electron diffraction measurements (3D ED) and PXRD. N2 sorption experiments of 1, 2, and 4 showed specific surface areas of 355 m2 g-1, 110 m2 g-1, and 140 m2 g-1, respectively. Furthermore, the electronic properties of the title compounds were characterized via Mössbauer and EPR spectroscopy. All Mössbauer spectra showed the characteristic doublet, proving the persistence of the ferrocene moiety. In the cases of 1, 3, and 4, appreciable impurities of ferrocenium ions could be detected by electron paramagnetic resonance spectroscopy. Cyclovoltammetric experiments were performed to demonstrate the accessible redox activity of the linker molecule of the title compounds. A redox process of FcDC2- with oxidation (between 0.86 and 0.97 V) and reduction wave (between 0.69 and 0.80 V) was observed.
Collapse
Affiliation(s)
- Jannik Benecke
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexander Fuß
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Stephan Wöhlbrandt
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Tobias A Engesser
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Norbert Stock
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Helge Reinsch
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany
| |
Collapse
|
49
|
Souto M, Strutyński K, Melle‐Franco M, Rocha J. Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry 2020; 26:10912-10935. [DOI: 10.1002/chem.202001211] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Manuel Souto
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Karol Strutyński
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Manuel Melle‐Franco
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - João Rocha
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
50
|
Yang CH, Chang JS, Lee DJ. Chemically stable covalent organic framework as adsorbent from aqueous solution: A mini-review. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|