1
|
Bitar M, Le Moigne V, Herrmann JL, Arthur M, Mainardi JL. In vitro, intracellular and in vivo synergy between amoxicillin, imipenem and relebactam against Mycobacterium abscessus. J Antimicrob Chemother 2025:dkaf101. [PMID: 40177837 DOI: 10.1093/jac/dkaf101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/16/2025] [Indexed: 04/05/2025] Open
Abstract
OBJECTIVES Mycobacterium abscessus is the most frequent of the rapidly growing mycobacteria responsible for lung infections in patients suffering from cystic fibrosis and COPD. Imipenem is currently recommended in the treatment of these infections in spite of β-lactamase production. Since the targets of β-lactams include transpeptidases of both the l,d and d,d specificities, we tested, in vitro, intracellularly and in vivo, a combination of two β-lactams active on these enzymes, amoxicillin and imipenem, alone or in combination with the β-lactamase inhibitor relebactam. METHODS Drug combinations were evaluated against M. abscessus CIP 104536T and clinical isolates (n = 35) by determining MICs, FIC indices and time-killing. Drug combinations were also evaluated in macrophages and in mice. RESULTS In the presence of relebactam, synergy between amoxicillin and imipenem was observed against both M. abscessus CIP 104536T and the clinical isolates. Against M. abscessus CIP 104536T, the addition of 1 mg/L imipenem and 4 mg/L relebactam led to a decrease in the MIC of amoxicillin from 64 to 1 mg/L. The triple combination was active in vitro and intracellularly (a 4.30 decrease in the log10 cfu/mL and 82% killing, respectively). The triple combination was effective in reducing log10 cfu in mouse organs and mouse spleen weights, and in preventing losses in mouse weights. CONCLUSIONS The amoxicillin/imipenem/relebactam combination was synergistic in vitro and effective in vivo against M. abscessus. Since these drugs are clinically available, the triple combination should be considered by clinicians and further evaluated based on the reporting of the patient outcomes.
Collapse
Affiliation(s)
- Maria Bitar
- INSERM ERL 1336, UMRS 8228, Sorbonne Université-ENS-PSL-CNRS, Paris F-75006, France
| | - Vincent Le Moigne
- Inserm, Université Paris-Saclay, UVSQ, Infection et inflammation, Montigny-Le-Bretonneux F-78180, France
| | - Jean-Louis Herrmann
- Inserm, Université Paris-Saclay, UVSQ, Infection et inflammation, Montigny-Le-Bretonneux F-78180, France
- Assistance Publique-Hôpitaux de Paris, GHU Paris-Saclay, Service de Microbiologie, Hôpital Raymond Poincaré, Garches F-92380, France
| | - Michel Arthur
- INSERM ERL 1336, UMRS 8228, Sorbonne Université-ENS-PSL-CNRS, Paris F-75006, France
| | - Jean-Luc Mainardi
- INSERM ERL 1336, UMRS 8228, Sorbonne Université-ENS-PSL-CNRS, Paris F-75006, France
- Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Université Paris Cité, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris F-75015, France
| |
Collapse
|
2
|
Tan Z, Lin Y, Fan J, Jia Y, Zheng S, Wang X, Gao C, Zhang Z, Li B, Chu H. FL058, a novel β-lactamase inhibitor, increases the anti-Mycobacterium abscessus activity of imipenem. Int J Antimicrob Agents 2025; 65:107414. [PMID: 39710142 DOI: 10.1016/j.ijantimicag.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/16/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND β-lactams are crucial for anti-Mycobacterium abscessus complex (MABC) therapy. Treating infections is challenging since MABC produces a class A β-lactamase (BlaMab), which is capable of hydrolyzing β-lactams thus causing drug resistance. Diazabicyclooctane (DBO) β-lactamase inhibitors (BLIs) can inhibit BlaMab. FL058 is a novel DBO BLI; the anti-MABC activity of FL058 combined with β-lactams remains unknown. METHODS The activities of ten β-lactams (imipenem, meropenem, faropenem, tebipenem, cefoxitin, cefepime, ceftazidime, cefdinir, cefuroxime, and amoxicillin) combined with three DBO BLIs (FL058, avibactam, and relebactam) toward two MABC reference strains were determined by broth microdilution assay. The anti-MABC activities of imipenem combined with three BLIs against 193 clinical isolates were also evaluated. The activity of imipenem combined with FL058 was also tested against intracellular MABC residing in macrophages and in a mouse model. Finally, the BlaMab mutations in clinical isolates were analyzed using sequence alignment to determine whether BlaMab mutations are associated with DBO BLIs sensitivity. RESULTS FL058, avibactam and relebactam significantly increased the anti-MABC activity of β-lactams, especially imipenem, against reference strains and clinical isolates. The anti-MABC activity of imipenem combined with FL058 was superior to its activity when combined with either avibactam or relebactam. The combination of imipenem and FL058 significantly reduced the numbers of intracellular organisms in cultured macrophages, and of viable bacteria in the lungs of MABC-infected mice. Rough morphotypes tended to be more resistant than smooth morphotype. A BlaMab T141A mutation may reduce the susceptibility of MABC to imipenem-BLIs. CONCLUSION The elevated anti-MABC activity exhibited by imipenem combined with FL058 suggests a potential new approach to treating MABC infections.
Collapse
Affiliation(s)
- Zhili Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China
| | - Yani Lin
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China
| | - Junsheng Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China
| | - Yaping Jia
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China
| | | | | | - Cong Gao
- Qilu Pharmaceutical Co. Ltd., Jinan, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China.
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Longo BM, Trunfio M, Calcagno A. Dual β-lactams for the treatment of Mycobacterium abscessus: a review of the evidence and a call to act against an antibiotic nightmare. J Antimicrob Chemother 2024; 79:2731-2741. [PMID: 39150384 PMCID: PMC11932079 DOI: 10.1093/jac/dkae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Mycobacterium abscessus complex is a group of rapidly growing non-tuberculous mycobacteria (NTM), increasingly emerging as opportunistic pathogens. Current treatment options for these microorganisms are limited and associated with a high rate of treatment failure, toxicity and recurrence. In search of new therapeutic strategies, interest has grown in dual β-lactam (DBL) therapy, as research recently discovered that M. abscessus cell wall synthesis is mainly regulated by two types of enzymes (d,d-transpeptidases and l,d-transpeptidases) differently susceptible to inhibition by distinct β-lactams. In vitro studies testing several DBL combinations have shown synergy in extracellular broth cultures as well as in the intracellular setting: cefoxitin/imipenem, ceftaroline/imipenem, ceftazidime/ceftaroline and ceftazidime/imipenem. The addition of specific β-lactamase inhibitors (BLIs) targeting M. abscessus β-lactamase did not significantly enhance the activity of DBL combinations. However, in vivo data are lacking. We reviewed the literature on DBL/DBL-BLI-based therapies for M. abscessus infections to raise greater attention on this promising yet overlooked treatment option and to guide future preclinical and clinical studies.
Collapse
Affiliation(s)
- Bianca Maria Longo
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
| | - Mattia Trunfio
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA 92037, USA
| | - Andrea Calcagno
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
| |
Collapse
|
4
|
Sanchez L, Bitar M, Herail Q, Dorchêne D, Hugonnet JE, Arthur M, Mainardi JL. In vitro and intracellular activity of vaborbactam combined with β-lactams against Mycobacterium abscessus. J Antimicrob Chemother 2024; 79:1914-1918. [PMID: 38943535 DOI: 10.1093/jac/dkae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/10/2024] [Indexed: 07/01/2024] Open
Abstract
OBJECTIVES Mycobacterium abscessus has emerged as an opportunistic pathogen responsible for lung infections, especially in cystic fibrosis patients. In spite of the production of the broad-spectrum β-lactamase BlaMab, the carbapenem imipenem is recommended in the initial phase of the treatment of pulmonary infections. Here, we determine whether the addition of vaborbactam, a second-generation β-lactamase inhibitor belonging to the boronate family, improves the activity of β-lactams against M. abscessus. METHODS The activity of β-lactams, alone or in combination with vaborbactam, was evaluated against M. abscessus CIP104536 by determining MICs, time-killing and intramacrophage activity. Kinetic parameters for the inhibition of BlaMab by vaborbactam were determined by spectrophotometry. RESULTS The combination of vaborbactam (8 mg/L) with β-lactams decreased more than 8 times the MIC of amoxicillin (from >1024 to 128 mg/L) and 2 times the MICs of meropenem (from 16 to 8 mg/L) and imipenem (from 4 to 2 mg/L). The reduction of the MICs was less than that obtained with avibactam at 4 mg/L for amoxicillin (from >1024 to 16 mg/L, more than 64 times less) and for meropenem (from 16 to 4 mg/L, 4 times less). In vitro and intracellularly, M. abscessus was not killed by the meropenem/vaborbactam combination, in spite of significant in vitro inhibition of BlaMab by vaborbactam. CONCLUSIONS Inhibition of BlaMab by vaborbactam decreases the MIC of β-lactams, including that of meropenem. As meropenem/vaborbactam is clinically available, this combination offers an alternative therapeutic option that should be evaluated for the treatment of pulmonary infections due to M. abscessus.
Collapse
Affiliation(s)
- Léa Sanchez
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
| | - Maria Bitar
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
| | - Quentin Herail
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
| | - Delphine Dorchêne
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
| | - Jean-Emmanuel Hugonnet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
| | - Michel Arthur
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
| | - Jean-Luc Mainardi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
- Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Université Paris Cité, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris F-75015, France
| |
Collapse
|
5
|
Nantongo M, Nguyen DC, Bethel CR, Taracila MA, Li Q, Dousa KM, Shin E, Kurz SG, Nguyen L, Kreiswirth BN, Boom WH, Plummer MS, Bonomo RA. Durlobactam, a Diazabicyclooctane β-Lactamase Inhibitor, Inhibits BlaC and Peptidoglycan Transpeptidases of Mycobacterium tuberculosis. ACS Infect Dis 2024; 10:1767-1779. [PMID: 38619138 DOI: 10.1021/acsinfecdis.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Peptidoglycan synthesis is an underutilized drug target in Mycobacterium tuberculosis (Mtb). Diazabicyclooctanes (DBOs) are a class of broad-spectrum β-lactamase inhibitors that also inhibit certain peptidoglycan transpeptidases that are important in mycobacterial cell wall synthesis. We evaluated the DBO durlobactam as an inhibitor of BlaC, the Mtb β-lactamase, and multiple Mtb peptidoglycan transpeptidases (PonA1, LdtMt1, LdtMt2, LdtMt3, and LdtMt5). Timed electrospray ionization mass spectrometry (ESI-MS) captured acyl-enzyme complexes with BlaC and all transpeptidases except LdtMt5. Inhibition kinetics demonstrated durlobactam was a potent and efficient DBO inhibitor of BlaC (KI app 9.2 ± 0.9 μM, k2/K 5600 ± 560 M-1 s-1) and similar to clavulanate (KI app 3.3 ± 0.6 μM, k2/K 8400 ± 840 M-1 s-1); however, durlobactam had a lower turnover number (tn = kcat/kinact) than clavulanate (1 and 8, respectively). KI app values with durlobactam and clavulanate were similar for peptidoglycan transpeptidases, but ESI-MS captured durlobactam complexes at more time points. Molecular docking and simulation demonstrated several productive interactions of durlobactam in the active sites of BlaC, PonA1, and LdtMt2. Antibiotic susceptibility testing was conducted on 11 Mtb isolates with amoxicillin, ceftriaxone, meropenem, imipenem, clavulanate, and durlobactam. Durlobactam had a minimum inhibitory concentration (MIC) range of 0.5-16 μg/mL, similar to the ranges for meropenem (1-32 μg/mL) and imipenem (0.5-64 μg/mL). In β-lactam + durlobactam combinations (1:1 mass/volume), MICs were lowered 4- to 64-fold for all isolates except one with meropenem-durlobactam. This work supports further exploration of novel β-lactamase inhibitors that target BlaC and Mtb peptidoglycan transpeptidases.
Collapse
Affiliation(s)
- Mary Nantongo
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - David C Nguyen
- Division of Infectious Diseases, Department of Pediatrics and Division of Infectious Diseases, and Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Christopher R Bethel
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Magdalena A Taracila
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Qing Li
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Khalid M Dousa
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Medical Service, Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), Cleveland, Ohio 44106, United States
| | - Eunjeong Shin
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Sebastian G Kurz
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University of Tübingen, 72076 Tübingen, Germany
| | - Liem Nguyen
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack, New Jersey 07110, United States
| | - W Henry Boom
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
| | - Mark S Plummer
- Biopharmaworks, Groton, Connecticut 06340, United States
| | - Robert A Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University (CWRU), Cleveland, Ohio 44106, United States
- Medical Service, Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), Cleveland, Ohio 44106, United States
- CWRU-Cleveland VAMC Center for Antibiotic Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio 44106, United States
- Departments of Biochemistry, Pharmacology, and Proteomics and Bioinformatics, CWRU, Cleveland, Ohio 44106, United States
- Cleveland Geriatrics Research Education and Clinical Center (GRECC), VANEOHS, Cleveland, Ohio 44106, United States
| |
Collapse
|
6
|
Hayakawa I, Isogai T, Takanishi J, Asai S, Ando C, Tsutsumi T, Watanabe K, Sakakura A, Tsunematsu Y. Synthesis and biological evaluation of coprinoferrin, an acylated tripeptide hydroxamate siderophore. Org Biomol Chem 2024; 22:831-837. [PMID: 38175167 DOI: 10.1039/d3ob01850d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Coprinoferrin (CPF), originally isolated from a genetically engineered strain (ΔlaeA) of the mushroom fungus Coprinopsis cinerea, is an acylated tripeptide hydroxamate consisting of tandem aligned N5-hexanoyl-N5-hydroxy-L-ornithine with modifications of N-acetyl and C-carboxamide. These unique chemical properties make CPF an iron(III) binder (siderophore), which helps in iron acquisition from the environment and promotes hyphal growth as well as fruiting body formation in C. cinerea. However, CPF's detailed mode of action remains enigmatic. In this study, we have accomplished the synthesis of CPF from N-Boc-L-glutamic acid 5-benzyl ester. The physicochemical characteristics, spectroscopic features, and biological activity observed in the synthetic CPF closely match those of natural CPF. This alignment provides unequivocal confirmation of the proposed chemical structure, facilitating a deeper understanding of its physiological role in nature, particularly in fruiting body formation.
Collapse
Affiliation(s)
- Ichiro Hayakawa
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Tomoki Isogai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Jun Takanishi
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Shihori Asai
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Chika Ando
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan.
| | - Tomohiro Tsutsumi
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Akira Sakakura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Yuta Tsunematsu
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
7
|
Jacobs LMC, Consol P, Chen Y. Drug Discovery in the Field of β-Lactams: An Academic Perspective. Antibiotics (Basel) 2024; 13:59. [PMID: 38247618 PMCID: PMC10812508 DOI: 10.3390/antibiotics13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
β-Lactams are the most widely prescribed class of antibiotics that inhibit penicillin-binding proteins (PBPs), particularly transpeptidases that function in peptidoglycan synthesis. A major mechanism of antibiotic resistance is the production of β-lactamase enzymes, which are capable of hydrolyzing β-lactam antibiotics. There have been many efforts to counter increasing bacterial resistance against β-lactams. These studies have mainly focused on three areas: discovering novel inhibitors against β-lactamases, developing new β-lactams less susceptible to existing resistance mechanisms, and identifying non-β-lactam inhibitors against cell wall transpeptidases. Drug discovery in the β-lactam field has afforded a range of research opportunities for academia. In this review, we summarize the recent new findings on both β-lactamases and cell wall transpeptidases because these two groups of enzymes are evolutionarily and functionally connected. Many efforts to develop new β-lactams have aimed to inhibit both transpeptidases and β-lactamases, while several promising novel β-lactamase inhibitors have shown the potential to be further developed into transpeptidase inhibitors. In addition, the drug discovery progress against each group of enzymes is presented in three aspects: understanding the targets, screening methodology, and new inhibitor chemotypes. This is to offer insights into not only the advancement in this field but also the challenges, opportunities, and resources for future research. In particular, cyclic boronate compounds are now capable of inhibiting all classes of β-lactamases, while the diazabicyclooctane (DBO) series of small molecules has led to not only new β-lactamase inhibitors but potentially a new class of antibiotics by directly targeting PBPs. With the cautiously optimistic successes of a number of new β-lactamase inhibitor chemotypes and many questions remaining to be answered about the structure and function of cell wall transpeptidases, non-β-lactam transpeptidase inhibitors may usher in the next exciting phase of drug discovery in this field.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.M.C.J.); (P.C.)
| |
Collapse
|
8
|
Pund A, Rane V, Pursani R, Ahirrao V, Rafeeq M, Yadav RP, Yeole R, Merwade A. Stereo-retentive synthesis of (5S)-5-benzyloxycarbonyl-5-tert-butoxycarbonylamino-2-oxo-hexylide-dimethylsulfoxonium, a key intermediate of a β-lactamase inhibitor. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
9
|
Muñoz-Muñoz L, Aínsa JA, Ramón-García S. Repurposing β-Lactams for the Treatment of Mycobacterium kansasii Infections: An In Vitro Study. Antibiotics (Basel) 2023; 12:335. [PMID: 36830246 PMCID: PMC9952313 DOI: 10.3390/antibiotics12020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium kansasii (Mkn) causes tuberculosis-like lung infection in both immunocompetent and immunocompromised patients. Current standard therapy against Mkn infection is lengthy and difficult to adhere to. Although β-lactams are the most important class of antibiotics, representing 65% of the global antibiotic market, they have been traditionally dismissed for the treatment of mycobacterial infections, as they were considered inactive against mycobacteria. A renewed interest in β-lactams as antimycobacterial agents has shown their activity against several mycobacterial species, including M. tuberculosis, M. ulcerans or M. abscessus; however, information against Mkn is lacking. In this study, we determined the in vitro activity of several β-lactams against Mkn. A selection of 32 agents including all β-lactam chemical classes (penicillins, cephalosporins, carbapenems and monobactams) with three β-lactamase inhibitors (clavulanate, tazobactam and avibactam) were evaluated against 22 Mkn strains by MIC assays. Penicillins plus clavulanate and first- and third-generation cephalosporins were the most active β-lactams against Mkn. Combinatorial time-kill assays revealed favorable interactions of amoxicillin-clavulanate and cefadroxil with first-line Mkn treatment. Amoxicillin-clavulanate and cefadroxil are oral medications that are readily available, and well tolerated with an excellent safety and pharmacokinetic profile that could constitute a promising alternative option for Mkn therapy.
Collapse
Affiliation(s)
- Lara Muñoz-Muñoz
- Department of Microbiology, Pediatrics, Radiology and Public Health, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - José A. Aínsa
- Department of Microbiology, Pediatrics, Radiology and Public Health, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- CIBER Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
| | - Santiago Ramón-García
- Department of Microbiology, Pediatrics, Radiology and Public Health, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- CIBER Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
- Research and Development Agency of Aragón (ARAID) Foundation, 50018 Zaragoza, Spain
| |
Collapse
|
10
|
Xu X, Dong B, Peng L, Gao C, He Z, Wang C, Zeng J. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Front Microbiol 2022; 13:1056608. [PMID: 36620019 PMCID: PMC9810820 DOI: 10.3389/fmicb.2022.1056608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.
Collapse
Affiliation(s)
- Xinyue Xu
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Baoyu Dong
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Peng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Gao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Modulation of the Specificity of Carbapenems and Diazabicyclooctanes for Selective Activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2022; 66:e0235721. [PMID: 35943263 PMCID: PMC9487530 DOI: 10.1128/aac.02357-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of multidrug-resistant tuberculosis with combinations of carbapenems and β-lactamase inhibitors carries risks for dysbiosis and for the development of resistances in the intestinal microbiota. Using Escherichia coli producing carbapenemase KPC-2 as a model, we show that carbapenems can be modified to obtain drugs that are inactive against E. coli but retain antitubercular activity. Furthermore, functionalization of the diazabicyclooctanes scaffold provided drugs that did not effectively inactivate KPC-2 but retained activity against Mycobacterium tuberculosis targets.
Collapse
|
12
|
Iqbal Z, Sun J, Yang H, Ji J, He L, Zhai L, Ji J, Zhou P, Tang D, Mu Y, Wang L, Yang Z. Recent Developments to Cope the Antibacterial Resistance via β-Lactamase Inhibition. Molecules 2022; 27:3832. [PMID: 35744953 PMCID: PMC9227086 DOI: 10.3390/molecules27123832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
Antibacterial resistance towards the β-lactam (BL) drugs is now ubiquitous, and there is a major global health concern associated with the emergence of new β-lactamases (BLAs) as the primary cause of resistance. In addition to the development of new antibacterial drugs, β-lactamase inhibition is an alternative modality that can be implemented to tackle this resistance channel. This strategy has successfully revitalized the efficacy of a number of otherwise obsolete BLs since the discovery of the first β-lactamase inhibitor (BLI), clavulanic acid. Over the years, β-lactamase inhibition research has grown, leading to the introduction of new synthetic inhibitors, and a few are currently in clinical trials. Of note, the 1, 6-diazabicyclo [3,2,1]octan-7-one (DBO) scaffold gained the attention of researchers around the world, which finally culminated in the approval of two BLIs, avibactam and relebactam, which can successfully inhibit Ambler class A, C, and D β-lactamases. Boronic acids have shown promise in coping with Ambler class B β-lactamases in recent research, in addition to classes A, C, and D with the clinical use of vaborbactam. This review focuses on the further developments in the synthetic strategies using DBO as well as boronic acid derivatives. In addition, various other potential serine- and metallo- β-lactamases inhibitors that have been developed in last few years are discussed briefly as well. Furthermore, binding interactions of the representative inhibitors have been discussed based on the crystal structure data of inhibitor-enzyme complex, published in the literature.
Collapse
Affiliation(s)
- Zafar Iqbal
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| | - Jian Sun
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| | | | | | | | | | | | | | | | | | | | - Zhixiang Yang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| |
Collapse
|
13
|
Mahesh Kumar A, Venkateshwarlu R, Tadiparthi K, Rao BV, Kota Balaji SK, Raghunadh A, Singh SN. A new facile synthesis of (2 S,5 S)-5-hydroxypipecolic acid hydrochloride. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2047731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Avula Mahesh Kumar
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Rapolu Venkateshwarlu
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
- Department of Organic Chemistry and FDW, Andhra University, Visakhapatnam, India
| | | | | | - Shiva Kumar Kota Balaji
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Akula Raghunadh
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Shambhu Nath Singh
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| |
Collapse
|
14
|
On the Hunt for Next-Generation Antimicrobial Agents: An Online Symposium Organized Jointly by the French Society for Medicinal Chemistry (Société de Chimie Thérapeutique) and the French Microbiology Society (Société Française de Microbiologie) on 9–10 December 2021. Pharmaceuticals (Basel) 2022; 15:ph15040388. [PMID: 35455385 PMCID: PMC9029193 DOI: 10.3390/ph15040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
The restrictions posed by the COVID-19 pandemic obliged the French Society for Medicinal Chemistry (Société de chimie thérapeutique) and the French Microbiology Society (Société Française de Microbiologie) to organize their joint autumn symposium (entitled “On the hunt for next-generation antimicrobial agents”) online on 9–10 December 2021. The meeting attracted more than 200 researchers from France and abroad with interests in drug discovery, antimicrobial resistance, medicinal chemistry, and related disciplines. This review summarizes the 13 invited keynote lectures. The symposium generated high-level scientific dialogue on the most recent advances in combating antimicrobial resistance. The University of Lille, the Institut Pasteur de Lille, the journal Pharmaceuticals, Oxeltis, and INCATE, sponsored the event.
Collapse
|
15
|
Recommendations to Synthetize Old and New β-Lactamases Inhibitors: A Review to Encourage Further Production. Pharmaceuticals (Basel) 2022; 15:ph15030384. [PMID: 35337181 PMCID: PMC8954882 DOI: 10.3390/ph15030384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 01/06/2023] Open
Abstract
The increasing emergence of bacteria producing β-lactamases enzymes (BLEs), able to inactivate the available β-lactam antibiotics (BLAs), causing the hydrolytic opening of their β-lactam ring, is one of the global major warnings. According to Ambler classification, BLEs are grouped in serine-BLEs (SBLEs) of class A, C, and D, and metal-BLEs (MBLEs) of class B. A current strategy to restore no longer functioning BLAs consists of associating them to β-lactamase enzymes inhibitors (BLEsIs), which, interacting with BLEs, prevent them hydrolyzing to the associated antibiotic. Worryingly, the inhibitors that are clinically approved are very few and inhibit only most of class A and C SBLEs, leaving several class D and all MBLEs of class B untouched. Numerous non-clinically approved new molecules are in development, which have shown broad and ultra-broad spectrum of action, some of them also being active on the New Delhi metal-β-lactamase-1 (NDM-1), which can hydrolyze all available BLAs except for aztreonam. To not duplicate the existing review concerning this topic, we have herein examined BLEsIs by a chemistry approach. To this end, we have reviewed both the long-established synthesis adopted to prepare the old BLEsIs, those proposed to achieve the BLEsIs that are newly approved, and those recently reported to prepare the most relevant molecules yet in development, which have shown high potency, providing for each synthesis the related reaction scheme.
Collapse
|
16
|
Inhibiting Mycobacterium abscessus Cell Wall Synthesis: Using a Novel Diazabicyclooctane β-Lactamase Inhibitor To Augment β-Lactam Action. mBio 2022; 13:e0352921. [PMID: 35073757 PMCID: PMC8787486 DOI: 10.1128/mbio.03529-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium abscessus (Mab) infections are a growing menace to the health of many patients, especially those suffering from structural lung disease and cystic fibrosis. With multidrug resistance a common feature and a growing understanding of peptidoglycan synthesis in Mab, it is advantageous to identify potent β-lactam and β-lactamase inhibitor combinations that can effectively disrupt cell wall synthesis. To improve existing therapeutic regimens to address serious Mab infections, we evaluated the ability of durlobactam (DUR), a novel diazobicyclooctane β-lactamase inhibitor to restore in vitro susceptibilities in combination with β-lactams and provide a biochemical rationale for the activity of this compound. In cell-based assays, susceptibility of Mab subsp. abscessus isolates to amoxicillin (AMOX), imipenem (IMI), and cefuroxime (CXM) was significantly enhanced with the addition of DUR. The triple drug combinations of CXM-DUR-AMOX and IMI-DUR-AMOX were most potent, with MIC ranges of ≤0.06 to 1 μg/mL and an MIC50/MIC90 of ≤0.06/0.25 μg/mL, respectively. We propose a model by which this enhancement may occur, DUR potently inhibited the β-lactamase BlaMab with a relative Michaelis constant (Ki app) of 4 × 10-3 ± 0.8 × 10-3 μM and acylation rate (k2/K) of 1 × 107 M-1 s-1. Timed mass spectrometry captured stable formation of carbamoyl-enzyme complexes between DUR and LdtMab2-4 and Mab d,d-carboxypeptidase, potentially contributing to the intrinsic activity of DUR. Molecular modeling showed unique and favorable interactions of DUR as a BlaMab inhibitor. Similarly, modeling showed how DUR might form stable Michaelis-Menten complexes with LdtMab2-4 and Mab d,d-carboxypeptidase. The ability of DUR combined with amoxicillin or cefuroxime and imipenem to inactivate multiple targets such as d,d-carboxypeptidase and LdtMab2,4 supports new therapeutic approaches using β-lactams in eradicating Mab. IMPORTANCE Durlobactam (DUR) is a potent inhibitor of BlaMab and provides protection of amoxicillin and imipenem against hydrolysis. DUR has intrinsic activity and forms stable acyl-enzyme complexes with LdtMab2 and LdtMab4. The ability of DUR to protect amoxicillin and imipenem against BlaMab and its intrinsic activity along with the dual β-lactam target redundancy can explain the rationale behind the potent activity of this combination.
Collapse
|
17
|
Yang Z, Chen Y, Wan LX, Cen X, Tang P, Chen FE. Catalytic asymmetric total synthesis of diazabicyclooctane β-lactamase inhibitors avibactam and relebactam. Chem Commun (Camb) 2022; 58:10869-10872. [DOI: 10.1039/d2cc04006a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic asymmetric total synthesis of avibactam and relebactam, two marketed diazabicyclooctane (DBO) β-lactamase inhibitors (BLIs), has been accomplished. An important feature of this study is the creation of a stereogenic...
Collapse
|
18
|
Bouchet F, Atze H, Arthur M, Ethève-Quelquejeu M, Iannazzo L. Traceless Staudinger Ligation To Introduce Chemical Diversity on β-Lactamase Inhibitors of Second Generation. Org Lett 2021; 23:7755-7758. [PMID: 34613747 DOI: 10.1021/acs.orglett.1c02741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We explored the traceless Staudinger ligation for the functionalization of the C2 position of second generation β-lactamase inhibitors based on a diazabicyclooctane (DBO) scaffold. Our strategy is based on the synthesis of phosphine phenol esters and their ligation to an azido-containing precursor. Biological evaluation showed that this route provided access to a DBO that proved to be superior to commercial relebactam for inhibition of two of the five β-lactamases that were tested.
Collapse
Affiliation(s)
- Flavie Bouchet
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Heiner Atze
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Michel Arthur
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Mélanie Ethève-Quelquejeu
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| | - Laura Iannazzo
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, F-75006 Paris, France
| |
Collapse
|
19
|
Protein Integrated Network Analysis to Reveal Potential Drug Targets Against Extended Drug-Resistant Mycobacterium tuberculosis XDR1219. Mol Biotechnol 2021; 63:1252-1267. [PMID: 34382159 DOI: 10.1007/s12033-021-00377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
The reconstruction and analysis of the protein-protein interaction (PPI) network is a powerful approach to understand the complex biological and molecular functions in normal and disease states of the cell. The interactome of most organisms is largely unidentified except some model organisms. The current study focused on the construction of PPI network for the human pathogen Mycobacterium tuberculosis (MTB)-resistant strain XDR1219 using computational methods. In this work, a bioinformatics approach was employed to reveal potential drug targets. The pipeline adopted the combination of an extensive integrated network analysis that led to identify 22 key proteins involved in drug resistance, resistant metabolic pathways, virulence, pathogenesis and persistency of the infection. The MTB XDR1219 interactome consists of 11,383 non-redundant PPIs among 1499 proteins covering 38% of the entire MTB XDR1219 proteome. The overall quality of the network was assessed and topological parameters of the PPI were calculated. The predicted interactions were functionally annotated and their relevance was assessed with the functional similarity. The study attempts to present the interactome of previously unidentified MTB XDR1219 and revealed potential drug targets that can be further explored by scientific community.
Collapse
|
20
|
Nguyen DC, Dousa KM, Kurz SG, Brown ST, Drusano G, Holland SM, Kreiswirth BN, Boom WH, Daley CL, Bonomo RA. "One-two Punch": Synergistic β-lactam Combinations for Mycobacterium abscessus and Target Redundancy in the Inhibition of Peptidoglycan Synthesis Enzymes. Clin Infect Dis 2021; 73:1532-1536. [PMID: 34113990 DOI: 10.1093/cid/ciab535] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium abscessus subsp. abscessus is one of the most difficult pathogens to treat and its incidence in disease is increasing. Dual β-lactam combinations act synergistically in vitro, but are not widely employed in practice. A recent study shows that a combination of imipenem and ceftaroline significantly lowers the minimum inhibitory concentration (MIC) of clinical isolates despite both drugs targeting the same peptidoglycan synthesis enzymes. The underlying mechanism of this effect provides a basis for further investigations of dual β-lactam combinations in the treatment of M. abscessus subsp. abscessus eventually leading to a clinical trial. Furthermore, dual β-lactam strategies may be explored for other difficult mycobacterial infections.
Collapse
Affiliation(s)
- David C Nguyen
- Division of Infectious Diseases & HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Division of Pediatric Infectious Diseases, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Khalid M Dousa
- Department of Internal Medicine and Infectious Diseases, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Sebastian G Kurz
- Mount Sinai National Jewish Respiratory Institute, New York City, NY, USA
| | - Sheldon T Brown
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, James J. Peters VA Medical Center, Bronx, NY, USA
| | - George Drusano
- Institute for Therapeutic Innovation, University of Florida, Orlando, FL, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - W Henry Boom
- Division of Infectious Diseases & HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH, USA
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, CO, USA
| | - Robert A Bonomo
- Department of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Medical Service, Research Service, and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, OH, USA
| |
Collapse
|
21
|
Romero E, Oueslati S, Benchekroun M, D'Hollander ACA, Ventre S, Vijayakumar K, Minard C, Exilie C, Tlili L, Retailleau P, Zavala A, Elisée E, Selwa E, Nguyen LA, Pruvost A, Naas T, Iorga BI, Dodd RH, Cariou K. Azetidinimines as a novel series of non-covalent broad-spectrum inhibitors of β-lactamases with submicromolar activities against carbapenemases KPC-2 (class A), NDM-1 (class B) and OXA-48 (class D). Eur J Med Chem 2021; 219:113418. [PMID: 33862516 DOI: 10.1016/j.ejmech.2021.113418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
The occurrence of resistances in Gram negative bacteria is steadily increasing to reach extremely worrying levels and one of the main causes of resistance is the massive spread of very efficient β-lactamases which render most β-lactam antibiotics useless. Herein, we report the development of a series of imino-analogues of β-lactams (namely azetidinimines) as efficient non-covalent inhibitors of β-lactamases. Despite the structural and mechanistic differences between serine-β-lactamases KPC-2 and OXA-48 and metallo-β-lactamase NDM-1, all three enzymes can be inhibited at a submicromolar level by compound 7dfm, which can also repotentiate imipenem against a resistant strain of Escherichia coli expressing NDM-1. We show that 7dfm can efficiently inhibit not only the three main clinically-relevant carbapenemases of Ambler classes A (KPC-2), B (NDM-1) and D (OXA-48) with Ki's below 0.3 μM, but also the cephalosporinase CMY-2 (class C, 86% inhibition at 10 μM). Our results pave the way for the development of a new structurally original family of non-covalent broad-spectrum inhibitors of β-lactamases.
Collapse
Affiliation(s)
- Eugénie Romero
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Saoussen Oueslati
- U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Mohamed Benchekroun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Agathe C A D'Hollander
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Sandrine Ventre
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Kamsana Vijayakumar
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Corinne Minard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Cynthia Exilie
- U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Linda Tlili
- U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Agustin Zavala
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France; U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Eddy Elisée
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Edithe Selwa
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Laetitia A Nguyen
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour La Santé, Gif-sur-Yvette, France
| | - Alain Pruvost
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour La Santé, Gif-sur-Yvette, France
| | - Thierry Naas
- U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; EERA Unit "Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-AP-HP-Université Paris-Saclay, Paris, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.
| | - Bogdan I Iorga
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France.
| | - Robert H Dodd
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Kevin Cariou
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France.
| |
Collapse
|
22
|
Abrahams KA, Besra GS. Synthesis and recycling of the mycobacterial cell envelope. Curr Opin Microbiol 2021; 60:58-65. [PMID: 33610125 PMCID: PMC8035080 DOI: 10.1016/j.mib.2021.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of the disease tuberculosis, is a recognised global health concern. The efficacy of the current treatment regime is under threat due to the emergence of antibiotic resistance, directing an urgent requirement for the discovery of new anti-tubercular agents and drug targets. The mycobacterial cell wall is a well-validated drug target for Mtb and is composed of three adaptive macromolecular structures, peptidoglycan, arabinogalactan and mycolic acids, an array of complex lipids and carbohydrates. The majority of the enzymes involved in cell wall synthesis have been established, whilst studies directed towards the mechanisms of remodelling and recycling have been neglected. This review briefly describes mycobacterial cell wall synthesis, and focuses on aspects of remodelling and recycling, thus highlighting opportunities for future research.
Collapse
Affiliation(s)
- Katherine A Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
23
|
Egorova A, Jackson M, Gavrilyuk V, Makarov V. Pipeline of anti-Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Med Res Rev 2021; 41:2350-2387. [PMID: 33645845 DOI: 10.1002/med.21798] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
The Mycobacterium abscessus complex is a group of emerging pathogens that are difficult to treat. There are no effective drugs for successful M. abscessus pulmonary infection therapy, and existing drug regimens recommended by the British or the American Thoracic Societies are associated with poor clinical outcomes. Therefore, novel antibacterial drugs are urgently needed to contain this global threat. The current anti-M. abscessus small-molecule drug development process can be enhanced by two parallel strategies-discovery of compounds from new chemical classes and commercial drug repurposing. This review focuses on recent advances in the finding of novel small-molecule agents, and more particularly focuses on the activity, mode of action and structure-activity relationship of promising inhibitors from five different chemical classes-benzimidazoles, indole-2-carboxamides, benzothiazoles, 4-piperidinoles, and oxazolidionones. We further discuss some other interesting small molecules, such as thiacetazone derivatives and benzoboroxoles, that are in the early stages of drug development, and summarize current knowledge about the efficacy of repurposable drugs, such as rifabutin, tedizolid, bedaquiline, and others. We finally review targets of therapeutic interest in M. abscessus that may be worthy of future drug and adjunct therapeutic development.
Collapse
Affiliation(s)
- Anna Egorova
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, Fort Collins, USA
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
24
|
de Sousa Coelho F, Mainardi JL. The multiple benefits of second-generation β-lactamase inhibitors in treatment of multidrug-resistant bacteria. Infect Dis Now 2021; 51:510-517. [PMID: 33870896 DOI: 10.1016/j.idnow.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
The World Health Organisation (WHO) has designated antibiotic resistance as one of the most challenging public health threats of the 21st century. Production of β-lactamase enzymes by Gram-negative bacteria is the main mechanism of resistance to β-lactam (BL), the most widely used antibiotic in clinics. In an attempt to neutralise the hydrolytic activity of these enzymes, β-lactamase inhibitors (BLIs) have been developed. First-generation BLIs include clavulanic acid, sulbactam and tazobactam. However, none of them cover all β-lactamase classes, and an increasingly wide panel of inhibitor-resistant bacterial strains has developed. Second-generation BLIs function via different mechanisms and were developed by novel scaffolds from which diazabicyclooctane (DBOs) and boronic acids have emerged. In this paper, we provide descriptions of promisor second-generation β-lactamase inhibitors, such as avibactam, vaborbactam and boronic acids, as well as several BL-BLI combinations that have been designed. While some combinations are now being used in clinical practice, most are presently limited to clinical trials or pre-clinical studies. In this paper, we emphasise the continuous need to develop novel and different BLIs to keep up with the multidrug-resistant bacteria that arise. At this time, however, second-generation BLIs constitute a promising and effective approach.
Collapse
Affiliation(s)
- F de Sousa Coelho
- Faculdade de Engenharia da Universidade do Porto, Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal.
| | - J-L Mainardi
- Centre de recherche des Cordeliers, INSERM UMRS 1138, Sorbonne université, université de Paris, Paris, France; Service de microbiologie, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, centre-université de Paris, Paris, France.
| |
Collapse
|
25
|
Alternative and Experimental Therapies of Mycobacterium abscessus Infections. Int J Mol Sci 2020; 21:ijms21186793. [PMID: 32948001 PMCID: PMC7555341 DOI: 10.3390/ijms21186793] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium abscessus is a non-tuberculous mycobacterium notoriously known for causing severe, chronic infections. Treatment of these infections is challenging due to either intrinsic or acquired resistance of M. abscessus to multiple antibiotics. Despite prolonged poly-antimicrobial therapy, treatment of M. abscessus infections often fails, leading to progressive morbidity and eventual mortality. Great research efforts are invested in finding new therapeutic options for M. abscessus. Clofazimine and rifabutin are known anti-mycobacterial antibiotics, repurposed for use against M. abscessus. Novel antimicrobials active against M. abscessus include delamanid, pretomanid and PIPD1 and the recently approved beta-lactamase inhibitors avibactam, relebactam and vaborbactam. Previously unused antimicrobial combinations, e.g. vancomycin–clarithromycin and dual beta-lactam therapy, have been shown to have synergistic effect against M. abscessus in experimental models, suggesting their possible use in multiple-drug regimens. Finally, engineered phage therapy has been reported to be clinically successful in a severe case of disseminated M. abscessus infection. While many of these experimental therapeutics have shown activity against M. abscessus in vitro, as well as in intracellular and/or animal models, most have little if any evidence of effect in human infections. Clinical studies of M. abscesssus treatments are needed to reliably determine the value of their incorporation in therapeutic regimens.
Collapse
|
26
|
Bouchet F, Atze H, Fonvielle M, Edoo Z, Arthur M, Ethève-Quelquejeu M, Iannazzo L. Diazabicyclooctane Functionalization for Inhibition of β-Lactamases from Enterobacteria. J Med Chem 2020; 63:5257-5273. [DOI: 10.1021/acs.jmedchem.9b02125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Flavie Bouchet
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints-Péres, F-75006 Paris, France
| | - Heiner Atze
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Matthieu Fonvielle
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Zainab Edoo
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Michel Arthur
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), F-75006 Paris, France
| | - Mélanie Ethève-Quelquejeu
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints-Péres, F-75006 Paris, France
| | - Laura Iannazzo
- Université de Paris, UMR CNRS 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints-Péres, F-75006 Paris, France
| |
Collapse
|
27
|
Muñoz-Egea MC, Carrasco-Antón N, Esteban J. State-of-the-art treatment strategies for nontuberculous mycobacteria infections. Expert Opin Pharmacother 2020; 21:969-981. [PMID: 32200657 DOI: 10.1080/14656566.2020.1740205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Non-tuberculous Mycobacteria (NTM) are a group of organisms whose importance in medicine seems to be increasing in recent times. The increasing number of patients susceptible to these diseases make it necessary to expand our knowledge of therapeutic options and to explore future possibilities for the development of a therapeutic arsenal. AREAS COVERED In this review, the authors provide a brief introduction about the present importance of NTM and describe the present recommendations of the available guidelines for their treatment. They include a description of the future options for the management of these patients, especially focusing on new antibiotics. The authors also look at possibilities for future therapeutic options, such as antibiofilm strategies. EXPERT OPINION No actual changes have been made to the current recommendations for the management of most NTM infections (except perhaps the availability of nebulized amikacin). However, it is also true that we have increased the number of available antibiotic treatment options with good in vitro activity against NTM. The use of these drugs in selected cases could increase the therapeutic possibilities. However, some problems are still present, such as the knowledge of the actual meaning of a NTM isolate, and will probably be a key part of future research.
Collapse
Affiliation(s)
| | | | - Jaime Esteban
- Departments of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM , Madrid, Spain
| |
Collapse
|
28
|
de Munnik M, Lohans CT, Langley GW, Bon C, Brem J, Schofield CJ. A Fluorescence-Based Assay for Screening β-Lactams Targeting the Mycobacterium tuberculosis Transpeptidase Ldt Mt2. Chembiochem 2020; 21:368-372. [PMID: 31322798 PMCID: PMC7028133 DOI: 10.1002/cbic.201900379] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 12/24/2022]
Abstract
Mycobacterium tuberculosis l,d-transpeptidases (Ldts), which are involved in cell-wall biosynthesis, have emerged as promising targets for the treatment of tuberculosis. However, an efficient method for testing inhibition of these enzymes is not currently available. We present a fluorescence-based assay for LdtMt2 , which is suitable for high-throughput screening. Two fluorogenic probes were identified that release a fluorophore upon reaction with LdtMt2 , thus making it possible to assess the availability of the catalytic site in the presence of inhibitors. The assay was applied to a panel of β-lactam antibiotics and related inhibitors; the results validate observations that the (carba)penem subclass of β-lactams are more potent Ldt inhibitors than other β-lactam classes, though unexpected variations in potency were observed. The method will enable systematic structure-activity relationship studies on Ldts, thereby facilitating the identification of new antibiotics active against M. tuberculosis.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Christopher T. Lohans
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Department of Biomedical and Molecular SciencesQueen's University18 Stuart StreetKingstonONK7L 3N6Canada
| | - Gareth W. Langley
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Present address: Charles River LaboratoriesChesterford Research ParkSaffron WaldenEssexCB10 1XLUK
| | - Corentin Bon
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Present address: Department of Structural Biology and ChemistryInstitut PasteurUMR 3523 CNRSRue du Dr. Roux75015ParisFrance
| | - Jürgen Brem
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | |
Collapse
|
29
|
Peilleron L, Cariou K. Synthetic approaches towards avibactam and other diazabicyclooctane β-lactamase inhibitors. Org Biomol Chem 2020; 18:830-844. [DOI: 10.1039/c9ob02605c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic strategies to obtain avibactam and other diazabicyclooctane β-lactamase inhibitors such as ETX2514 are presented.
Collapse
Affiliation(s)
- Laure Peilleron
- Université Paris-Saclay
- CNRS
- Institut de Chimie des Substances Naturelles
- Gif-sur-Yvette
- France
| | - Kevin Cariou
- Université Paris-Saclay
- CNRS
- Institut de Chimie des Substances Naturelles
- Gif-sur-Yvette
- France
| |
Collapse
|
30
|
Synergistic Efficacy of β-Lactam Combinations against Mycobacterium abscessus Pulmonary Infection in Mice. Antimicrob Agents Chemother 2019; 63:AAC.00614-19. [PMID: 31109979 DOI: 10.1128/aac.00614-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/11/2019] [Indexed: 01/31/2023] Open
Abstract
Mycobacterium abscessus is an emerging pathogen capable of causing invasive pulmonary infections in patients with chronic lung diseases. These infections are difficult to treat, necessitating prolonged multidrug therapy, which is further complicated by extensive intrinsic and acquired resistance exhibited by clinical M. abscessus isolates. Therefore, development of novel treatment regimens effective against drug-resistant strains is crucial. Prior studies have demonstrated synergistic efficacy of several β-lactams against M. abscessus in vitro; however, these combinations have never been tested in an animal model of M. abscessus pulmonary disease. We utilized a recently developed murine system of sustained M. abscessus lung infection delivered via an aerosol route to test the bactericidal efficacy of four novel dual β-lactam combinations and one β-lactam/β-lactamase inhibitor combination. All five of the novel combinations exhibited synergy and resulted in at least 6-log10 reductions in bacterial burden in the lungs of mice at 4 weeks compared to untreated controls (P = 0.038).
Collapse
|
31
|
Triboulet S, Edoo Z, Compain F, Ourghanlian C, Dupuis A, Dubée V, Sutterlin L, Atze H, Etheve-Quelquejeu M, Hugonnet JE, Arthur M. Tryptophan Fluorescence Quenching in β-Lactam-Interacting Proteins Is Modulated by the Structure of Intermediates and Final Products of the Acylation Reaction. ACS Infect Dis 2019; 5:1169-1176. [PMID: 31056908 DOI: 10.1021/acsinfecdis.9b00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In most bacteria, β-lactam antibiotics inhibit the last cross-linking step of peptidoglycan synthesis by acylation of the active-site Ser of d,d-transpeptidases belonging to the penicillin-binding protein (PBP) family. In mycobacteria, cross-linking is mainly ensured by l,d-transpeptidases (LDTs), which are promising targets for the development of β-lactam-based therapies for multidrug-resistant tuberculosis. For this purpose, fluorescence spectroscopy is used to investigate the efficacy of LDT inactivation by β-lactams but the basis for fluorescence quenching during enzyme acylation remains unknown. In contrast to what has been reported for PBPs, we show here using a model l,d-transpeptidase (Ldtfm) that fluorescence quenching of Trp residues does not depend upon direct hydrophobic interaction between Trp residues and β-lactams. Rather, Trp fluorescence was quenched by the drug covalently bound to the active-site Cys residue of Ldtfm. Fluorescence quenching was not quantitatively determined by the size of the drug and was not specific of the thioester link connecting the β-lactam carbonyl to the catalytic Cys as quenching was also observed for acylation of the active-site Ser of β-lactamase BlaC from M. tuberculosis. Fluorescence quenching was extensive for reaction intermediates containing an amine anion and for acylenzymes containing an imine stabilized by mesomeric effect, but not for acylenzymes containing a protonated β-lactam nitrogen. Together, these results indicate that the extent of fluorescence quenching is determined by the status of the β-lactam nitrogen. Thus, fluorescence kinetics can provide information not only on the efficacy of enzyme inactivation but also on the structure of the covalent adducts responsible for enzyme inactivation.
Collapse
Affiliation(s)
- Sebastien Triboulet
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Zainab Edoo
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Fabrice Compain
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
- Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue Leblanc, F-75015 Paris, France
| | - Clément Ourghanlian
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Adrian Dupuis
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Vincent Dubée
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Laetitia Sutterlin
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Heiner Atze
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75005 France
- CNRS UMR 8601, 45 rue des Saints-Pères, Paris, F-75006 France
| | - Jean-Emmanuel Hugonnet
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Michel Arthur
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| |
Collapse
|
32
|
Story-Roller E, Maggioncalda EC, Cohen KA, Lamichhane G. Mycobacterium abscessus and β-Lactams: Emerging Insights and Potential Opportunities. Front Microbiol 2018; 9:2273. [PMID: 30319581 PMCID: PMC6167491 DOI: 10.3389/fmicb.2018.02273] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
β-lactams, the most widely used class of antibiotics, are well-tolerated, and their molecular mechanisms of action against many bacteria are well-documented. Mycobacterium abscessus (Mab) is a highly drug-resistant rapidly-growing nontuberculous mycobacteria (NTM). Only in recent years have we started to gain insight into the unique relationship between β-lactams and their targets in Mab. In this mini-review, we summarize recent findings that have begun to unravel the molecular basis for overall efficacy of β-lactams against Mab and discuss emerging evidence that indicates that we have yet to harness the full potential of this antibiotic class to treat Mab infections.
Collapse
Affiliation(s)
- Elizabeth Story-Roller
- Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Emily C Maggioncalda
- Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Keira A Cohen
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Gyanu Lamichhane
- Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|