1
|
Tarnowicz‐Staniak N, Staniak M, Dudek M, Grzelczak M, Matczyszyn K. Thermoplasmonic Effect Enables Indirect ON-OFF Control over the Z-E Isomerization of Azobenzene-Based Photoswitch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404755. [PMID: 39225377 PMCID: PMC11579967 DOI: 10.1002/smll.202404755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Proper formulation of systems containing plasmonic and photochromic units, such as gold nanoparticles and azobenzene derivatives, yields materials and interfaces with synergic functionalities. Moreover, gold nanoparticles are known to accelerate the Z-E isomerization of azobenzene molecules in the dark. However, very little is known about the light-driven, plasmon-assisted Z-E isomerization of azobenzene compounds. Additionally, most of the azobenzene-gold hybrids are prepared with nanoparticles of small, isotropic shapes and azobenzene ligands covalently linked to the surface of nanostructures. Herein, a formulation of an innovative system combining azobenzene derivative, gold nanorods, and cellulose nanofibers is proposed. The system's structural integrity relies on electrostatic interactions among components instead of covalent linkage. Cellulose, a robust scaffold, maintains the material's functionality in water and enables monitoring of the material's plasmonic-photochromic properties upon irradiation and at elevated temperatures without gold nanorods aggregation. Experimental evidence supported by statistical analysis suggests that the optical properties of plasmonic nanometal enable indirect control over the Z-E isomerization of the photochromic component with near-infrared irradiation by triggering the thermoplasmonic effect. The proposed hybrid material's dual plasmonic-photochromic functionality, versatility, and ease of processing render a convenient starting point for further advanced azobenzene-related research and 3D printing of macroscopic light-responsive structures.
Collapse
Affiliation(s)
- Nina Tarnowicz‐Staniak
- Institute of Advanced MaterialsFaculty of ChemistryWrocław University of Science and TechnologyWyb. Wyspiańskiego 27Wrocław50‐370Poland
| | - Mateusz Staniak
- Institute of MathematicsUniversity of Wrocławpl. Grunwaldzki 2/4Wrocław50‐384Poland
| | - Marta Dudek
- Institute of Advanced MaterialsFaculty of ChemistryWrocław University of Science and TechnologyWyb. Wyspiańskiego 27Wrocław50‐370Poland
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC‐UPV/EHU)Donostia International Physics Center (DIPC)Paseo Manuel de Lardizabal 5San Sebastian20018Spain
| | - Katarzyna Matczyszyn
- Institute of Advanced MaterialsFaculty of ChemistryWrocław University of Science and TechnologyWyb. Wyspiańskiego 27Wrocław50‐370Poland
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI‐SKCM2)Hiroshima UniversityHigashihiroshima739‐8526Japan
| |
Collapse
|
2
|
Dudek M, López-Pacios L, Sabouri N, Nogueira JJ, Martinez-Fernandez L, Deiana M. Harnessing Light for G-Quadruplex Modulation: Dual Isomeric Effects of an Ortho-Fluoroazobenzene Derivative. J Phys Chem Lett 2024; 15:9757-9765. [PMID: 39288355 PMCID: PMC11440583 DOI: 10.1021/acs.jpclett.4c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
G-quadruplexes (G4s) are important therapeutic and photopharmacological targets in cancer research. Small-molecule ligands targeting G4s offer a promising strategy to block DNA transactions and induce genetic instability in cancer cells. While numerous G4-ligands have been reported, relatively few examples exist of compounds whose G4-interactive binding properties can be modulated using light. Herein, we report the photophysical characterization of a novel ortho-fluoroazobenzene derivative, Py-Azo4F-3N, that undergoes reversible two-way isomerization upon visible light exposure. Using a combination of biophysical techniques, including affinity and selectivity assays, structural and computational analysis, and cytotoxicity experiments in cancer cell lines, we carefully characterized the G4-interactive binding properties of both isomers. We identify the trans isomer as the most promising form of interacting and stabilizing G4s, enhancing their ablation capability in cancer cells. Our research highlights the importance of light-responsive molecules in achieving precise control over G4 structures, demonstrating their potential in innovative anticancer strategies.
Collapse
Affiliation(s)
- Marta Dudek
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Lucía López-Pacios
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Juan J Nogueira
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Lara Martinez-Fernandez
- Departamento de Química Física de Materiales, Instituto de Química Física Blas Cabrera, CSIC, 28006 Madrid, Spain
| | - Marco Deiana
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
3
|
Bargstedt J, Reinschmidt M, Tydecks L, Kolmar T, Hendrich CM, Jäschke A. Photochromic Nucleosides and Oligonucleotides. Angew Chem Int Ed Engl 2024; 63:e202310797. [PMID: 37966433 DOI: 10.1002/anie.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.
Collapse
Affiliation(s)
- Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Leon Tydecks
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Deiana M, Josse P, Dalinot C, Osmolovskyi A, Marqués PS, Castán JMA, Abad Galán L, Allain M, Khrouz L, Maury O, Le Bahers T, Blanchard P, Dabos-Seignon S, Monnereau C, Sabouri N, Cabanetos C. Site-selected thionated benzothioxanthene chromophores as heavy-atom-free small-molecule photosensitizers for photodynamic therapy. Commun Chem 2022; 5:142. [PMID: 36697939 PMCID: PMC9814739 DOI: 10.1038/s42004-022-00752-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/07/2022] [Indexed: 01/27/2023] Open
Abstract
Photodynamic therapy is a clinically approved anticancer modality that employs a light-activated agent (photosensitizer) to generate cytotoxic reactive oxygen species (ROS). There is therefore a growing interest for developing innovative photosensitizing agents with enhanced phototherapeutic performances. Herein, we report on a rational design synthetic procedure that converts the ultrabright benzothioxanthene imide (BTI) dye into three heavy-atom-free thionated compounds featuring close-to-unit singlet oxygen quantum yields. In contrast to the BTI, these thionated analogs display an almost fully quenched fluorescence emission, in agreement with the formation of highly populated triplet states. Indeed, the sequential thionation on the BTI scaffold induces torsion of its skeleton reducing the singlet-triplet energy gaps and enhancing the spin-orbit coupling. These potential PSs show potent cancer-cell ablation under light irradiation while remaining non-toxic under dark condition owing to a photo-cytotoxic mechanism that we believe simultaneously involves singlet oxygen and superoxide species, which could be both characterized in vitro. Our study demonstrates that this simple site-selected thionated platform is an effective strategy to convert conventional carbonyl-containing fluorophores into phototherapeutic agents for anticancer PDT.
Collapse
Affiliation(s)
- Marco Deiana
- grid.12650.300000 0001 1034 3451Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Pierre Josse
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Clément Dalinot
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Artem Osmolovskyi
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Pablo Simón Marqués
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - José María Andrés Castán
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Laura Abad Galán
- grid.15140.310000 0001 2175 9188Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Magali Allain
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Lhoussain Khrouz
- grid.15140.310000 0001 2175 9188Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Olivier Maury
- grid.15140.310000 0001 2175 9188Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Tangui Le Bahers
- grid.15140.310000 0001 2175 9188Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Philippe Blanchard
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Sylvie Dabos-Seignon
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Cyrille Monnereau
- grid.15140.310000 0001 2175 9188Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Nasim Sabouri
- grid.12650.300000 0001 1034 3451Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Clément Cabanetos
- grid.463978.70000 0001 2288 0078Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France ,grid.15444.300000 0004 0470 5454IRL CNRS 2002, 2BFUEL, CNRS -Yonsei University, Seoul, South Korea
| |
Collapse
|
5
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
6
|
Dudek M, Deiana M, Szkaradek K, Janicki MJ, Pokładek Z, Góra RW, Matczyszyn K. Light-Induced Modulation of Chiral Functions in G-Quadruplex-Photochrome Systems. J Phys Chem Lett 2021; 12:9436-9441. [PMID: 34554762 PMCID: PMC8503878 DOI: 10.1021/acs.jpclett.1c02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 05/05/2023]
Abstract
The design of artificially engineered chiral structures has received much attention, but the implementation of dynamic functions to modulate the chiroptical response of the systems is less explored. Here, we present a light-responsive G-quadruplex (G4)-based assembly in which chirality enrichment is induced, tuned, and fueled by molecular switches. In particular, the mirror-image dependence on photoactivated azo molecules, undergoing trans-to-cis isomerization, shows chiral recognition effects on the inherent flexibility and conformational diversity of DNA G4s having distinct handedness (right- and left-handed). Through a detailed experimental and computational analysis, we bring compelling evidence on the binding mode of the photochromes on G4s, and we rationalize the origin of the chirality effect that is associated with the complexation event.
Collapse
Affiliation(s)
- Marta Dudek
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marco Deiana
- Department
of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Kinga Szkaradek
- Theoretical
Photochemistry and Photophysics Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Mikołaj J. Janicki
- Theoretical
Photochemistry and Photophysics Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Ziemowit Pokładek
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Robert W. Góra
- Theoretical
Photochemistry and Photophysics Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
7
|
Zhao DX, Jiang Q, Wang J, Qiu Y, Liao YG, Xie XL. Visible Light and Temperature Regulated Reflection Colors in Self-supporting Cholesteric Liquid Crystal Physical Gels. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Dudek M, Tarnowicz-Staniak N, Deiana M, Pokładek Z, Samoć M, Matczyszyn K. Two-photon absorption and two-photon-induced isomerization of azobenzene compounds. RSC Adv 2020; 10:40489-40507. [PMID: 35520821 PMCID: PMC9057575 DOI: 10.1039/d0ra07693g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/18/2020] [Indexed: 01/05/2023] Open
Abstract
The process of two-photon-induced isomerization occurring in various organic molecules, among which azobenzene derivatives hold a prominent position, offers a wide range of functionalities, which can be used in both material and life sciences. This review provides a comprehensive description of nonlinear optical (NLO) properties of azobenzene (AB) derivatives whose geometries can be switched through two-photon absorption (TPA). Employing the nonlinear excitation process allows for deeper penetration of light into the tissues and provides opportunities to regulate biological systems in a non-invasive manner. At the same time, the tight focus of the beam needed to induce nonlinear absorption helps to improve the spatial resolution of the photoinduced structures. Since near-infrared (NIR) wavelengths are employed, the lower photon energies compared to usual one-photon excitation (typically, the azobenzene geometry change from trans to cis form requires the use of UV photons) cause less damage to the biological samples. Herein, we present an overview of the strategies for optimizing azobenzene-based photoswitches for efficient two-photon excitation (TPE) and the potential applications of two-photon-induced isomerization of azobenzenes in biological systems: control of ion flow in ion channels or control of drug release, as well as in materials science, to fabricate data storage media, optical filters, diffraction elements etc., based on phenomena like photoinduced anisotropy, mass transport and phase transition. The extant challenges in the field of two-photon switchable azomolecules are discussed.
Collapse
Affiliation(s)
- Marta Dudek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Nina Tarnowicz-Staniak
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Marco Deiana
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Ziemowit Pokładek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Marek Samoć
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| |
Collapse
|
9
|
Berdnikova DV, Heider J, Ihmels H, Sewald N, Pithan PM. Photoinduced Release of DNA‐Binding Ligands from the [4+4] Dimers of Benzo[ b]quinolizinium and Anthracene Derivatives. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daria V. Berdnikova
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Josef Heider
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Heiko Ihmels
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic ChemistryBielefeld University PO Box 100121 33501 Bielefeld Germany
| | - Phil M. Pithan
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| |
Collapse
|
10
|
Zhang Z, He Y, Zhou Y, Yu C, Han L, Li T. Pyrazolylazophenyl Ether‐Based Photoswitches: Facile Synthesis, (Near‐)Quantitative Photoconversion, Long Thermal Half‐Life, Easy Functionalization, and Versatile Applications in Light‐Responsive Systems. Chemistry 2019; 25:13402-13410. [DOI: 10.1002/chem.201902897] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Zhao‐Yang Zhang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yixin He
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ying Zhou
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chunyang Yu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lu Han
- School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Tao Li
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
11
|
Uda RM, Nishimoto N, Matsui T, Takagi S. Photoinduced binding of malachite green copolymer to parallel G-quadruplex DNA. SOFT MATTER 2019; 15:4454-4459. [PMID: 31073583 DOI: 10.1039/c9sm00411d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Designing ligands that selectively target G-quadruplex DNAs has gained attention due to their possible roles in regulation of gene expression and as anti-cancer agents. In this article, we report irradiation-induced ligand binding to G-quadruplex DNAs which offers a novel approach to targeting specific G-quadruplexes. Photoinduced binding to G-quadruplex DNAs was observed for copolymers of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). This molecule has an aromatic ring with cationic charge, which after irradiation becomes a binding site for G-quadruplex DNA. PVAMGs acted as neutral polymers with no binding affinity under dark conditions. The photoinduced binding was revealed by fluorescence spectroscopy, NMR spectroscopy, UV melting curve, and DNA polymerase stop assay. PVAMGs showed preference to parallel G-quadruplex structures over mixed parallel/antiparallel structures. PVAMGs were found to be noncytotoxic under both dark and irradiated conditions up to a concentration of 20 μM.
Collapse
Affiliation(s)
- Ryoko M Uda
- Department of Chemical Engineering, National Institute of Technology, Nara college, Yata 22, Yamato-koriyama, Nara 639-1080, Japan.
| | | | | | | |
Collapse
|