1
|
Manivannan R, Patra SK, Jayasudha P, Son YA. An organic emitter with enhanced fluorescence modulation, high emission efficiency, multicolor tunability in solution and solid states, and dual-channel sensing for selective cyanide detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125922. [PMID: 40049018 DOI: 10.1016/j.saa.2025.125922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 02/17/2025] [Indexed: 03/24/2025]
Abstract
For many industrial application, there arise a demand for multistate with multicolor emissive materials due to its substantial applications than fluorophore shows emission in single state. Therefore, in this work donor-acceptor-donor' (D-A-D') based three organic emitters (DSE1-DSE3) were synthesized. A substituted phenyl ring and cyano vinyl unit are used to manage molecular geometry and steric hindrance to reduce the gap between AIE and ACQ, resulting in an improved dual-state emission. Solid state emission maxima for all chemicals were red shifted compared to solution state. Additionally, quantum yields and excited state fluorescence lifetime were higher in the solid state. Because of their donor-acceptor pattern, all of the dyes show positive solvatochromism. As the solvent polarity increases, the emission maxima of DSE1-DSE3 redshift gradually. These emitter probe DSE1-DSE3 showed redshift in aggregation emission (ACRE) in water which is considered to be a poor solvent, this is supported by DLS and SEM analysis. Meanwhile, the compound DSE1-DSE3 can detect cyanide ion selectivity over other competing anions via the absorbance and fluorescence channels. Under the effect of electron accepting cyano groups, the vinyl C = C bond was easily reacted by nucleophilic CN- which disturb the conjugated bridge of the compounds and prevented the ICT process between the donor and acceptor. The addition of cyanide ions to the compounds DSE1-DSE3 resulted in a significant red shift in absorbance and a total quenching of fluorescence intensity. For real life application, the probe successfully detects cyanide ion in various water samples. Besides, the developed DSE3-encapsulated polysulfone (PSF) capsule kit effectively sense cyanide ion in water.
Collapse
Affiliation(s)
- Ramalingam Manivannan
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Sumit Kumar Patra
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Palanisamy Jayasudha
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Young-A Son
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea.
| |
Collapse
|
2
|
Chaudhran PA, Mastoli SY, Dey A, Saraf SA, Sharma A. Dual-State Emissive and Substituent-Tunable pH-Sensitive Bis-Heterocyclic Fluorescent Probes. J Org Chem 2025; 90:5359-5371. [PMID: 40215347 DOI: 10.1021/acs.joc.4c02563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
A library of fluorescent molecules based on imidazopyridine linked with benzothiazole and benzimidazole was assessed for pH sensitivity and the effect of substituents thereon, also leading to dual-state emission. A broad range of pH (1-13) was evaluated, where the benzothiazole-based (BnTA) compounds responded in acidic pH, whereas the benzimidazole-based (BnIm) compounds behaved differently at different pH with recognizable color change on shifting from acidic to neutral and then to basic. NMR titrations revealed the effect of substituents on governing the site of protonation and deprotonation. Further, the mechanism of fluorescence was comprehended through theoretical calculations. On assessing the solid state fluorescence briefly, 2e showed mechanochromic behavior, showing green fluorescence in the solid state, which vanished upon grinding, and upon fuming with acetone, the fluorescence turned yellowish orange, which reverted to the initial fluorescence upon long-term exposure of acetone. The cellular uptake and fluorescence response of 2l in pH were also evaluated. The colocalization experiment suggested that 2l crossed the nuclear membrane and stained the nucleus, showing its possible in vitro application. The compound serves as a potential lead for other applications likewise, such as optoelectronics, data encryption, and pH sensors.
Collapse
Affiliation(s)
- Preeti Ashokkumar Chaudhran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Sakshi Y Mastoli
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| |
Collapse
|
3
|
Manoj Kumar S, Munusamy S, Enbanathan S, Kulathu Iyer S. AIE Active Imidazole-Stilbene Conjugated Fluorescent Probes: Illuminating Latent Fingerprints and Advancing Anticounterfeiting Technologies. J Org Chem 2024; 89:17090-17100. [PMID: 39444191 DOI: 10.1021/acs.joc.4c01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Aggregation-induced emission luminogens (AIEgens) are widely used in the realm of latent fingerprint visualization owing to their luminosity and resistance to photobleaching. However, challenges such as significant background interference and limited resolution hinder their rapid advancement. Consequently, there is a pressing need to improve the detailed visualization of latent fingerprint (LFP) imaging, particularly for analyzing level 3 details. To address this, we have designed donor-acceptor (D-A) type AIEgens named MMIMV, DMIMV, and TMIMV. These compounds exhibit robust emissions ranging from 481 to 552 nm and signify positive fluorosolvatochromism. When applied as powder dusting, these derivatives enable the fluorescence imaging of LFPs on various material substrates. The analysis of these imaged LFPs yields intricate details regarding fingerprint ridge patterns. Our results underscore the potential of highly emissive AIEgens MMIMV, DMIMV, and TMIMV as promising candidates for fingerprint visualization, thus offering significant implications for forensic investigations. Furthermore, these derivatives serve as effective fluorescent security inks for writing and drawing, presenting a novel avenue for robust anticounterfeiting applications.
Collapse
Affiliation(s)
- Selin Manoj Kumar
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology, Vellore 632014, India
| | - Sathishkumar Munusamy
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology, Vellore 632014, India
| | | |
Collapse
|
4
|
Stoerkler T, Ulrich G, Retailleau P, Achelle S, Laurent AD, Jacquemin D, Massue J. Stimuli-Induced Fluorescence Switching in Azine-Containing Fluorophores Displaying Resonance-Stabilized ESIPT Emission. Chemistry 2024; 30:e202402448. [PMID: 38967476 DOI: 10.1002/chem.202402448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
This article reports the synthesis, along with structural and photophysical characterization of 2-(2'-hydroxyphenyl)benzazole derivatives functionalized with various azaheterocycles (pyridine, pyrimidine, terpyridine). These compounds show dual-state emission properties, that is intense fluorescence both in solution and in the solid-state with a range of fluorescent color going from blue to orange. Moreover, the nature of their excited state can be tuned by the presence of external stimuli such as protons or metal cations. In the absence of stimuli, these dyes show emission stemming from anionic species obtained after deprotonation (D* transition), whereas upon protonation or metal chelation, ESIPT process occurs leading to a stabilized and highly emissive K* transition. With the help of extensive ab initio calculations, we confirm that external stimuli can switch the nature of the transitions, making this series of dyes attractive candidates for the development of stimuli-responsive fluorescent ratiometric probes.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
- Present address: University of Ottawa, Department of Chemistry, D'Iorio Hall, 10 Marie Curie, Ottawa ON, Canada, K1 N 6 N5
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Pascal Retailleau
- Service de Cristallographie Structurale, ICSN-CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, Bât. 27, 91198, Gif-sur-Yvette Cedex, France
| | - Sylvain Achelle
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Adèle D Laurent
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| |
Collapse
|
5
|
Gui Z, Gong S, Feng G. Constructing Dual-State Emissive Fluorophores via Boc Protection and Discovering a High-Fidelity Imaging Probe for Lipid Droplets. Anal Chem 2024; 96:6724-6729. [PMID: 38635821 DOI: 10.1021/acs.analchem.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Dual-state emissive (DSE) materials exhibit fluorescence in both solid and solution states and have become an emerging material in the fields of materials science and sensing in recent years. However, due to the lack of effective and universal preparation methods, DSE materials, especially those with long emission wavelengths, are still scarce. Developing an effective method for constructing such DSE molecules is urgently needed. In this study, we constructed three DSE molecules (NRP-Boc, DCIP-Boc, and DCMP-Boc) with far-red to near-infrared fluorescence by simply modifying three traditional aggregation-caused quenching (ACQ) fluorophores with tert-butyloxycarbonyl (Boc) groups. Density functional theory (DFT) calculations and crystal data revealed the reasons for the bright fluorescence of these three molecules in solution and solid, demonstrating that this Boc protection method is a simple and effective strategy for constructing DSE molecules. We also found that these three DSE molecules have the potential to target and visualize lipid droplets (LDs). Among them, DCIP-Boc shows advantages of a large Stokes shift, long emission wavelength, low fluorescence background, and good photostability in cells, providing a powerful new molecular tool with DSE property for high-fidelity imaging of LDs.
Collapse
Affiliation(s)
- Zhisheng Gui
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Shengyi Gong
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Guoqiang Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| |
Collapse
|
6
|
Qin S, Wang X, Jiang Y. Dual-state emission, mechanofluorochromism, and lipid droplet imaging of asymmetric D-π-A-D'-type triads. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124014. [PMID: 38354679 DOI: 10.1016/j.saa.2024.124014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Dual-state emission (DSE) is an emerging phenomenon wherein organic luminescent molecules display bright emissions in both molecularly isolated and packed states, addressing the challenge associated with the traditional paradigm of dyes with mono-state emission. This study presents the design and synthesis of two unsymmetrical triads, TPCA and TPCT, featuring a D-π-A-D' electronic structure by integrating phenothiazines, triphenylamines, and cyanostilbene. Photophysical assessments reveal that both molecules serve as robust DSEgens, exhibiting strong emissions in both solution and solid phases. TPCA displays ΦTHF 53.2% and Φsolids 43.2%, while TPCT exhibits ΦTHF 49.6% and Φsolids 37.5%. However, due to differences in molecular conformation and packing, they diverge in solid-state emission wavelengths and mechanofluorochromic behavior. In the solid state, TPCA emits strong red fluorescence, contrasting with TPCT, which emits orange fluorescence. Furthermore, TPCA demonstrates significant mechanofluorochromism (MFC), shifting from yellow to yellow-red upon mechanical grinding, while TPCT exhibits negligible MFC owing to conformational distinctions. As robust and low-toxic bioimaging agents, both TPCA and TPCT prove highly effective for lipid-droplet imaging studies. This research contributes valuable insights to the evolving field of DSE materials, elucidating the promising applications and mechanisms governing their versatile emission behaviors.
Collapse
Affiliation(s)
- Sihao Qin
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Xueyao Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Postnikov VA, Sorokina NI, Kulishov AA, Yurasik GA, Sorokin TA, Lyasnikova MS, Borshchev OV, Skorotetcky MS, Pisarev SA, Svidchenko EA, Surin NM, Ponomarenko SA. Crystals of Diphenyl-Benzothiadiazole and Its Derivative with Terminal Trimethylsilyl Substituents: Growth from Solutions, Structure, and Fluorescence Properties. ACS OMEGA 2024; 9:14932-14946. [PMID: 38585064 PMCID: PMC10993270 DOI: 10.1021/acsomega.3c08543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
Linear conjugated molecules consisting of benzothiadiazole (BTD) and phenyl rings are highly efficient organic luminophores. Crystals based on these compounds have great potential for use as light-emitting elements, in particular, scintillation detectors. This paper compares the peculiarities of growth, structure, and fluorescent properties of crystals based on 4,7-diphenyl-2,1,3-benzothiadiazole (P2-BTD) and its organosilicon derivative 4,7-bis(4-(trimethylsilyl)phenyl) BTD ((TMS-P)2-BTD). The conditions for the formation of centimeter-scale single crystals were found for the former, while it was possible to prepare also bulky faceted individual crystals for the latter. The structures of P2-BTD and (TMS-P)2-BTD crystals at 85 and 293 K were investigated by single-crystal X-ray diffraction. The crystal structure of P2-BTD has been refined (sp. gr. P1̅, Z = 4), and for (TMS-P)2-BTD crystals, the structure has been solved for the first time (sp. gr. P21/c, Z = 32). Experimental and theoretical investigations of the absorption-fluorescent properties of solutions and crystals of the molecules have been carried out. The luminophores are characterized by a large Stokes shift for both solutions and crystals with a high fluorescence quantum yield of 75-98% for solutions and 50-85% for the crystals. A solvatochromic effect was observed for solutions of both luminophores: an increase in the values of the fluorescence quantum yield and the excited state lifetime were established with increasing the solvent polarity. Fluorescence properties of solutions and crystals have been analyzed using the data on crystal structure and conformation structure of the molecules as well as density functional theory calculations of their electronic structure. The results have shown that the crystal packing of P2-BTD molecules exhibits uniformity in conformational states, while (TMS-P)2-BTD molecules display a variety of conformational structures in the crystals. This unique combination of features makes them a remarkable example among the other molecular systems for identifying the relationship between the structure and absorption-fluorescence properties through comparative analysis.
Collapse
Affiliation(s)
- Valery A. Postnikov
- Kurchatov
Complex of Crystallography and Photonics of the National Research
Centre “Kurchatov Institute”, Leninsky Prosp. 59, Moscow, 119333, Russian
Federation
- Enikolopov
Institute of Synthetic Polymer Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow 117393, Russian Federation
| | - Nataliya I. Sorokina
- Kurchatov
Complex of Crystallography and Photonics of the National Research
Centre “Kurchatov Institute”, Leninsky Prosp. 59, Moscow, 119333, Russian
Federation
| | - Artem A. Kulishov
- Kurchatov
Complex of Crystallography and Photonics of the National Research
Centre “Kurchatov Institute”, Leninsky Prosp. 59, Moscow, 119333, Russian
Federation
- Enikolopov
Institute of Synthetic Polymer Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow 117393, Russian Federation
| | - Georgy A. Yurasik
- Kurchatov
Complex of Crystallography and Photonics of the National Research
Centre “Kurchatov Institute”, Leninsky Prosp. 59, Moscow, 119333, Russian
Federation
- Enikolopov
Institute of Synthetic Polymer Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow 117393, Russian Federation
| | - Timofei A. Sorokin
- Kurchatov
Complex of Crystallography and Photonics of the National Research
Centre “Kurchatov Institute”, Leninsky Prosp. 59, Moscow, 119333, Russian
Federation
- Enikolopov
Institute of Synthetic Polymer Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow 117393, Russian Federation
| | - Maria S. Lyasnikova
- Kurchatov
Complex of Crystallography and Photonics of the National Research
Centre “Kurchatov Institute”, Leninsky Prosp. 59, Moscow, 119333, Russian
Federation
| | - Oleg V. Borshchev
- Enikolopov
Institute of Synthetic Polymer Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow 117393, Russian Federation
| | - Maxim S. Skorotetcky
- Enikolopov
Institute of Synthetic Polymer Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow 117393, Russian Federation
| | - Sergey A. Pisarev
- Enikolopov
Institute of Synthetic Polymer Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow 117393, Russian Federation
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | - Evgeniya A. Svidchenko
- Enikolopov
Institute of Synthetic Polymer Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow 117393, Russian Federation
| | - Nikolay M. Surin
- Enikolopov
Institute of Synthetic Polymer Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow 117393, Russian Federation
| | - Sergey A. Ponomarenko
- Enikolopov
Institute of Synthetic Polymer Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow 117393, Russian Federation
| |
Collapse
|
8
|
Wang H, Zhang C, Hu L, Tang F, Wang Y, Ding F, Lu J, Ding A. Red-emissive Dual-state Fluorogenic Probe for Wash-free Imaging of Lipid Droplets in Living Cells and Fatty Liver Tissues. Chem Asian J 2023; 18:e202201291. [PMID: 36790100 DOI: 10.1002/asia.202201291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Lipid droplet (LD) dysfunction can result in various diseases, such as nonalcoholic fatty liver disease. Imaging agents built on dual-state emission (DSE) molecules that fluoresce in both dilute solutions and the aggregated state are receiving attention as this type of probe could provide bright fluorescence signals at variable concentrations, avoiding false signal readout caused by the concentration fluctuation in living systems. Herein, we identified a red emissive molecule featuring DSE, from three newly synthesized molecules, for specific detection of LDs in live cells. The bioimaging abilities have been well confirmed by optical spectroscopies, theoretical calculations, cell experiments, as well as animal studies. The DSE probe is effective for LD detection at concentrations ranging from 1 μM to 100 μM while retaining high brightness and signal fidelity. This study provides a knowledge base for the future design of DSE-active fluorescent probes for understanding LD-related diseases.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Wannan Medical College, 241002, Wuhu, P. R. China
| | - Cuifeng Zhang
- School of Anesthesiology, Wannan Medical College, 241002, Wuhu, P. R. China
| | - Lei Hu
- School of Pharmacy, Wannan Medical College, 241002, Wuhu, P. R. China
| | - Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, 361005, Xiamen, P. R. China
| | - Yaxuan Wang
- School of Pharmacy, Wannan Medical College, 241002, Wuhu, P. R. China
| | - Feiyang Ding
- School of Pharmacy, Wannan Medical College, 241002, Wuhu, P. R. China
| | - Jingwen Lu
- School of Anesthesiology, Wannan Medical College, 241002, Wuhu, P. R. China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, 361005, Xiamen, P. R. China
| |
Collapse
|
9
|
Huber A, Dubbert J, Scherz TD, Voskuhl J. Design Concepts for Solution and Solid-State Emitters - A Modern Viewpoint on Classical and Non-Classical Approaches. Chemistry 2023; 29:e202202481. [PMID: 36193996 PMCID: PMC10099667 DOI: 10.1002/chem.202202481] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/07/2022]
Abstract
For a long time, luminescence phenomena were strictly distinguished between the emission of isolated molecules in dilute solutions or close-packed structures such as in powders or aggregates. This changed with the breakthrough observation of dual-state efficient materials, which led to a rapid boost of publications examining the influence of structural features to achieve balanced emission with disregarded molecular surroundings. Some first general structural design concepts have already been proposed based on reoccurring patterns and pivotal motifs. However, we have found another way to classify these solution and solid-state emitters (SSSEs). Hence, this minireview aims to present an overview of published structural features of SSSEs while shining light on design concepts from a more generalized perspective. Since SSSEs are believed to bridge the gap of hitherto known aggregation-sensitive compound classes, we hope to give future scientists a versatile tool in hand to efficiently design novel luminescent materials.
Collapse
Affiliation(s)
- Alexander Huber
- Institute of Organic Chemistry, CENIDE and ZMB, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Justin Dubbert
- Institute of Organic Chemistry, CENIDE and ZMB, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Tim D Scherz
- Institute of Organic Chemistry, CENIDE and ZMB, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Jens Voskuhl
- Institute of Organic Chemistry, CENIDE and ZMB, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| |
Collapse
|
10
|
Lipin KV, Ievlev MY, Ershova AI, Ershov OV. Dual-State Emission of 2-(Butylamino)Cinchomeronic Dinitrile Derivatives. Molecules 2022; 27:7144. [PMID: 36363971 PMCID: PMC9653811 DOI: 10.3390/molecules27217144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 09/24/2023] Open
Abstract
New representatives of 2-(butylamino)cinchomeronic dinitrile derivatives were synthesized as promising fluorophores showing dual-state emission. To characterize the influence of the length (from methyl to butyl) and the structure (both linear and branched) of the alkyl substituent at the amino nitrogen atom, the spectral fluorescence properties of all synthesized compounds were carefully studied both in solution and in solid state. The highest photoluminescence quantum yield values of 63% were noted for solutions of 2-(butylamino)-6-phenylpyridine-3,4-dicarbonitrile in DCM and 2-(butylamino)-5-methyl-6-phenylpyridine-3,4-dicarbonitrile in toluene.
Collapse
Affiliation(s)
| | | | | | - Oleg V. Ershov
- Department of Organic and Pharmaceutical Chemistry, Chuvash State University, Moskovsky pr. 15, Cheboksary 428015, Russia
| |
Collapse
|
11
|
Pervez M, Pearce AK, Husband JT, Male L, Torrent‐Sucarrat M, O'Reilly RK. Enhancing Dual-State Emission in Maleimide Fluorophores through Fluorocarbon Functionalisation. Chemistry 2022; 28:e202201877. [PMID: 35857384 PMCID: PMC9804613 DOI: 10.1002/chem.202201877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 01/05/2023]
Abstract
Herein, a library of trifluoroethyl substituted aminomaleimide derivatives are reported with small size and enhanced emissions in both solution and solid-state. A diCH2 CF3 substituted aminochloromaleimide exhibits the most efficient dual-state emission (Φf >50 % in solution and solid-state), with reduced quenching from protic solvents. This is attributed to the reduction of electron density on the maleimide ring and suppressed π-π stacking in the solid-state. This mechanism was explored in-depth by crystallographic analysis, and modelling of the electronic distribution of HOMO-LUMO isosurfaces and NCI plots. Hence, these dual-state dyes overcome the limitations of single-state luminescence and will serve as an important step forward for this rapidly developing nascent field.
Collapse
Affiliation(s)
- Maria Pervez
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| | - Amanda K. Pearce
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| | - Jonathan T. Husband
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| | - Louise Male
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| | - Miquel Torrent‐Sucarrat
- Department of Organic Chemistry IUniversidad del País Vasco (UPV/EHU) and Donostia International Physics Center (DIPC)Manuel Lardizabal Ibilbidea 3Donostia20018Spain
- IkerbasqueBasque Foundation for SciencePlaza Euskadi, 5Bilbao48009Spain
| | - Rachel K. O'Reilly
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| |
Collapse
|
12
|
Belmonte-Vázquez JL, Hernández-Morales EA, Hernández FJ, García-González MC, Miranda LD, Crespo-Otero R, Rodríguez-Molina B. Asymmetric Dual‐State Emitters Featuring Thiazole Acceptors. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Luis D Miranda
- UNAM: Universidad Nacional Autonoma de Mexico Instituto de Química MEXICO
| | | | - Braulio Rodríguez-Molina
- Universidad Nacional Autonoma de Mexico Institute of Chemistry Circuito Exterior, Ciudad Universitaria 04510 Coyoacan MEXICO
| |
Collapse
|
13
|
Xu Y, Dang D, Zhang N, Zhang J, Xu R, Wang Z, Zhou Y, Zhang H, Liu H, Yang Z, Meng L, Lam JWY, Tang BZ. Aggregation-Induced Emission (AIE) in Super-resolution Imaging: Cationic AIE Luminogens (AIEgens) for Tunable Organelle-Specific Imaging and Dynamic Tracking in Nanometer Scale. ACS NANO 2022; 16:5932-5942. [PMID: 35344346 DOI: 10.1021/acsnano.1c11125] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organelle-specific imaging and dynamic tracking in ultrahigh resolution is essential for understanding their functions in biological research, but this remains a challenge. Therefore, a facile strategy by utilizing anion-π+ interactions is proposed here to construct an aggregation-induced emission luminogen (AIEgen) of DTPAP-P, not only restricting the intramolecular motions but also blocking their strong π-π interactions. DTPAP-P exhibits a high photoluminescence quantum yield (PLQY) of 35.04% in solids, favorable photostability and biocompatibility, indicating its potential application in super-resolution imaging (SRI) via stimulated emission depletion (STED) nanoscopy. It is also observed that this cationic DTPAP-P can specifically target to mitochondria or nucleus dependent on the cell status, resulting in tunable organelle-specific imaging in nanometer scale. In live cells, mitochondria-specific imaging and their dynamic monitoring (fission and fusion) can be obtained in ultrahigh resolution with a full-width-at-half-maximum (fwhm) value of only 165 nm by STED nanoscopy. This is about one-sixth of the fwhm value in confocal microscopy (1028 nm). However, a migration process occurs for fixed cells from mitochondria to nucleus under light activation (405 nm), leading to nucleus-targeted super-resolution imaging (fwhm= 184 nm). These findings indicate that tunable organelle-specific imaging and dynamic tracking by a single AIEgen at a superior resolution can be achieved in our case here via STED nanoscopy, thus providing an efficient method to further understand organelle's functions and roles in biological research.
Collapse
Affiliation(s)
- Yanzi Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ning Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Jianyu Zhang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Ruohan Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Zhi Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Yu Zhou
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
- School of Physics, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 311215, P. R. China
| | - Haixiang Liu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Zhiwei Yang
- School of Physics, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen 518172, P. R. China
| |
Collapse
|
14
|
Stoerkler T, Pariat T, Laurent AD, Jacquemin D, Ulrich G, Massue J. Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications. Molecules 2022; 27:molecules27082443. [PMID: 35458640 PMCID: PMC9024454 DOI: 10.3390/molecules27082443] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Dual-state emissive (DSE) fluorophores are organic dyes displaying fluorescence emission both in dilute and concentrated solution and in the solid-state, as amorphous, single crystal, polycrystalline samples or thin films. This comes in contrast to the vast majority of organic fluorescent dyes which typically show intense fluorescence in solution but are quenched in concentrated media and in the solid-state owing to π-stacking interactions; a well-known phenomenon called aggregation-caused quenching (ACQ). On the contrary, molecular rotors with a significant number of free rotations have been engineered to show quenched emission in solution but strong fluorescence in the aggregated-state thanks to restriction of the intramolecular motions. This is the concept of aggregation-induced emission (AIE). DSE fluorophores have been far less explored despite the fact that they are at the crossroad of ACQ and AIE phenomena and allow targeting applications both in solution (bio-conjugation, sensing, imaging) and solid-state (organic electronics, data encryption, lasing, luminescent displays). Excited-State Intramolecular Proton Transfer (ESIPT) fluorescence is particularly suitable to engineer DSE dyes. Indeed, ESIPT fluorescence, which relies on a phototautomerism between normal and tautomeric species, is characterized by a strong emission in the solid-state along with a large Stokes’ shift, an enhanced photostability and a strong sensitivity to the close environment, a feature prone to be used in bio-sensing. A drawback that needs to be overcome is their weak emission intensity in solution, owing to detrimental molecular motions in the excited-state. Several strategies have been proposed in that regard. In the past few years, a growing number of examples of DSE-ESIPT dyes have indeed emerged in the literature, enriching the database of such attractive dyes. This review aims at a brief but concise overview on the exploitation of ESIPT luminescence for the optimization of DSE dyes properties. In that perspective, a synergistic approach between organic synthesis, fluorescence spectroscopy and ab initio calculations has proven to be an efficient tool for the construction and optimization of DSE-ESIPT fluorophores.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Thibault Pariat
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Adèle D. Laurent
- Chimie et Interdisciplinarités: Synthèse, Analyse et Modélisation (CEISAM), UMR CNRS 6230, Nantes University, 44322 Nantes, France;
| | - Denis Jacquemin
- Chimie et Interdisciplinarités: Synthèse, Analyse et Modélisation (CEISAM), UMR CNRS 6230, Nantes University, 44322 Nantes, France;
- Correspondence: (D.J.); (J.M.)
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Julien Massue
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
- Correspondence: (D.J.); (J.M.)
| |
Collapse
|
15
|
Hu S, Yao Z, Ma X, Yue L, Chen L, Liu R, Wang P, Li H, Zhang ST, Yao D, Cui T, Zou B, Zou G. Pressure-Induced Local Excitation Promotion: New Route toward High-Efficiency Aggregate Emission Based on Multimer Excited State Modulation. J Phys Chem Lett 2022; 13:1290-1299. [PMID: 35099978 DOI: 10.1021/acs.jpclett.1c04214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Achieving high-efficiency solid state emission is essential for practical applications of organic luminescent materials. However, intermolecular interactions generally induce formation of multimeric aggregate excited states with deficient emissive ability, making it extremely challenging to enhance emission in aggregated states. Here we demonstrate a novel strategy of continuously regulating multimeric excitation constituents with a high-pressure technique successfully enhancing the emission in a representative organic charge-transfer material, Laurdan (6-lauroyl-N,N-dimethyl-2-naphthylamine). The Laurdan crystal exhibits distinct emission enhancement up to 4.1 GPa accompanied by a shift in the emission color from blue to cyan. Under compression, the π-π interplanar distance in Laurdan multimers is reduced, and intermolecular wave function diffusion is demonstrated to be improved simultaneously, which results in local excitation promotion and thus enhanced emission. Our findings not only provide new insights into multimeric excited state emission modulation but also pave the way for the further design of high-performance aggregated luminophores.
Collapse
Affiliation(s)
- Shuhe Hu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Zhen Yao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xuan Ma
- South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou 510301, China
| | - Lei Yue
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Luyao Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Ran Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Peng Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Haiyan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Guangtian Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
16
|
Chen SH, Luo SH, Xing LJ, Jiang K, Huo YP, Chen Q, Wang ZY. Rational Design and Facile Synthesis of Dual-State Emission Fluorophores: Expanding Functionality for the Sensitive Detection of Nitroaromatic Compounds. Chemistry 2021; 28:e202103478. [PMID: 34735034 DOI: 10.1002/chem.202103478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/26/2022]
Abstract
Six novel benzimidazole-based D-π-A compounds 4 a-4 f were concisely synthesized by attaching different donor/acceptor units to the skeleton of 1,3-bis(1H-benzimidazol-2-yl)benzene on its 5-position through an ethynyl link. Due to the twisted conformation and effective conjugation structure, these dual-state emission (DSE) molecules show intense and multifarious photoluminescence, and their fluorescence quantum yields in solution and solid state can be up to 96.16 and 69.82 %, respectively. Especially, for excellent photostability, obvious solvatofluorochromic and extraordinary wide range of solvent compatibility, DSE molecule 4 a is a multifunctional fluorescent probe for the visual detection of nitroaromatic compounds (NACs) with the limit of detection as low as 10-7 M. The quenching mechanism has been proved as the results of photoinduced electron transfer and fluorescence resonance energy transfer processes. Importantly, probe 4 a can sensitively detect NACs not only in real water samples, but also on 4 a-coated strips and 4 a@PBAT thin films.
Collapse
Affiliation(s)
- Si-Hong Chen
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, 510006, P. R. China.,Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Long-Jiang Xing
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yan-Ping Huo
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Qi Chen
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, 510006, P. R. China.,Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
17
|
Unsymmetrical Hexafluorocyclopentene-Linked Twisted π-Conjugated Molecules as Dual-State Emissive Luminophores. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dual-state emissive (DSE) luminophores, which can luminesce both in solution and in solid states, have recently attracted significant attention because of their broad applications. However, their development is difficult due to the difference in molecular design between solution- and solid-state luminophores. In this study, DSE luminophores based on unsymmetrical hexafluorocyclopentene-linked twisted π-conjugated structures carrying various substituents to tune the electron-density were designed and synthesized in a single-step reaction from heptafluorocyclopentene or perfluoro-1,2-diphenylcyclopentene derivatives. The twisted π-conjugated luminophores exhibited absorption in the UV region at approximately 330 nm, along with several signals in the high-energy region. Upon irradiating the luminophore solution (wavelength 330 nm), light-green to yellow photoluminescence (PL) was observed in the range of 422–471 nm with high PL efficiency. Theoretical calculations revealed that excitation from ground to excited states altered the structural shape of the luminophores from twisted to planar, leading to red-shifted PL and high PL efficiency (ΦPL). The intense blue PL exhibited by the luminophores in the crystalline state was attributed to their twisted molecular structures that suppressed non-radiative deactivation via the effective blocking of π/π stacking interactions.
Collapse
|
18
|
Ni Y, Zhang S, He X, Huang J, Kong L, Yang J, Yang J. Dual-state emission difluoroboron derivatives for selective detection of picric acid and reversible acid/base fluorescence switching. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2830-2835. [PMID: 34079969 DOI: 10.1039/d1ay00477h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel difluoroboron derivative (TPEBF) containing α-cyanostilbene and tetraphenylethylene units has been designed and synthesized. TPEBF emits strong fluorescence both in dilute solutions (ΦFL = 19.3% in THF) and in the solid state (ΦFL = 49.3%), which is significantly distinct from the case of the aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) chromophores. The dual-state emission properties of the compound overcome the limitation of single-state luminescence and enable it to be used in both solid and solution states. TPEBF with strong emission in solution is utilized for sensing picric acid (PA) with high selectivity and sensitivity in THF (LOD = 497 nM) and aqueous media (LOD = 355 nM). The mechanism was described for the synergy of fluorescence resonance energy transfer (FRET) and photoinduced energy transfer (PET) based on the UV-vis absorption and fluorescence spectra, 1H NMR and theoretical calculations results. On the other hand, the highly efficient emission in the solid state allows the compound to be cast on paper to switch external acid/base stimuli.
Collapse
Affiliation(s)
- Yingyong Ni
- College of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functional Materials, Anhui University, Hefei 230601, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Pariat T, Munch M, Durko-Maciag M, Mysliwiec J, Retailleau P, Vérité PM, Jacquemin D, Massue J, Ulrich G. Impact of Heteroatom Substitution on Dual-State Emissive Rigidified 2-(2'-hydroxyphenyl)benzazole Dyes: Towards Ultra-Bright ESIPT Fluorophores*. Chemistry 2021; 27:3483-3495. [PMID: 33191573 DOI: 10.1002/chem.202004767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 01/09/2023]
Abstract
2-(2'-Hydroxyphenyl)benzazole (HBX) fluorophores are well-known excited-state intramolecular proton transfer (ESIPT) emitters largely studied for their synthetic versatility, photostability, strong solid-state fluorescence and ability to engineer dual emission, thus paving the way to applications as white emitters, ratiometric sensors, and cryptographic dyes. However, they are heavily quenched in solution, due to efficient non-radiative pathways taking place as a consequence of the proton transfer in the excited-state. In this contribution, the nature of the heteroring constitutive of these rigidified HBX dyes was modified and we demonstrate that this simple structural modification triggers major optical changes in terms of emission color, dual emission engineering, and importantly, fluorescent quantum yield. Investigation of the photophysical properties in solution and in the solid state of a series of ethynyl-TIPS extended HBX fluorophores, along with ab initio calculations demonstrate the very promising abilities of these dyes to act as bright dual-state emitters, in both solution (even in protic environments) and solid state.
Collapse
Affiliation(s)
- Thibault Pariat
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Maxime Munch
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Martyna Durko-Maciag
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France.,Advanced Materials Engineering and Modeling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50370, Wroclaw, Poland
| | - Jaroslaw Mysliwiec
- Advanced Materials Engineering and Modeling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50370, Wroclaw, Poland
| | - Pascal Retailleau
- Laboratoire de Cristallochimie, ICSN-CNRS, 1 Avenue de la Terrasse, Bât. 27, 91198, Gif-sur-Yvette Cedex, France
| | - Pauline M Vérité
- CEISAM Lab-UMR 6230-CNRS and University of Nantes, 2 Rue de la Houssinière, 44322, Nantes, France
| | - Denis Jacquemin
- CEISAM Lab-UMR 6230-CNRS and University of Nantes, 2 Rue de la Houssinière, 44322, Nantes, France
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087, Strasbourg Cedex 02, France
| |
Collapse
|
20
|
Xu Y, Xu R, Wang Z, Zhou Y, Shen Q, Ji W, Dang D, Meng L, Tang BZ. Recent advances in luminescent materials for super-resolution imaging via stimulated emission depletion nanoscopy. Chem Soc Rev 2021; 50:667-690. [DOI: 10.1039/d0cs00676a] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent progress on STED fluorophores for super-resolution imaging and also their characteristics are outlined here, thus providing some guidelines to select proper probes and even develop new materials for super-resolution imaging via STED nanoscopy.
Collapse
Affiliation(s)
- Yanzi Xu
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiao Tong University
- Xi'an 710049
| | - Ruohan Xu
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiao Tong University
- Xi'an 710049
| | - Zhi Wang
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiao Tong University
- Xi'an 710049
| | - Yu Zhou
- Instrumental Analysis Center
- Xi'an Jiao Tong University
- Xi'an
- P. R. China
| | - Qifei Shen
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiao Tong University
- Xi'an 710049
| | - Wenchen Ji
- Department of Orthopedics
- the First Affiliated Hospital of Xi’an Jiaotong University
- P. R. China
| | - Dongfeng Dang
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiao Tong University
- Xi'an 710049
| | - Lingjie Meng
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiao Tong University
- Xi'an 710049
| | - Ben Zhong Tang
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Clear Water Bay
- Kowloon
- P. R. China
| |
Collapse
|
21
|
Kumar A, Hira SK, Dey S. Template‐Assisted Regioselective Identification of Metal Ions on Coumarin‐Furan Conjugated Chemosensors: AIEE Effect and Photo‐Switching pH Indicator by ICT. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ashish Kumar
- Department of Chemistry Indian Institute of Technology (ISM) ‐826004 Dhanbad Jharkhand India
| | - Sumit Kumar Hira
- Department of Zoology University of Burdwan 713104 Burdwan West Bengal India
| | - Swapan Dey
- Department of Chemistry Indian Institute of Technology (ISM) ‐826004 Dhanbad Jharkhand India
| |
Collapse
|
22
|
Ershova AI, Ievlev MY, Maksimova VN, Belikov MY, Ershov OV. Synthesis, Solution and Solid‐State Fluorescence of 2‐(
N
‐cycloamino)cinchomeronic Dinitrile Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202001710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anastasia I. Ershova
- Department of Organic and Pharmaceutical ChemistryUlyanov Chuvash State University Cheboksary 428015 Chuvash Republic Russia
| | - Mikhail Yu. Ievlev
- Department of Organic and Pharmaceutical ChemistryUlyanov Chuvash State University Cheboksary 428015 Chuvash Republic Russia
| | - Veronika N. Maksimova
- Department of Organic and Pharmaceutical ChemistryUlyanov Chuvash State University Cheboksary 428015 Chuvash Republic Russia
| | - Mikhail Yu. Belikov
- Department of Organic and Pharmaceutical ChemistryUlyanov Chuvash State University Cheboksary 428015 Chuvash Republic Russia
| | - Oleg V. Ershov
- Department of Organic and Pharmaceutical ChemistryUlyanov Chuvash State University Cheboksary 428015 Chuvash Republic Russia
| |
Collapse
|
23
|
Xi W, Yu J, Wei M, Qiu Q, Xu P, Qian Z, Feng H. Photophysical Switching between Aggregation‐Induced Phosphorescence and Dual‐State Emission by Isomeric Substitution. Chemistry 2020; 26:3733-3737. [DOI: 10.1002/chem.202000233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Wenbin Xi
- Key Laboratory of the Ministry of Education for, Advanced Catalysis MaterialsDepartment of ChemistryCollege of Chemistry and Life SciencesZhejiang Normal University Yingbin Road 688 Jinhua 321004 P. R. China
| | - Junru Yu
- Key Laboratory of the Ministry of Education for, Advanced Catalysis MaterialsDepartment of ChemistryCollege of Chemistry and Life SciencesZhejiang Normal University Yingbin Road 688 Jinhua 321004 P. R. China
| | - Mengru Wei
- Key Laboratory of the Ministry of Education for, Advanced Catalysis MaterialsDepartment of ChemistryCollege of Chemistry and Life SciencesZhejiang Normal University Yingbin Road 688 Jinhua 321004 P. R. China
| | - Qianqian Qiu
- Key Laboratory of the Ministry of Education for, Advanced Catalysis MaterialsDepartment of ChemistryCollege of Chemistry and Life SciencesZhejiang Normal University Yingbin Road 688 Jinhua 321004 P. R. China
| | - Pengfei Xu
- Key Laboratory of the Ministry of Education for, Advanced Catalysis MaterialsDepartment of ChemistryCollege of Chemistry and Life SciencesZhejiang Normal University Yingbin Road 688 Jinhua 321004 P. R. China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry of Education for, Advanced Catalysis MaterialsDepartment of ChemistryCollege of Chemistry and Life SciencesZhejiang Normal University Yingbin Road 688 Jinhua 321004 P. R. China
| | - Hui Feng
- Key Laboratory of the Ministry of Education for, Advanced Catalysis MaterialsDepartment of ChemistryCollege of Chemistry and Life SciencesZhejiang Normal University Yingbin Road 688 Jinhua 321004 P. R. China
| |
Collapse
|
24
|
Xi D, Xu Y, Xu R, Wang Z, Liu D, Shen Q, Yue L, Dang D, Meng L. A Facilely Synthesized Dual-State Emission Platform for Picric Acid Detection and Latent Fingerprint Visualization. Chemistry 2020; 26:2741-2748. [PMID: 31886910 DOI: 10.1002/chem.201905169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/16/2019] [Indexed: 01/28/2023]
Abstract
To achieve a highly efficient, dual-state emission platform for picric acid (PA) detection and latent fingerprint (LFP) visualization, flexible alkyl chains have been facilely attached to the commercial organic dye 3,4,9,10-perylenetetracarboxylic dianhydride to provide the target perylenetetracarboxylate molecules PTCA-C4, PTCA-C6, and PTCA-C12. Interestingly, all these molecules exhibited impressive fluorescence characteristics with high photoluminescence quantum yields (PLQYs) of around 93.0 % in dilute solution. Also, emissive features were observed in the solid state because close molecular packing is prevented by the alkyl chains, especially for PTCA-C6, which has a high PLQY value of 49.0 %. Benefiting from its impressive fluorescence performance in both solution and as aggregates, PTCA-C6 was used as a dual-state emission platform for PA detection and also LFP visualization. For example, double-responsive fluorescence quenching in solution was observed in PA detection studies, resulting in high quenching constants (KSV ) and also low limit-of-detection values. Furthermore, the fingerprint powder based on PTCA-C6 also presented an impressive performance on various substrates in terms of fluorescence intensity and resolution, clearly providing the specific fine details of latent fingerprints. These results demonstrate that the facilely synthesized PTCA-C6 with efficient dual-state emission exhibits great potential in the real-world applications of PA detection and LFP visualization.
Collapse
Affiliation(s)
- Duo Xi
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Yanzi Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Ruohan Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Zhi Wang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Daomeng Liu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Qifei Shen
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Ling Yue
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Dongfeng Dang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Lingjie Meng
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.,Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| |
Collapse
|
25
|
Xu Y, Zhang H, Zhang N, Wang X, Dang D, Jing X, Xi D, Hao Y, Tang BZ, Meng L. Deep-Red Fluorescent Organic Nanoparticles with High Brightness and Photostability for Super-Resolution in Vitro and in Vivo Imaging Using STED Nanoscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6814-6826. [PMID: 31880157 DOI: 10.1021/acsami.9b18336] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To achieve super-resolution imaging in biological research using stimulated emission depletion (STED) nanoscopy, organic luminescent materials and their corresponding fluorescent nanoparticles with high brightness and photostability are of great significance. Herein, donor-acceptor-typed DBTBT-4C8 bearing flexible alkyl chains was developed, not only to afford deep-red emission from 600 to 800 nm but also to obtain high fluorescent brightness with the absolute photoluminescence quantum yields of 25%. After that, well-defined and monodispersed spherical nanoparticles using DBTBT-4C8 with bright emission, excellent biocompatibility, and photostability, which can easily mix with amphipathic block polymers, were then produced for super-resolution in vitro and in vivo imaging using STED nanoscopy. The observations showed that in contrast to confocal microscopy with a full width at half-maximum (FWHM) value of ≈400 nm, superior resolution with a significantly improved FWHM value of only 100 nm was achieved in biomedical cell imaging, which was also used to reconstruct three-dimensional images of stained HeLa cells at an ultrahigh resolution. More importantly, by using the prepared fluorescent organic nanoparticles (FONPs) in STED nanoscopy, in vivo imaging in glass catfish with largely enhanced resolution was also successfully achieved, demonstrating that these developed deep-red FONPs here are highly suitable for super-resolution in vitro and in vivo imaging using STED nanoscopy.
Collapse
Affiliation(s)
- Yanzi Xu
- School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry , Xi'an Jiao Tong University , Xi'an 710049 , P. R. China
| | - Haoke Zhang
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon, Hong Kong 999077 , P. R. China
| | - Ning Zhang
- School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry , Xi'an Jiao Tong University , Xi'an 710049 , P. R. China
| | - Xiaochi Wang
- School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry , Xi'an Jiao Tong University , Xi'an 710049 , P. R. China
| | - Dongfeng Dang
- School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry , Xi'an Jiao Tong University , Xi'an 710049 , P. R. China
| | - Xunan Jing
- School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry , Xi'an Jiao Tong University , Xi'an 710049 , P. R. China
| | - Duo Xi
- School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry , Xi'an Jiao Tong University , Xi'an 710049 , P. R. China
| | - Ying Hao
- Instrumental Analysis Center , Xi'an Jiao Tong University , Xi'an 710049 , P. R. China
| | - Ben Zhong Tang
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon, Hong Kong 999077 , P. R. China
| | - Lingjie Meng
- School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry , Xi'an Jiao Tong University , Xi'an 710049 , P. R. China
- Instrumental Analysis Center , Xi'an Jiao Tong University , Xi'an 710049 , P. R. China
| |
Collapse
|
26
|
Qiu Q, Xu P, Zhu Y, Yu J, Wei M, Xi W, Feng H, Chen J, Qian Z. Rational Design of Dual-State Emission Luminogens with Solvatochromism by Combining a Partially Shared Donor-Acceptor Pattern and Twisted Structures. Chemistry 2019; 25:15983-15987. [PMID: 31536145 DOI: 10.1002/chem.201903857] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/16/2019] [Indexed: 01/24/2023]
Abstract
We report a general design strategy for a new class of luminogens with dual-state emission (DSEgens) that are brightly emissive in both the solution and solid state, with solvatochromism properties, by constructing a partially shared donor-acceptor pattern based on a twisted molecule. The DSEgens with bright fluorescence emission in both the solid and solution state demonstrate a unique solvatochromism behaviour depending on solvent polarity and thus may have applications in anti-counterfeiting.
Collapse
Affiliation(s)
- Qianqian Qiu
- Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, P. R. China
| | - Pengfei Xu
- Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, P. R. China
| | - Yanjun Zhu
- Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, P. R. China
| | - Junru Yu
- Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, P. R. China
| | - Mengru Wei
- Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, P. R. China
| | - Wenbin Xi
- Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, P. R. China
| | - Hui Feng
- Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, P. R. China
| | - Jianrong Chen
- Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, P. R. China
| | - Zhaosheng Qian
- Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, P. R. China
| |
Collapse
|
27
|
Dang D, Zhang H, Xu Y, Xu R, Wang Z, Kwok RTK, Lam JWY, Zhang L, Meng L, Tang BZ. Super-Resolution Visualization of Self-Assembling Helical Fibers Using Aggregation-Induced Emission Luminogens in Stimulated Emission Depletion Nanoscopy. ACS NANO 2019; 13:11863-11873. [PMID: 31584798 DOI: 10.1021/acsnano.9b05914] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic fluorophores for stimulated emission depletion (STED) nanoscopy usually suffer from quenched emission in the aggregate state and inferior photostability, which largely limit their application in real-time, in situ, and long-term imaging at an ultrahigh resolution. Herein, an aggregation-induced emission (AIE) luminogen of DP-TBT with bright emission in solid state (photoluminescence quantum yields = 25%) and excellent photostability was designed to meet the requirements in STED nanoscopy. In addition to its excellent fluorescence properties, DP-TBT could also easily form self-assembling helixes and finally be well-visualized by super-resolution STED nanoscopy. The observations showed that helical fibers of DP-TBT as dashed lines had a much decreased fiber width with also a full width at half-maximum value of only 178 nm, which is ∼6 times higher than solid lines obtained by confocal microscopy (1154 nm). The STED nanoscopic data were also used to reconstruct 3D images of assembled helixes. Finally, by long-term tracking and dynamic monitoring, the formation and growth of helical fibers by DP-TBT in self-assembly processes were successfully obtained. These findings imply that highly emissive AIEgens with good photostability are highly suitable for real-time, in situ, and dynamic imaging at super-resolution using STED nanoscopy.
Collapse
Affiliation(s)
- Dongfeng Dang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Haoke Zhang
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| | - Yanzi Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Ruohan Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Zhi Wang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Ryan T K Kwok
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| | - Jacky W Y Lam
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| | - Lei Zhang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Lingjie Meng
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Ben Zhong Tang
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| |
Collapse
|
28
|
Effect of the linkages on the self-assembly and photophysical properties of 4,7-diphenyl-2,1,3-benzothiadiazole-based luminescent polycatenars. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Sharidan Sairi A, Konishi GI. Synthesis and Luminescence Properties of Diamine Monomers and Polyamides with Highly TwistedN,N-Bis(dialkylamino)arene AIE Luminogens. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Sharidan Sairi
- Department of Chemical Science and Engineering; Tokyo Institute of Technology; 2-12-1-H-134 O-okayama Meguro-ku, Tokyo 152-8552 Japan
| | - Gen-ichi Konishi
- Department of Chemical Science and Engineering; Tokyo Institute of Technology; 2-12-1-H-134 O-okayama Meguro-ku, Tokyo 152-8552 Japan
| |
Collapse
|
30
|
Li Y, Lei Y, Dong L, Zhang L, Zhi J, Shi J, Tong B, Dong Y. 1,2,5‐Triphenylpyrrole Derivatives with Dual Intense Photoluminescence in Both Solution and the Solid State: Solvatochromism and Polymorphic Luminescence Properties. Chemistry 2018; 25:573-581. [DOI: 10.1002/chem.201804074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yuanyuan Li
- School of Chemistry and Chemical EngineeringBeijing Key Laboratory of Photoelectronic/Electrophotonic Conversion, MaterialsBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 China
| | - Yunxiang Lei
- Materials Science and EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 China
| | - Lichao Dong
- Materials Science and EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 China
| | - Longlong Zhang
- School of Chemistry and Chemical EngineeringBeijing Key Laboratory of Photoelectronic/Electrophotonic Conversion, MaterialsBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 China
| | - Junge Zhi
- School of Chemistry and Chemical EngineeringBeijing Key Laboratory of Photoelectronic/Electrophotonic Conversion, MaterialsBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 China
| | - Jianbing Shi
- Materials Science and EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 China
| | - Bin Tong
- Materials Science and EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 China
| | - Yuping Dong
- Materials Science and EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 China
| |
Collapse
|