1
|
Pattathil V, Pranckevicius C. CO and CS bond activation by an annulated 1,4,2-diazaborole. Dalton Trans 2025; 54:8169-8173. [PMID: 40266586 DOI: 10.1039/d5dt00642b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The reaction of an ambiphilic 1,4,2-diazaborole with CO and CS bonds results in formal (3 + 2) cycloaddition and has allowed the synthesis of a family of 1,3,2-oxazaborole and 1,3,2-thiazaborole derivatives. Computational calculations have indicated a dipolar mechanism where the π bond is concertedly activated via the Lewis acidic boron centre and the nucleophilic C5 position of the 1,4,2-diazaborole. In the case of methylisothiocyanate, preference for CS over CN addition is observed, and has been rationalized according to mechanistic calculations. A spirocyclic bis(1,3,2-thiazaborole) has been observed from the double activation of CS2.
Collapse
Affiliation(s)
- Vignesh Pattathil
- Department of Chemistry, Charles E. Fipke Centre for Innovative Research, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada.
| | - Conor Pranckevicius
- Department of Chemistry, Charles E. Fipke Centre for Innovative Research, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada.
| |
Collapse
|
2
|
Beng TK, Curry K, Gitonga A, Yu K, Edwards S. Stereocontrolled synthesis of 3-hydroxy-2-piperidinone carboxamides by catalytic ring-opening aminolysis of bridged δ-lactam-γ-lactones. RSC Adv 2025; 15:16028-16034. [PMID: 40370848 PMCID: PMC12076196 DOI: 10.1039/d5ra02161h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025] Open
Abstract
The α-hydroxy-δ-valerolactam, 3-hydroxypiperidine, and piperidine-3-carboxamide topologies are resident in several natural products and pharmaceuticals, including anticonvulsant and antithrombotic agents. A modular and stereocontrolled strategy that merges these privileged scaffolds into one motif could facilitate the discovery of more small molecules with medicinal value. Here, we demonstrate that bridged valerolactam-butyrolactones can be skeletally remodelled to highly decorated 3-hydroxy-2-piperidinone carboxamides by catalytic and site-selective deconstructive aminolysis with primary and secondary amines. The products are obtained in a sterocontrolled manner following oxidative addition and concomitant trapping with the amine. The scaffold hopping proceeds with exclusive acyl C-O bond cleavage under palladium catalysis and represents the first catalytic method for activating the acyl C-O bonds of γ-lactones.
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Katharyn Curry
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Alan Gitonga
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Keegan Yu
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Samuel Edwards
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
3
|
Tomer K, Schnakenburg G, Das U, Filippou AC. Metal-silicon triple bonds: reactivity of the silylidyne complexes [Cp*(CO) 2M[triple bond, length as m-dash]Si-Tbb] (M = Cr - W). Chem Sci 2025; 16:7773-7793. [PMID: 40201161 PMCID: PMC11973576 DOI: 10.1039/d5sc01063b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
The different reactivity pattern of M[triple bond, length as m-dash]Si and M[triple bond, length as m-dash]C bonds (M = transition metal) is illustrated by a series of reactions of the silylidyne complexes [Cp*(CO)2M[triple bond, length as m-dash]Si-Tbb] (1-M) (M = Cr - W; Cp* = η 5-pentamethylcyclopentadienyl; Tbb = 4-tert-butyl-2,6-bis(bis(trimethylsilyl)methyl)phenyl)). Complexes 1-M were obtained selectively from Li[Cp*M(CO)3] and the 1,2-dibromodisilene (E)-Tbb(Br)Si[double bond, length as m-dash]Si(Br)Tbb. The reaction of 1-Mo and 1-W with two equivalents of mesityl isocyanate leads selectively to complex 2-Mo and 2-W, respectively, featuring a novel κ 2 O,O-imidocarbonatosilyl ligand. Ring opening of ethyloxirane occurs rapidly with 1-Mo and leads to the hydrido-enolatosilylidene complex 3-Mo illustrating the Si-centered electrophilicity of the silylidyne complex. Trimethylsilyldiazomethane induces a cleavage of the Mo[triple bond, length as m-dash]Si bond of 1-Mo after a rapid double [2 + 1] cycloaddition of the terminal N-atom, resulting in the first silaamidinato complex 4-Mo. In comparison, the reaction of 1-Mo with mesityl azide gives, after N2 elimination, the Mo-silaiminoacyl complex 5-Mo. All compounds were fully characterized and the isomerism and dynamics of 3-Mo in solution were analysed by a combination of spectroscopic and quantum-chemical studies.
Collapse
Affiliation(s)
- Kanishk Tomer
- Institut für Anorganische Chemie, Universität Bonn Gerhard-Domagk-Str. 1 Bonn 53121 Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Universität Bonn Gerhard-Domagk-Str. 1 Bonn 53121 Germany
| | - Ujjal Das
- Institut für Anorganische Chemie, Universität Bonn Gerhard-Domagk-Str. 1 Bonn 53121 Germany
| | - Alexander C Filippou
- Institut für Anorganische Chemie, Universität Bonn Gerhard-Domagk-Str. 1 Bonn 53121 Germany
| |
Collapse
|
4
|
Jafari MG, Russell JB, Myung H, Kwon S, Carroll PJ, Gau MR, Baik MH, Mindiola DJ. Pnictogen-based vanadacyclobutadiene complexes. Chem Sci 2024; 15:19752-19763. [PMID: 39568904 PMCID: PMC11575583 DOI: 10.1039/d4sc05884d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024] Open
Abstract
The reactivity of the V[triple bond, length as m-dash]C t Bu multiple bonds in the complex (dBDI)V[triple bond, length as m-dash]C t Bu(OEt2) (C) (dBDI2- = ArNC(CH3)CHC(CH2)NAr, Ar = 2,6- i Pr2C6H3) with unsaturated substrates such as N[triple bond, length as m-dash]CR (R = Ad or Ph) and P[triple bond, length as m-dash]CAd leads to the formation of rare 3d transition metal compounds featuring α-aza-vanadacyclobutadiene, (dBDI)V(κ2- C , N - t BuCC(R)N) (R = Ad, 1; R = Ph, 2) and β-phospha-vanadacyclobutadiene moieties, (dBDI)V(κ2- C , C - t BuCPCAd) (3). Complexes 1-3 are characterized using multinuclear and multidimensional NMR spectroscopy, including the preparation of the 50% 15N-enriched isotopologue (dBDI)V(κ2- C , N - t BuCC(Ad)15N) (1-15N). Solid-state structural analysis is used to determine the dominant resonance structures of these unique pnictogen-based vanadacyclobutadienes. A systematic comparison with the known vanadacyclobutadiene (dBDI)V(κ2- C , C - t BuCC(H)C t Bu) (4) is also presented. Theoretical investigations into the electronic structure of 2-4 highlight the crucial role of unique V-heteroatom interactions in stabilizing the vanadacyclobutadienes and identify the most dominant resonance structures.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - John B Russell
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Hwan Myung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seongyeon Kwon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
5
|
Cui M, Huang J, Tsang LY, Sung HHY, Williams ID, Jia G. Exploring efficient and air-stable d 2 Re(v) alkylidyne catalysts: toward room temperature alkyne metathesis. Chem Sci 2024:d4sc05369a. [PMID: 39464615 PMCID: PMC11499950 DOI: 10.1039/d4sc05369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
Transition metal-catalyzed alkyne metathesis has become a useful tool in synthetic chemistry. Well-defined alkyne metathesis catalysts comprise alkylidyne complexes of tungsten, molybdenum and rhenium. Non-d0 Re(v) alkylidyne catalysts exhibit advantages such as remarkable tolerance to air and moisture as well as excellent functional group compatibility. However, the known Re(v) alkylidynes with a pyridine leaving ligand require harsh conditions for activation, resulting in lower catalytic efficiency compared to d0 Mo(vi) and W(vi) alkylidynes. Herein, we report the first non-d0 alkylidyne complex capable of mediating alkyne metathesis at room temperature, namely, the Re(v) aqua alkylidyne complex Re([triple bond, length as m-dash]CCH2Ph)( Ph PO)2(H2O) (14). The aqua complex readily dissociates a water ligand in solution, confirmed by ligand substitution reactions with other σ-donor ligands. The aqua complex can be readily prepared on a large scale, and is stable to air and moisture in the solid state and compatible with a variety of functional groups. The versatile ability of the catalyst has been demonstrated through examples of alkyne cross-metathesis (ACM), ring-closing alkyne metathesis (RCAM), and acyclic diyne metathesis macrocyclization (ADIMAC) reactions. All in all, this work presents a solution for an efficient and air-stable alkyne metathesis catalytic system based on d2 Re(v)-alkylidynes.
Collapse
Affiliation(s)
- Mingxu Cui
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
| | - Jie Huang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
| | - Long Yiu Tsang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
| | - Herman H Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
- HKUST Shenzhen Research Institute 518057 Shenzhen P. R. China
| |
Collapse
|
6
|
Cai Y, Hua Y, Lu Z, Chen J, Chen D, Xia H. Metallacyclobutadienes: Intramolecular Rearrangement from Kinetic to Thermodynamic Isomers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403940. [PMID: 39104029 PMCID: PMC11481178 DOI: 10.1002/advs.202403940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/02/2024] [Indexed: 08/07/2024]
Abstract
Metallacyclobutadienes (MCBDs) are key intermediates of alkyne metathesis reactions. There are in principle two isomerization pathway from kinetic to thermodynamic MCBDs, intermolecular and intramolecular. However, systems that simultaneously isolate two kinds of MCBD isomers have not been achieved, thus restricting the mechanistic studies of the isomerization. Here the reactivity of a metallapentalyne that contains an M≡C bond within the aromatic ring, with alkynes to afford a series of MCBD-fused metallapentalenes is studied. In some cases, both kinetic and thermodynamic products are isolated in the same system, which has never been observed in previous MCBD reactions. Furthermore, the isomerization of MCBD-fused metallapentalenes is investigated both experimentally and theoretically, indicating that it is an intramolecular process involving a metallatetrahedrane (MTd) intermediate. This research provides experimental evidence demonstrating that one MCBD can undergo intramolecular rearrangement to transform into another.
Collapse
Affiliation(s)
- Yuanting Cai
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Yuhui Hua
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518005China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518005China
| | - Jiangxi Chen
- Department of Materials Science and EngineeringCollege of MaterialsXiamen UniversityXiamen361005China
| | - Dafa Chen
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518005China
| | - Haiping Xia
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518005China
| |
Collapse
|
7
|
Hadlington TJ. Heavier tetrylene- and tetrylyne-transition metal chemistry: it's no carbon copy. Chem Soc Rev 2024; 53:9738-9831. [PMID: 39230570 PMCID: PMC11373607 DOI: 10.1039/d3cs00226h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Indexed: 09/05/2024]
Abstract
Since the late 19th century, heavier tetrylene- and tetrylyne-transition metal chemistry has formed an important cornerstone in both main-group and organometallic chemistry alike. Driven by the success of carbene systems, significant efforts have gone towards the thorough understanding of the heavier group 14 derivatives, with examples now known from across the d-block. This now leads towards applications in cooperative bond activation, and moves ultimately towards well-defined catalytic systems. This review aims to summarise this vast field, from initial discoveries of tetrylene and tetrylyne complexes, to the most recent developments in reactivity and catalysis, as a platform to the future of this exciting, blossoming field.
Collapse
Affiliation(s)
- Terrance J Hadlington
- Fakultät für Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany.
| |
Collapse
|
8
|
Hernandez S, Belov DS, Krivovicheva V, Senthil S, Bukhryakov KV. Decreasing the Bond Order between Vanadium and Oxo Ligand to Form 3d Schrock Carbynes. J Am Chem Soc 2024; 146:18905-18909. [PMID: 38968596 DOI: 10.1021/jacs.4c07588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Preserving vanadium in a high oxidation state during chemical transformations can be challenging due to the oxidizing nature of V(+5) species. Oxo and similar isoelectronic ligands have been utilized to stabilize V(+5) by extensive π-donation. However, decreasing the bond order between V and the oxo ligand often results in a reduction of the metal center. Herein, we report a unique transformation involving anionic V(+5) alkylidene that converts a V(+5) oxo complex to a V(+5) alkylidyne in three steps without altering the oxidation state of the metal center. This method has been used to obtain rare 3d Schrock carbynes, which provide easy and scalable access to V(+5) alkylidynes.
Collapse
Affiliation(s)
- Shirley Hernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Dmitry S Belov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Vasilisa Krivovicheva
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Shuruthi Senthil
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Konstantin V Bukhryakov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
9
|
Lachguar A, Del Rosal I, Maron L, Jeanneau E, Veyre L, Thieuleux C, Camp C. π-Bonding of Group 11 Metals to a Tantalum Alkylidyne Alkyl Complex Promotes Unusual Tautomerism to Bis-alkylidene and CO 2 to Ketenyl Transformation. J Am Chem Soc 2024; 146:18306-18319. [PMID: 38936814 PMCID: PMC11240581 DOI: 10.1021/jacs.4c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A salt metathesis synthetic strategy is used to access rare tantalum/coinage metal (Cu, Ag, Au) heterobimetallic complexes. Specifically, complex [Li(THF)2][Ta(CtBu)(CH2tBu)3], 1, reacts with (IPr)MCl (M = Cu, Ag, Au, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) to afford the alkylidyne-bridged species [Ta(CH2tBu)3(μ-CtBu)M(IPr)] 2-M. Interestingly, π-bonding of group 11 metals to the Ta─C moiety promotes a rare alkylidyne alkyl to bis-alkylidene tautomerism, in which compounds 2-M are in equilibrium with [Ta(CHtBu)(CH2tBu)2(μ-CHtBu)M(IPr)] 3-M. This equilibrium was studied in detail using NMR spectroscopy and computational studies. This reveals that the equilibrium position is strongly dependent on the nature of the coinage metal going down the group 11 triad, thus offering a new valuable avenue for controlling this phenomenon. Furthermore, we show that these uncommon bimetallic couples could open attractive opportunities for synergistic reactivity. We notably report an uncommon deoxygenative carbyne transfer to CO2 resulting in rare examples of coinage metal ketenyl species, (tBuCCO)M(IPr), 4-M (M = Cu, Ag, Au). In the case of the Ta/Li analogue 1, the bis(alkylidene) tautomer is not detected, and the reaction with CO2 does not cleanly yield ketenyl species, which highlights the pivotal role played by the coinage metal partner in controlling these unconventional reactions.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| | - Iker Del Rosal
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, Toulouse F-31077, France
| | - Laurent Maron
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, Toulouse F-31077, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Université de Lyon, 5 Rue de la Doua, Villeurbanne 69100, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, Villeurbanne F-69616, France
| |
Collapse
|
10
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
11
|
Russell JB, Jafari MG, Kim JH, Pudasaini B, Ozarowski A, Telser J, Baik MH, Mindiola DJ. Ynamide and Azaalleneyl. Acid-Base Promoted Chelotropic and Spin-State Rearrangements in a Versatile Heterocumulene [(Ad)NCC( tBu)] . Angew Chem Int Ed Engl 2024; 63:e202401433. [PMID: 38433099 DOI: 10.1002/anie.202401433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
We introduce the heterocumulene ligand [(Ad)NCC(tBu)]- (Ad=1-adamantyl (C10H15), tBu=tert-butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid-base chemistry, which promotes an unprecedented spin-state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1-adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI-=ArNC(CH3)CHC(CH3)NAr), Ar=2,6-iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2-=ArNC(CH3)CHC(CH2)NAr). Complex A reacts with C≡NAd, to generate the high-spin [VIII] complex with a κ1-N-ynamide ligand, [(BDI)V{κ1-N-(Ad)NCC(tBu)}(OTf)] (1). Conversely, B reacts with C≡NAd to generate a low-spin [VIII] diamagnetic complex having a chelated κ2-C,N-azaalleneyl ligand, [(dBDI)V{κ2-N,C-(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of 2 and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between 1 and 2.
Collapse
Affiliation(s)
- John B Russell
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
| | - Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
| | - Jun-Hyeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) & Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Bimal Pudasaini
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) & Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois, 60605, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) & Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States
| |
Collapse
|
12
|
Lin J, Liu X, Yuan Y, Zhao Y, She W, Yang G. Theoretical Study on the Structures and Electronic Properties of Tungsten Fluorides at High Pressures. Chemphyschem 2024; 25:e202300615. [PMID: 38243367 DOI: 10.1002/cphc.202300615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 01/21/2024]
Abstract
Transition metal fluorides are a series of strong oxidizing agents. Tungsten (W) fluorides, particularly WF6, have shown broad applications such as luminescence and fluorinating agent. However, other stoichiometries of W fluorides have rarely been studied. It is well-known that pressure can induce structural phase transition, stabilize new compounds, and produce novel properties. In this work, the high-pressure phases of W-F were searched systematically at the pressure range of 0-200 GPa through first-principles swarm-intelligence structural search calculations. A new stoichiometry of WF4 has been predicted to be stable under high pressures. On the other hand, two new high-pressure phases of WF6 with the symmetries ofP 2 1 ${{P2}_{1}}$ /m and P ${P}$ -1 were found with decahedral structural units. The electronic properties of the W-F compounds were then investigated. The predicted stable WF6 high-pressure phases maintain semiconducting features, since the W atom provides all its valence electrons to fluorine. We evaluated the oxidizing ability of WF6 by calculating its electron affinity potential. The high pressureP 2 1 ${{P2}_{1}}$ /m WF6 molecular phase shows higher oxidation capacity than the ambient phase. The built pressure-composition phase diagram and the theoretical results of W-F system provide some useful information for experimental synthesis.
Collapse
Affiliation(s)
- Jianyan Lin
- College of Physics, Changchun Normal University, Changchun, 130032, China
| | - Xin Liu
- College of Physics, Changchun Normal University, Changchun, 130032, China
| | - Yuan Yuan
- College of Physics, Changchun Normal University, Changchun, 130032, China
| | - Yusen Zhao
- College of Physics, Changchun Normal University, Changchun, 130032, China
| | - Weihan She
- College of Physics, Changchun Normal University, Changchun, 130032, China
| | - Guangmin Yang
- College of Physics, Changchun Normal University, Changchun, 130032, China
| |
Collapse
|
13
|
Tomasini M, Gimferrer M, Caporaso L, Poater A. Rhenium Alkyne Catalysis: Sterics Control the Reactivity. Inorg Chem 2024; 63:5842-5851. [PMID: 38507560 PMCID: PMC10988556 DOI: 10.1021/acs.inorgchem.3c04235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Metathesis reactions, including alkane, alkene, and alkyne metatheses, have their origins in the fundamental understanding of chemical reactions and the development of specialized catalysts. These reactions stand as transformative pillars in organic chemistry, providing efficient rearrangement of carbon-carbon bonds and enabling synthetic access to diverse and complex compounds. Their impact spans industries such as petrochemicals, pharmaceuticals, and materials science. In this work, we present a detailed mechanistic study of the Re(V) catalyzed alkyne metathesis through density functional theory calculations. Our findings are in agreement with the experimental evidence from Jia and co-workers and unveil critical factors governing catalyst performance. Our work not only enhances our understanding of alkyne metathesis but also contributes to the broader landscape of catalytic processes, facilitating the design of more efficient and selective transformations in organic synthesis.
Collapse
Affiliation(s)
- Michele Tomasini
- Institut
de Química Computacional i Catàlisi, Departament de
Química, Universitat de Girona, c/Ma Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
- Dipartimento
di Chimica e Biologia, Università
di Salerno, Via Ponte
don Melillo, Fisciano 84084, Italy
| | - Martí Gimferrer
- Institut
für Physikalische Chemie, Georg-August
Universität Göttingen, Tammannstraße 6, Göttingen 37077, Germany
| | - Lucia Caporaso
- Dipartimento
di Chimica e Biologia, Università
di Salerno, Via Ponte
don Melillo, Fisciano 84084, Italy
- CIRCC, Interuniversity Consortium Chemical Reactivity and Catalysis, via Celso Ulpiani 27, Bari 70126, Italy
| | - Albert Poater
- Institut
de Química Computacional i Catàlisi, Departament de
Química, Universitat de Girona, c/Ma Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| |
Collapse
|
14
|
Jafari MG, Russell JB, Lee H, Pudasaini B, Pal D, Miao Z, Gau MR, Carroll PJ, Sumerlin BS, Veige AS, Baik MH, Mindiola DJ. Vanadium Alkylidyne Initiated Cyclic Polymer Synthesis: The Importance of a Deprotiovanadacyclobutadiene Moiety. J Am Chem Soc 2024; 146:2997-3009. [PMID: 38272018 DOI: 10.1021/jacs.3c08149] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Reported is the catalytic cyclic polymer synthesis by a 3d transition metal complex: a V(V) alkylidyne, [(dBDI)V≡CtBu(OEt2)] (1-OEt2), supported by the deprotonated β-diketiminate dBDI2- (dBDI2- = ArNC(CH3)CHC(CH2)NAr, Ar = 2,6-iPr2C6H3). Complex 1-OEt2 is a precatalyst for the polymerization of phenylacetylene (PhCCH) to give cyclic poly(phenylacetylene) (c-PPA), whereas its precursor, complex [(BDI)V≡CtBu(OTf)] (2-OTf; BDI- = [ArNC(CH3)]2CH, Ar = 2,6-iPr2C6H3, OTf = OSO2CF3), and the zwitterion [((C6F5)3B-dBDI)V≡CtBu(OEt2)] (3-OEt2) exhibit low catalytic activity despite having a neopentylidyne ligand. Cyclic polymer topologies were verified by size-exclusion chromatography (SEC) and intrinsic viscosity studies. A component of the mechanism of the cyclic polymerization reaction was probed by isolation and full characterization of 4- and 6-membered metallacycles as model intermediates. Metallacyclobutadiene (MCBD) and deprotiometallacyclobutadiene (dMCBD) complexes (dBDI)V[C(tBu)C(H)C(tBu)] (4-tBu) and (BDI)V[C(tBu)CC(Mes)] (5-Mes), respectively, were synthesized upon reaction with bulkier alkynes, tBu- (tBuCCH) and Mes-acetylene (MesCCH), with 1-OEt2. Furthermore, the reaction of the conjugate acid of 1-OEt2, [(BDI)V≡CtBu(OTf)] (2-OTf), with the conjugated base of phenylacetylene, lithium phenylacetylide (LiCCPh), yields the doubly deprotio-metallacycle complex, [Li(THF)4]{(BDI)V[C(Ph)CC(tBu)CC(Ph)]} (6). Protonation of the doubly deprotio-metallacycle complex 6 yields 6-H+, a catalytically active species toward the polymerization of PhCCH, for which the polymers were also confirmed to be cyclic by SEC studies. Computational mechanistic studies complement the experimental observations and provide insight into the mechanism of cyclic polymer growth. The noninnocence of the supporting dBDI2- ligand and its role in proton shuttling to generate deprotiometallacyclobutadiene (dMCBD) complexes that proposedly culminate in the formation of catalytically active V(III) species are also discussed. This work demonstrates how a dMCBD moiety can react with terminal alkynes to form cyclic polyalkynes.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John B Russell
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hanna Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Digvijayee Pal
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Zhihui Miao
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Brent S Sumerlin
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Adam S Veige
- Department of Chemistry, Center for Catalysis, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Korber JN, Wille C, Leutzsch M, Fürstner A. From the Glovebox to the Benchtop: Air-Stable High Performance Molybdenum Alkylidyne Catalysts for Alkyne Metathesis. J Am Chem Soc 2023; 145:26993-27009. [PMID: 38032858 PMCID: PMC10722517 DOI: 10.1021/jacs.3c10430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Molybdenum alkylidynes endowed with tripodal silanolate ligands belong to the most active and selective catalysts for alkyne metathesis known to date. This paper describes a new generation that is distinguished by an unprecedented level of stability and practicality without sacrificing the chemical virtues of their predecessors. Specifically, pyridine adducts of type 16 are easy to make on gram scale, can be routinely weighed and handled in air, and stay intact for many months outside the glovebox. When dissolved in toluene, however, spontaneous dissociation of the stabilizing pyridine ligand releases an active species of excellent performance and functional group tolerance. Specifically, a host of polar and apolar groups, various protic sites, and numerous basic functionalities proved compatible. The catalysts are characterized by crystallographic and spectroscopic means, including 95Mo NMR; their activity and stability are benchmarked in detail, and the enabling properties are illustrated by advanced applications to natural product synthesis. For the favorable overall application profile and ease of handling, complexes of this new series are expected to replace earlier catalyst generations and help encourage a more regular use of alkyne metathesis in general.
Collapse
Affiliation(s)
- J. Nepomuk Korber
- Max-Planck-Institut
für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Christian Wille
- Max-Planck-Institut
für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut
für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
16
|
Rao J, Dong S, Yang C, Liu Q, Leng X, Wang D, Zhu J, Deng L. A Triplet Iron Carbyne Complex. J Am Chem Soc 2023; 145:25766-25775. [PMID: 37971755 DOI: 10.1021/jacs.3c09280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Tuning the spin state of metal carbynes, which have broad applications in organic synthesis and material science, presents a formidable challenge for modern chemists as the strong field nature of carbyne ligands dictates low-spin ground spin states (S = 0 or 1/2) for known metal carbynes. Through the oxidative addition reaction of a low-coordinate iron(0) N-heterocyclic carbene complex with the C-S bond of a thioazole-2-ylidene, we synthesized the first triplet (S = 1) metal terminal carbyne, an iron cyclic carbyne complex. Different from the classical metal carbynes, the triplet complex features an LXZ-type carbyne ligand and a weak Fe≡C triple bond, which endow it with the unique reactivity pattern of facile carbyne coupling, weak affinity toward nucleophiles, and facial addition reactions with electrophiles.
Collapse
Affiliation(s)
- Jiahao Rao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengbo Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Dongyang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
17
|
Watson LJ, Hill AF. A Metallabicycle From Thiocarbonyl-Cyclopropenium Coupling. Chemistry 2023; 29:e202301753. [PMID: 37326005 DOI: 10.1002/chem.202301753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/17/2023]
Abstract
Addition of triphenylcyclopropenium bromide to the thiocarbonyl complex [RhCl(CS)(PPh3 )2 ] affords novel bicyclic metalla-3-mercapto-thiapyrylliums [Rh(κ2 -C,S-C5 S2 Ph3 )(PPh3 )2 X2 ] (X=Cl, Br) - heterocycles with no metal-free isolobal precedent. Halide abstraction with silver triflate (AgOTf) in acetonitrile affords the salt [Rh(κ2 -C,S-C5 S2 Ph3 )(NCMe)2 (PPh3 )2 {Ag(OH2 )2 }{Ag(OTf)3 }]-OTf which in turn reacts with sodium chloride to return [Rh(κ2 -C,S-C5 S2 Ph3 )(PPh3 )2 Cl2 ].
Collapse
Affiliation(s)
- Lachlan J Watson
- Research School of Chemistry, Australian National University, Sullivans Creek Road, Canberra, ACT, Australia
| | - Anthony F Hill
- Research School of Chemistry, Australian National University, Sullivans Creek Road, Canberra, ACT, Australia
| |
Collapse
|
18
|
Berkson ZJ, Lätsch L, Hillenbrand J, Fürstner A, Copéret C. Classifying and Understanding the Reactivities of Mo-Based Alkyne Metathesis Catalysts from 95Mo NMR Chemical Shift Descriptors. J Am Chem Soc 2022; 144:15020-15025. [PMID: 35969854 DOI: 10.1021/jacs.2c06252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most active alkyne metathesis catalysts rely on well-defined Mo alkylidynes, X3Mo≡CR (X = OR), in particular the recently developed canopy catalyst family bearing silanolate ligand sets. Recent efforts to understand catalyst reactivity patterns have shown that NMR chemical shifts are powerful descriptors, though previous studies have mostly focused on ligand-based NMR descriptors. Here, we show in the context of alkyne metathesis that 95Mo chemical shift tensors encode detailed information on the electronic structure of these catalysts. Analysis by first-principles calculations of 95Mo chemical shift tensors extracted from solid-state 95Mo NMR spectra shows a direct link of chemical shift values with the energies of the HOMO and LUMO, two molecular orbitals involved in the key [2 + 2]-cycloaddition step, thus linking 95Mo chemical shifts to reactivity. In particular, the 95Mo chemical shifts are driven by ligand electronegativity (σ-donation) and electron delocalization through Mo-O π interactions, thus explaining the reactivity patterns of the silanolate canopy catalysts. These results further motivate exploration of transition metal NMR signatures and their relationships to electronic structure and reactivity.
Collapse
Affiliation(s)
- Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Lukas Lätsch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | | | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
19
|
Wei W, Sung HHY, Williams ID, Jia G. Reactions of Alkyl‐Substituted Rhenacyclobutadiene Complexes with Electron‐Rich Alkynes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Wei
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Herman H. Y. Sung
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Ian D. Williams
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Guochen Jia
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| |
Collapse
|
20
|
Cui M, Sung HHY, Williams ID, Jia G. Alkyne Metathesis with d 2 Re(V) Alkylidyne Complexes Supported by Phosphino-Phenolates: Ligand Effect on Catalytic Activity and Applications in Ring-Closing Alkyne Metathesis. J Am Chem Soc 2022; 144:6349-6360. [PMID: 35377156 DOI: 10.1021/jacs.2c00368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A family of d2 Re(V) alkylidyne complexes bearing two decorated phosphino-phenolates (POs) and a labile pyridine ligand were prepared that can efficiently promote alkyne metathesis reactions in toluene. The relative activity of these complexes varies with the PO ligands. Complexes with an electron-rich metal center have a higher activity. Ligand exchange experiments suggest that the pyridine ligands of the Re(V) alkylidynes with more electron-donating PO ligands are more labile and are more easily released to generate catalytically active species. However, complexes with electron-withdrawing PO ligands are more air-stable than those with electron-donating PO ligands. These Re(V) alkylidyne catalysts can promote the homometathesis of functionalized internal alkyl- and aryl-alkynes, as well as ring-closing alkyne metathesis (RCAM) of methyl-capped diynes, forming macrocycles with a ring size ≥12 efficiently for concentrations ≤5 mM. These reactions represent the first examples of RCAM mediated by non-d0 alkylidyne complexes. The Re(V) alkylidyne catalysts tolerate a wide range of functional groups including ethers, esters, ketones, aldehydes, alcohols, phenols, amines, amides, and heterocycles. Moreover, the catalytic RCAM reactions promoted by robust Re(V) alkylidyne catalysts could also proceed normally in wet toluene.
Collapse
Affiliation(s)
- Mingxu Cui
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR 000000, China
| | - Herman H Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR 000000, China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR 000000, China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR 000000, China.,HKUST Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
21
|
Wang B, Mccabe G, Parrish M, Singh J, Zelller M, Deng Y. Organic Photoredox Catalyzed Direct Hydroamination of Ynamides with Azoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ban Wang
- Indiana University Purdue University at Indianapolis UNITED STATES
| | - Gavin Mccabe
- Indiana University Purdue University Indianapolis UNITED STATES
| | | | - Jujhar Singh
- Indiana University Purdue University Indianapolis UNITED STATES
| | | | - Yongming Deng
- Indiana University Purdue University at Indianapolis UNITED STATES
| |
Collapse
|
22
|
Garcia J, Eichwald J, Zesiger J, Beng TK. Leveraging the 1,3-azadiene-anhydride reaction for the synthesis of functionalized piperidines bearing up to five contiguous stereocenters. RSC Adv 2021; 12:309-318. [PMID: 35424477 PMCID: PMC8978715 DOI: 10.1039/d1ra07390g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
A modular and scalable strategy, which remodels 3-methylglutaric anhydride to 2-oxopiperidines bearing at least three contiguous stereocenters is described. The approach relies on the chemoselective and stereocontrolled annulation of 1,3-azadienes with the anhydride component. The resulting acid-tethered allylic 2-oxopiperidines are then engaged in several selective fragment growth processes, including catalytic denitrative alkenylation, halolactonization, and Vilsmeier-Haack functionalization.
Collapse
Affiliation(s)
- Jorge Garcia
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jane Eichwald
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jayme Zesiger
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
23
|
Yamamoto Y. Computational Mechanistic Study of Fused Phenol Formations from 1,6‐Heptadiyne Involving Carbyne Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202101218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences Graduate School of Pharmaceutical Sciences Nagoya University Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
24
|
Cui M, Sung HHY, Williams ID, Jia G. Formation of Osmium Alkylidene, Alkylidyne, and Dinitrogen Complexes from Reactions of OsCl 2(PPh 3) 3 with Diazoalkanes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingxu Cui
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon 0000, Hong Kong, People’s Republic of China
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon 0000, Hong Kong, People’s Republic of China
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon 0000, Hong Kong, People’s Republic of China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon 0000, Hong Kong, People’s Republic of China
- HKUST Shenzhen Research Institute, Shenzhen 518057, People’s Republic of China
| |
Collapse
|
25
|
Wei W, Xu X, Lee KH, Lin R, Sung HHY, Williams ID, Lin Z, Jia G. Reactions of Rhenacyclobutadiene Complexes with Allenes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Wei
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ka-Ho Lee
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ran Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| |
Collapse
|
26
|
Hillenbrand J, Korber JN, Leutzsch M, Nöthling N, Fürstner A. Canopy Catalysts for Alkyne Metathesis: Investigations into a Bimolecular Decomposition Pathway and the Stability of the Podand Cap. Chemistry 2021; 27:14025-14033. [PMID: 34293239 PMCID: PMC8518412 DOI: 10.1002/chem.202102080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Molybdenum alkylidyne complexes with a trisilanolate podand ligand framework ("canopy catalysts") are the arguably most selective catalysts for alkyne metathesis known to date. Among them, complex 1 a endowed with a fence of lateral methyl substituents on the silicon linkers is the most reactive, although fairly high loadings are required in certain applications. It is now shown that this catalyst decomposes readily via a bimolecular pathway that engages the Mo≡CR entities in a stoichiometric triple-bond metathesis event to furnish RC≡CR and the corresponding dinuclear complex, 8, with a Mo≡Mo core. In addition to the regular analytical techniques, 95 Mo NMR was used to confirm this unusual outcome. This rapid degradation mechanism is largely avoided by increasing the size of the peripheral substituents on silicon, without unduly compromising the activity of the resulting complexes. When chemically challenged, however, canopy catalysts can open the apparently somewhat strained tripodal ligand cages; this reorganization leads to the formation of cyclo-tetrameric arrays composed of four metal alkylidyne units linked together via one silanol arm of the ligand backbone. The analogous tungsten alkylidyne complex 6, endowed with a tripodal tris-alkoxide (rather than siloxide) ligand framework, is even more susceptible to such a controlled and reversible cyclo-oligomerization. The structures of the resulting giant macrocyclic ensembles were established by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Julius Hillenbrand
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - J. Nepomuk Korber
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| |
Collapse
|
27
|
Abstract
![]()
For numerous enabling features and strategic virtues, contemporary
alkyne metathesis is increasingly recognized as a formidable synthetic
tool. Central to this development was the remarkable evolution of
the catalysts during the past decades. Molybdenum alkylidynes carrying
(tripodal) silanolate ligands currently set the standards; their functional
group compatibility is exceptional, even though they comprise an early
transition metal in its highest oxidation state. Their performance
is manifested in case studies in the realm of dynamic covalent chemistry,
advanced applications to solid-phase synthesis, a revival of transannular
reactions, and the assembly of complex target molecules at sites,
which one may not intuitively trace back to an acetylenic ancestor.
In parallel with these innovations in material science and organic
synthesis, new insights into the mode of action of the most advanced
catalysts were gained by computational means and the use of unconventional
analytical tools such as 95Mo and 183W NMR spectroscopy.
The remaining shortcomings, gaps, and desiderata in the field are
also critically assessed.
Collapse
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
28
|
Meng Z, Spohr SM, Tobegen S, Farès C, Fürstner A. A Unified Approach to Polycyclic Alkaloids of the Ingenamine Estate: Total Syntheses of Keramaphidin B, Ingenamine, and Nominal Njaoamine I. J Am Chem Soc 2021; 143:14402-14414. [PMID: 34448391 PMCID: PMC8431342 DOI: 10.1021/jacs.1c07955] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Many
polycyclic marine
alkaloids are thought to derive from partly
reduced macrocyclic alkylpyridine derivatives via a transannular Diels–Alder
reaction that forms their common etheno-bridged diaza-decaline core
(“Baldwin–Whitehead hypothesis”). Rather than
trying to emulate this biosynthesis pathway, a route to these natural
products following purely chemical logic was pursued. Specifically,
a Michael/Michael addition cascade provided rapid access to this conspicuous
tricyclic scaffold and allowed different handles to be introduced
at the bridgehead quarternary center. This flexibility opened opportunities
for the formation of the enveloping medium-sized and macrocyclic rings.
Ring closing alkyne metathesis (RCAM) proved most reliable and became
a recurrent theme en route to keramaphidin B, ingenamine, xestocyclamine
A, and nominal njaoamine I (the structure of which had to be corrected
in the aftermath of the synthesis). Best results were obtained with
molybdenum alkylidyne catalysts endowed with (tripodal) silanolate
ligands, which proved fully operative in the presence of tertiary
amines, quinoline, and other Lewis basic sites. RCAM was successfully
interlinked with macrolactamization, an intricate hydroboration/protonation/alkyl-Suzuki
coupling sequence, or ring closing olefin metathesis (RCM) for the
closure of the second lateral ring; the use of RCM for the formation
of an 11-membered cycle is particularly noteworthy. Equally rare are
RCM reactions that leave a pre-existing triple bond untouched, as
the standard ruthenium catalysts are usually indiscriminative vis-à-vis
the different π-bonds. Of arguably highest significance, however,
is the use of two consecutive or even concurrent RCAM reactions en
route to nominal njaoamine I as the arguably most complex of the chosen
targets.
Collapse
Affiliation(s)
- Zhanchao Meng
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Simon M Spohr
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Sandra Tobegen
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
29
|
Trzmiel S, Langmann J, Werner D, Maichle‐Mössmer C, Scherer W, Anwander R. Über Takais Olefinierungsreagenz hinaus: Anhaltende Dehalogenierung mündet in einem Chrom(III)‐μ
3
‐Methylidin‐Komplex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Trzmiel
- Institut für Anorganische Chemie Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Jan Langmann
- Institut für Physik Universität Augsburg Universitätsstr. 1 86159 Augsburg Deutschland
| | - Daniel Werner
- Institut für Anorganische Chemie Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Cäcilia Maichle‐Mössmer
- Institut für Anorganische Chemie Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Wolfgang Scherer
- Institut für Physik Universität Augsburg Universitätsstr. 1 86159 Augsburg Deutschland
| | - Reiner Anwander
- Institut für Anorganische Chemie Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| |
Collapse
|
30
|
Trzmiel S, Langmann J, Werner D, Maichle‐Mössmer C, Scherer W, Anwander R. Beyond Takai's Olefination Reagent: Persistent Dehalogenation Emerges in a Chromium(III)-μ 3 -Methylidyne Complex. Angew Chem Int Ed Engl 2021; 60:20049-20054. [PMID: 34213805 PMCID: PMC8456800 DOI: 10.1002/anie.202106608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/01/2021] [Indexed: 11/05/2022]
Abstract
Reaction of CHI3 with six equivalents of CrCl2 in THF at low temperatures affords [Cr3 Cl3 (μ2 -Cl)3 (μ3 -CH)(thf)6 ] as the first isolable high-yield CrIII μ3 -methylidyne complex. Substitution of the terminal chlorido ligands via salt metathesis with alkali-metal cyclopentadienides generates isostructural half-sandwich chromium(III)-μ3 -methylidynes [CpR 3 Cr3 (μ2 -Cl)3 (μ3 -CH)] (CpR =C5 H5 , C5 Me5 , C5 H4 SiMe3 ). Side and decomposition products of the Cl/CpR exchange reactions were identified and structurally characterized for [Cr4 (μ2 -Cl)4 (μ2 -I)2 (μ4 -O)(thf)4 ] and [(η5 -C5 H4 SiMe3 )CrCl(μ2 -Cl)2 Li(thf)2 ]. The Cl/CpR exchange drastically changed the ambient-temperature effective magnetic moment μeff from 9.30/9.11 μB (solution/solid) to 3.63/4.32 μB (CpR =C5 Me5 ). Reactions of [Cr3 Cl3 (μ2 -Cl)3 (μ3 -CH)(thf)6 ] with aldehydes and ketones produce intricate mixtures of species through oxy/methylidyne exchange, which were partially identified as radical recombination products through GC/MS analysis and 1 H NMR spectroscopy.
Collapse
Affiliation(s)
- Simon Trzmiel
- Institut für Anorganische ChemieEberhard-Karls-Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Jan Langmann
- Institut für PhysikUniversität AugsburgUniversitätsstr. 186159AugsburgGermany
| | - Daniel Werner
- Institut für Anorganische ChemieEberhard-Karls-Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Cäcilia Maichle‐Mössmer
- Institut für Anorganische ChemieEberhard-Karls-Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Wolfgang Scherer
- Institut für PhysikUniversität AugsburgUniversitätsstr. 186159AugsburgGermany
| | - Reiner Anwander
- Institut für Anorganische ChemieEberhard-Karls-Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
31
|
Haack A, Hillenbrand J, van Gastel M, Fürstner A, Neese F. Spectroscopic and Theoretical Study on Siloxy-Based Molybdenum and Tungsten Alkylidyne Catalysts for Alkyne Metathesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander Haack
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | | | | | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
32
|
Affiliation(s)
- Ludwig Hackl
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Lukas Körner
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
33
|
Zier ML, Colombel-Rouen S, Ehrhorn H, Bockfeld D, Trolez Y, Mauduit M, Tamm M. Catalytic Alkyne and Diyne Metathesis with Mixed Fluoroalkoxy-Siloxy Molybdenum Alkylidyne Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Manuel L. Zier
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Sophie Colombel-Rouen
- Univ Rennes; Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR−UMR 6226, F-35000 Rennes, France
| | - Henrike Ehrhorn
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Yann Trolez
- Univ Rennes; Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR−UMR 6226, F-35000 Rennes, France
| | - Marc Mauduit
- Univ Rennes; Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR−UMR 6226, F-35000 Rennes, France
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
34
|
Thompson RR, Rotella ME, Zhou X, Fronczek FR, Gutierrez O, Lee S. Impact of Ligands and Metals on the Formation of Metallacyclic Intermediates and a Nontraditional Mechanism for Group VI Alkyne Metathesis Catalysts. J Am Chem Soc 2021; 143:9026-9039. [PMID: 34110130 PMCID: PMC8227475 DOI: 10.1021/jacs.1c01843] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The
intermediacy of metallacyclobutadienes as part of a [2 + 2]/retro-[2
+ 2] cycloaddition-based mechanism is a well-established paradigm
in alkyne metathesis with alternative species viewed as off-cycle
decomposition products that interfere with efficient product formation.
Recent work has shown that the exclusive intermediate isolated from
a siloxide podand-supported molybdenum-based catalyst was not the
expected metallacyclobutadiene but instead a dynamic metallatetrahedrane.
Despite their paucity in the chemical literature, theoretical work
has shown these species to be thermodynamically more stable as well
as having modest barriers for cycloaddition. Consequentially, we report
the synthesis of a library of group VI alkylidynes as well as the
roles metal identity, ligand flexibility, secondary coordination sphere,
and substrate identity all have on isolable intermediates. Furthermore,
we report the disparities in catalyst competency as a function of
ligand sterics and metal choice. Dispersion-corrected DFT calculations
are used to shed light on the mechanism and role of ligand and metal
on the intermediacy of metallacyclobutadiene and metallatetrahedrane
as well as their implications to alkyne metathesis.
Collapse
Affiliation(s)
- Richard R Thompson
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Madeline E Rotella
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Xin Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Semin Lee
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
35
|
Huang S, Lei Z, Jin Y, Zhang W. By-design molecular architectures via alkyne metathesis. Chem Sci 2021; 12:9591-9606. [PMID: 34349932 PMCID: PMC8293811 DOI: 10.1039/d1sc01881g] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022] Open
Abstract
Shape-persistent purely organic molecular architectures have attracted tremendous research interest in the past few decades. Dynamic Covalent Chemistry (DCvC), which deals with reversible covalent bond formation reactions, has emerged as an efficient synthetic approach for constructing these well-defined molecular architectures. Among various dynamic linkages, the formation of ethynylene linkages through dynamic alkyne metathesis is of particular interest due to their high chemical stability, linearity, and rigidity. In this review, we focus on the synthetic strategies of discrete molecular architectures (e.g., macrocycles, molecular cages) containing ethynylene linkages using alkyne metathesis as the key step, and their applications. We will introduce the history and challenges in the synthesis of those architectures via alkyne metathesis, the development of alkyne metathesis catalysts, the reported novel macrocycle structures, molecular cage structures, and their applications. In the end, we offer an outlook of this field and remaining challenges. The recent synthesis of novel shape-persistent 2D and 3D molecular architectures via alkyne metathesis is reviewed and the critical role of catalysts is also highlighted.![]()
Collapse
Affiliation(s)
- Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder 80309 USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder 80309 USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder 80309 USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder 80309 USA
| |
Collapse
|
36
|
Haack A, Hillenbrand J, Leutzsch M, van Gastel M, Neese F, Fürstner A. Productive Alkyne Metathesis with "Canopy Catalysts" Mandates Pseudorotation. J Am Chem Soc 2021; 143:5643-5648. [PMID: 33826335 PMCID: PMC8154524 DOI: 10.1021/jacs.1c01404] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Molybdenum alkylidyne
complexes of the “canopy catalyst”
series define new standards in the field of alkyne metathesis. The
tripodal ligand framework lowers the symmetry of the metallacyclobutadiene
complex formed by [2 + 2] cycloaddition with the substrate and imposes
constraints onto the productive [2 + 2] cycloreversion; pseudorotation
corrects this handicap and makes catalytic turnover possible. A combined
spectroscopic, crystallographic, and computational study provides
insights into this unorthodox mechanism and uncovers the role that
metallatetrahedrane complexes play in certain cases.
Collapse
Affiliation(s)
- Alexander Haack
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | | | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
37
|
Löffler LE, Wirtz C, Fürstner A. Collective Total Synthesis of Casbane Diterpenes: One Strategy, Multiple Targets. Angew Chem Int Ed Engl 2021; 60:5316-5322. [PMID: 33289954 PMCID: PMC7986786 DOI: 10.1002/anie.202015243] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 11/29/2022]
Abstract
Of the more than 100 casbane diterpenes known to date, only the eponymous parent hydrocarbon casbene itself has ever been targeted by chemical synthesis. Outlined herein is a conceptually new approach that brings not a single but a variety of casbane derivatives into reach, especially the more highly oxygenated and arguably more relevant members of this family. The key design elements are a catalyst-controlled intramolecular cyclopropanation with or without subsequent equilibration, chain extension of the resulting stereoisomeric cyclopropane building blocks by chemoselective hydroboration/cross-coupling, and the efficient closure of the strained macrobicyclic framework by ring-closing alkyne metathesis. A hydroxy-directed catalytic trans-hydrostannation allows for late-stage diversity. These virtues are manifested in the concise total syntheses of depressin, yuexiandajisu A, and ent-pekinenin C. The last compound turned out to be identical to euphorhylonal A, the structure of which had clearly been misassigned.
Collapse
Affiliation(s)
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
38
|
Ge Y, Huang S, Hu Y, Zhang L, He L, Krajewski S, Ortiz M, Jin Y, Zhang W. Highly active alkyne metathesis catalysts operating under open air condition. Nat Commun 2021; 12:1136. [PMID: 33602910 PMCID: PMC7893043 DOI: 10.1038/s41467-021-21364-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023] Open
Abstract
Alkyne metathesis represents a rapidly emerging synthetic method that has shown great potential in small molecule and polymer synthesis. However, its practical use has been impeded by the limited availability of user-friendly catalysts and their generally high moisture/air sensitivity. Herein, we report an alkyne metathesis catalyst system that can operate under open-air conditions with a broad substrate scope and excellent yields. These catalysts are composed of simple multidentate tris(2-hydroxyphenyl)methane ligands, which can be easily prepared in multi-gram scale. The catalyst substituted with electron withdrawing cyano groups exhibits the highest activity at room temperature with excellent functional group tolerance (-OH, -CHO, -NO2, pyridyl). More importantly, the catalyst provides excellent yields (typically >90%) in open air, comparable to those operating under argon. When dispersed in paraffin wax, the active catalyst can be stored on a benchtop under ambient conditions without any decrease in activity for one day (retain 88% after 3 days). This work opens many possibilities for developing highly active user-friendly alkyne metathesis catalysts that can function in open air. Alkyne metathesis catalysts usually suffer from high moisture/air sensitivity, which limit their wide applicability. Here, the authors report efficient alkyne metathesis catalysts that can operate under open-air conditions with a broad functional group tolerance.
Collapse
Affiliation(s)
- Yanqing Ge
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Yiming Hu
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Lei Zhang
- College of Chemistry, Sichuan University, Chengdu, China
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu, China
| | | | - Michael Ortiz
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
39
|
Löffler LE, Wirtz C, Fürstner A. Collective Total Synthesis of Casbane Diterpenes: One Strategy, Multiple Targets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
40
|
Hu XN, Wu DP, Xu YP, Huang PQ. Organocatalytic Asymmetric Synthesis of an Advanced Intermediate of (+)-Sarain A. Chemistry 2021; 27:609-613. [PMID: 33044771 DOI: 10.1002/chem.202004261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/11/2020] [Indexed: 12/13/2022]
Abstract
The first organocatalytic asymmetric synthesis of an advanced intermediate of (+)-sarain A was achieved. This approach featured the employment of an organocatalytic asymmetric Michael addition reaction and a nitrogen-to-carbon chirality transfer to forge three chiral centers, as well as a catalytic hydrosilylation for the chemoselective reduction of a key lactam intermediate. The tricyclic intermediate contained all the required functionalities for elaborating into (+)-sarain A.
Collapse
Affiliation(s)
- Xiu-Ning Hu
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Dong-Ping Wu
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Ye-Peng Xu
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| |
Collapse
|
41
|
Schulthoff S, Hamilton JY, Heinrich M, Kwon Y, Wirtz C, Fürstner A. The Formosalides: Structure Determination by Total Synthesis. Angew Chem Int Ed Engl 2021; 60:446-454. [PMID: 32946141 PMCID: PMC7821135 DOI: 10.1002/anie.202011472] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 01/08/2023]
Abstract
Total synthesis allowed the constitution of the cytotoxic marine macrolides of the formosalide family to be confirmed and their previously unknown stereostructure to be assigned with confidence. The underlying blueprint was inherently modular to ensure that each conceivable isomer could be reached. This flexibility derived from the use of strictly catalyst controlled transformations to set the stereocenters, except for the anomeric position, which is under thermodynamic control; as an extra safety measure, all stereogenic centers were set prior to ring closure to preclude any interference of the conformation adopted by the macrolactone rings of the different diastereomers. Late-stage macrocyclization by ring-closing alkyne metathesis was followed by a platinum-catalyzed transannular 6-exo-dig hydroalkoxylation/ketalization to craft the polycyclic frame. The side chain featuring a very labile unsaturation pattern was finally attached to the core by Stille coupling.
Collapse
Affiliation(s)
| | | | - Marc Heinrich
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Yonghoon Kwon
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
42
|
Hillenbrand J, Leutzsch M, Gordon CP, Copéret C, Fürstner A. 183 W NMR Spectroscopy Guides the Search for Tungsten Alkylidyne Catalysts for Alkyne Metathesis. Angew Chem Int Ed Engl 2020; 59:21758-21768. [PMID: 32820864 PMCID: PMC7756321 DOI: 10.1002/anie.202009975] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Triarylsilanolates are privileged ancillary ligands for molybdenum alkylidyne catalysts for alkyne metathesis but lead to disappointing results and poor stability in the tungsten series. 1 H,183 W heteronuclear multiple bond correlation spectroscopy, exploiting a favorable 5 J-coupling between the 183 W center and the peripheral protons on the alkylidyne cap, revealed that these ligands upregulate the Lewis acidity to an extent that the tungstenacyclobutadiene formed in the initial [2+2] cycloaddition step is over-stabilized and the catalytic turnover brought to a halt. Guided by the 183 W NMR shifts as a proxy for the Lewis acidity of the central atom and by an accompanying chemical shift tensor analysis of the alkylidyne unit, the ligand design was revisited and a more strongly π-donating all-alkoxide ligand prepared. The new expanded chelate complex has a tempered Lewis acidity and outperforms the classical Schrock catalyst, carrying monodentate tert-butoxy ligands, in terms of rate and functional-group compatibility.
Collapse
Affiliation(s)
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Christopher P. Gordon
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Christophe Copéret
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
43
|
Synthesis of Alkyne Metathesis Catalysts from Tris(dimethylamido)tungsten Precursors. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Schulthoff S, Hamilton JY, Heinrich M, Kwon Y, Wirtz C, Fürstner A. The Formosalides: Structure Determination by Total Synthesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Marc Heinrich
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Yonghoon Kwon
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Conny Wirtz
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
45
|
Luo S, Huang X, Guo L, Huang P. Catalytic Asymmetric Total Synthesis of Macrocyclic Marine Natural Product (–)‐Haliclonin A
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shi‐Peng Luo
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology Changzhou Jiangsu 213001 China
| | - Xiong‐Zhi Huang
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Lian‐Dong Guo
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Pei‐Qiang Huang
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
46
|
Chuprun S, Acosta CM, Mathivathanan L, Bukhryakov KV. Molybdenum Benzylidyne Complexes for Olefin Metathesis Reactions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sergey Chuprun
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Carlos M. Acosta
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Logesh Mathivathanan
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Konstantin V. Bukhryakov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
47
|
Tang L, Yang F, Cheng H, Tan C, Jin C, Chen H, Huang Y, Zhang S, Song W, Tan J. Copper-Catalyzed Oxidative Fragmentation of Alkynes with NFSI Provides Aryl Ketones. Org Lett 2020; 22:8618-8623. [DOI: 10.1021/acs.orglett.0c03201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Hao Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Chen Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Chaochao Jin
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Hanfei Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yifan Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Shuaifei Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Weihan Song
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
48
|
Hillenbrand J, Leutzsch M, Gordon CP, Copéret C, Fürstner A. 183
W NMR Spectroscopy Guides the Search for Tungsten Alkylidyne Catalysts for Alkyne Metathesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Christopher P. Gordon
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
49
|
Chen S, Liu L, Gao X, Hua Y, Peng L, Zhang Y, Yang L, Tan Y, He F, Xia H. Addition of alkynes and osmium carbynes towards functionalized d π-p π conjugated systems. Nat Commun 2020; 11:4651. [PMID: 32938934 PMCID: PMC7495419 DOI: 10.1038/s41467-020-18498-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
The metal-carbon triple bonds and carbon-carbon triple bonds are both highly unsaturated bonds. As a result, their reactions tend to afford cycloaddition intermediates or products. Herein, we report a reaction of M≡C and C≡C bonds that affords acyclic addition products. These newly discovered reactions are highly efficient, regio- and stereospecific, with good functional group tolerance, and are robust under air at room temperature. The isotope labeling NMR experiments and theoretical calculations reveal the reaction mechanism. Employing these reactions, functionalized dπ-pπ conjugated systems can be easily constructed and modified. The resulting dπ-pπ conjugated systems were found to be good electron transport layer materials in organic solar cells, with power conversion efficiency up to 16.28% based on the PM6: Y6 non-fullerene system. This work provides a facile, efficient methodology for the preparation of dπ-pπ conjugated systems for use in functional materials.
Collapse
Affiliation(s)
- Shiyan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Longzhu Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Lixia Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Ying Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yuanzhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
50
|
De Palo A, Zacchini S, Pampaloni G, Marchetti F. Construction of a Functionalized Selenophene‐Allylidene Ligand via Alkyne Double Action at a Diiron Complex. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Alice De Palo
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|