1
|
Crack JC, Le Brun NE. Synergy of native mass spectrometry and other biophysical techniques in studies of iron‑sulfur cluster proteins and their assembly. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119865. [PMID: 39442807 DOI: 10.1016/j.bbamcr.2024.119865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The application of mass spectrometric methodologies has revolutionised biological chemistry, from identification through to structural and conformational studies of proteins and other macromolecules. Native mass spectrometry (MS), in which proteins retain their native structure, is a rapidly growing field. This is particularly the case for studies of metalloproteins, where non-covalently bound cofactors remain bound following ionisation. Such metalloproteins include those that contain an iron‑sulfur (FeS) cluster and, despite their fragility and O2 sensitivity, they have been a particular focus for applications of native MS because of its capacity to accurately monitor mass changes that reveal chemical changes at the cluster. Here we review recent advances in these applications of native MS, which, together with data from more traditionally applied biophysical methods, have yielded a remarkable breadth of information about the FeS species present, and provided key mechanistic insight not only for FeS cluster proteins themselves, but also their assembly.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Nick E Le Brun
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK..
| |
Collapse
|
2
|
Banerjee R, Askenasy I, Mettert EL, Kiley PJ. Iron-sulfur Rrf2 transcription factors: an emerging versatile platform for sensing stress. Curr Opin Microbiol 2024; 82:102543. [PMID: 39321716 DOI: 10.1016/j.mib.2024.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024]
Abstract
The widespread family of Rrf2 transcription factors has emerged as having prominent roles in diverse bacterial functions. These proteins share an overall common structure to sense and respond to stress signals. In many known cases, signaling occurs through iron-sulfur cluster cofactors. Recent research has highlighted distinct characteristics of individual family members that have enabled the Rrf2 family as a whole to sense a diverse array of stresses and subsequently alter gene expression to maintain homeostasis. Here, we review unique traits of four Rrf2 family members (IscR, NsrR, RisR, and RirA), which include iron-sulfur ligation schemes, stress-sensing mechanisms, protein conformation changes, and differential gene regulation, that allow these transcription factors to rapidly respond to environmental cues routinely encountered by bacteria.
Collapse
Affiliation(s)
- Rajdeep Banerjee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabel Askenasy
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Erin L Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
3
|
Gong W, Wu T, Liu Y, Jiao S, Wang W, Yan W, Li Y, Liu Y, Zhang Y, Wang H. Insight into the photodynamic mechanism and protein binding of a nitrosyl iron-sulfur [Fe 2S 2(NO) 4] 2- cluster. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124603. [PMID: 38878720 DOI: 10.1016/j.saa.2024.124603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024]
Abstract
Iron-sulfur cluster conversion and nitrosyl modification are involved in regulating their functions and play critical roles in signaling for biological systems. Hereby, the photo-induced dynamic process of (Me4N)2[Fe2S2(NO)4] was monitored using time-resolved electron paramagnetic resonance (EPR) spectra, MS spectra and cellular imaging methods. Photo-irradiation and the solvent affect the reaction rates and products. Spectroscopic and kinetic studies have shown that the process involves at least three intermediates: spin-trapped NO free radical species with a gav at 2.040, and two other iron nitrosyl species, dinitrosyl iron units (DNICs) and mononitrosyl iron units (MNICs) with gav values at 2.031 and 2.024, respectively. Moreover, the [Fe2S2(NO)4]2- cluster could bind with ferritin and decompose gradually, and a binding state of dinitrosyl iron coordinated with Cys102 of the recombinant human heavy chain ferritin (rHuHF) was finally formed. This study provides insight into the photodynamic mechanism of nitrosyl iron - sulfur clusters to improve the understanding of physiological activity.
Collapse
Affiliation(s)
- Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yuhua Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Shuxiang Jiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenjun Yan
- Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan 030001, China
| | - Yanqiu Li
- Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan 030001, China
| | - Yanhong Liu
- Techinical Institute of Physics & Chemistry, CAS, Beijing 100190, China
| | - Yun Zhang
- Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
4
|
Crack JC, Le Brun NE. Binding of a single nitric oxide molecule is sufficient to disrupt DNA binding of the nitrosative stress regulator NsrR. Chem Sci 2024:d4sc04618h. [PMID: 39464610 PMCID: PMC11500311 DOI: 10.1039/d4sc04618h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
The regulatory protein NsrR, a member of the Rrf2 protein superfamily, plays a major role in the cellular response to nitrosative stress in many benign and pathogenic bacteria. The homodimeric protein binds a [4Fe-4S] cluster in each subunit (termed holo NsrR), and represses transcription of genes primarily involved in NO detoxification. Holo NsrR reacts rapidly with multiple NO molecules per [4Fe-4S] cluster, via a complex reaction, with loss of DNA binding and formation of NsrR-bound iron-nitrosyl species. However, the point at which DNA binding is lost is unknown. Here, we demonstrate using surface plasmon resonance (SPR) and native mass spectrometry (MS) that holo NsrR binds the promoter regions of NsrR-regulated genes with promoter-dependent nanomolar affinity, while hemi-apo NsrR (i.e. one cluster per dimer) binds >10-fold less tightly, and the cluster-free (apo) form not at all. Strikingly, native MS provided detailed information about the reaction of NO with the physiologically relevant form of NsrR, i.e. DNA-bound dimeric NsrR. Reaction with a single NO molecule per NsrR dimer is sufficient to abolish DNA binding. This exquisite sensitivity of DNA binding to NO is consistent with the importance of de-repressing NO detoxification systems at the earliest opportunity to minimise damage due to nitrosative stress. Furthermore, the data show that previously characterised iron-nitrosyls, which form at higher ratios of NO to [4Fe-4S], are not physiologically relevant for regulating the NsrR on/off switch.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy and Pharmacology, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy and Pharmacology, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
5
|
Sun J, Wu J, Yuan Y, Fan L, Chua WLP, Ling YHS, Balamkundu S, priya D, Suen HCS, de Crécy-Lagard V, Dziergowska A, Dedon PC. tRNA modification profiling reveals epitranscriptome regulatory networks in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601603. [PMID: 39005467 PMCID: PMC11245014 DOI: 10.1101/2024.07.01.601603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transfer RNA (tRNA) modifications have emerged as critical posttranscriptional regulators of gene expression affecting diverse biological and disease processes. While there is extensive knowledge about the enzymes installing the dozens of post-transcriptional tRNA modifications - the tRNA epitranscriptome - very little is known about how metabolic, signaling, and other networks integrate to regulate tRNA modification levels. Here we took a comprehensive first step at understanding epitranscriptome regulatory networks by developing a high-throughput tRNA isolation and mass spectrometry-based modification profiling platform and applying it to a Pseudomonas aeruginosa transposon insertion mutant library comprising 5,746 strains. Analysis of >200,000 tRNA modification data points validated the annotations of predicted tRNA modification genes, uncovered novel tRNA-modifying enzymes, and revealed tRNA modification regulatory networks in P. aeruginosa. Platform adaptation for RNA-seq library preparation would complement epitranscriptome studies, while application to human cell and mouse tissue demonstrates its utility for biomarker and drug discovery and development.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Junzhou Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
| | - Leon Fan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Wei Lin Patrina Chua
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Yan Han Sharon Ling
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | | | - Dwija priya
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Hazel Chay Suen Suen
- Department of Food, Chemical & Biotechnology, Singapore of Institute of Technology, 138683 Singapore
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
- Genetic Institute, University of Florida, Gainesville, FL 32611 USA
| | | | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| |
Collapse
|
6
|
Pang B, Zheng H, Ma S, Tian J, Wen Y. Nitric oxide sensor NsrR is the key direct regulator of magnetosome formation and nitrogen metabolism in Magnetospirillum. Nucleic Acids Res 2024; 52:2924-2941. [PMID: 38197240 PMCID: PMC11014258 DOI: 10.1093/nar/gkad1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Nitric oxide (NO) plays an essential role as signaling molecule in regulation of eukaryotic biomineralization, but its role in prokaryotic biomineralization is unknown. Magnetospirillum gryphiswaldense MSR-1, a model strain for studies of prokaryotic biomineralization, has the unique ability to form magnetosomes (magnetic organelles). We demonstrate here that magnetosome biomineralization in MSR-1 requires the presence of NsrRMg (an NO sensor) and a certain level of NO. MSR-1 synthesizes endogenous NO via nitrification-denitrification pathway to activate magnetosome formation. NsrRMg was identified as a global transcriptional regulator that acts as a direct activator of magnetosome gene cluster (MGC) and nitrification genes but as a repressor of denitrification genes. Specific levels of NO modulate DNA-binding ability of NsrRMg to various target promoters, leading to enhancing expression of MGC genes, derepressing denitrification genes, and repressing nitrification genes. These regulatory functions help maintain appropriate endogenous NO level. This study identifies for the first time the key transcriptional regulator of major MGC genes, clarifies the molecular mechanisms underlying NsrR-mediated NO signal transduction in magnetosome formation, and provides a basis for a proposed model of the role of NO in the evolutionary origin of prokaryotic biomineralization processes.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haolan Zheng
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shijia Ma
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiesheng Tian
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Dodd EL, Le Brun NE. Probing the mechanism of the dedicated NO sensor [4Fe-4S] NsrR: the effect of cluster ligand environment. J Inorg Biochem 2024; 252:112457. [PMID: 38176366 DOI: 10.1016/j.jinorgbio.2023.112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
NsrR from Streptomyces coelicolor is a bacterial nitric oxide (NO) sensor/nitrosative stress regulator as its primary function, and has been shown to have differential response at low, mid, and high levels of NO. These must correspond to discrete structural changes at the protein-bound [4Fe-4S] cluster in response to stepwise nitrosylation of the cluster. We have investigated the effect of the monohapto carboxylate ligand in the site differentiated [4Fe-4S] cluster cofactor of the protein NsrR on modulating its reactivity to NO with a focus on indentifying mechanistic intermediates. We have prepared a synthetic model [4Fe-4S] cluster complex with tripodal ligand and one single site differentiated site occupied by either thiolate or carboxylate ligand. We report here the mechanistic details of sequential steps of nitrosylation as observed by ESI MS and IR spectroscopy. Parallel non-denaturing mass spectrometry analyses were performed using site-differentiated variants of NsrR with the native aspartic acid, cysteine, or alanine in the position of the forth ligand to the cluster. A mono-nitrosylated synthetic [4Fe-4S] cluster was observed for the first time in a biologically-relevant thiolate-based coordination environment. Combined synthetic and protein data give unprecedented clarity in the modulation of nitrosylation of a [4Fe-4S] cluster.
Collapse
Affiliation(s)
- Erin L Dodd
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
8
|
Pauleta SR, Grazina R, Carepo MS, Moura JJ, Moura I. Iron-sulfur clusters – functions of an ancient metal site. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:105-173. [DOI: 10.1016/b978-0-12-823144-9.00116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Bennett SP, Crack JC, Puglisi R, Pastore A, Le Brun NE. Native mass spectrometric studies of IscSU reveal a concerted, sulfur-initiated mechanism of iron-sulfur cluster assembly. Chem Sci 2022; 14:78-95. [PMID: 36605734 PMCID: PMC9769115 DOI: 10.1039/d2sc04169c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are cofactors essential for life. Though the proteins that function in the assembly of Fe-S clusters are well known, details of the molecular mechanism are less well established. The Isc (iron-sulfur cluster) biogenesis apparatus is widespread in bacteria and is the closest homologue to the human system. Mutations in certain components of the human system lead to disease, and so further studies of this system could be important for developing strategies for medical treatments. We have studied two core components of the Isc biogenesis system: IscS, a cysteine desulfurase; and IscU, a scaffold protein on which clusters are built before subsequent transfer onto recipient apo-proteins. Fe2+-binding, sulfur transfer, and formation of a [2Fe-2S] was followed by a range of techniques, including time-resolved mass spectrometry, and intermediate and product species were unambiguously identified through isotopic substitution experiments using 57Fe and 34S. Under cluster synthesis conditions, sulfur adducts and the [2Fe-2S] cluster product readily accumulated on IscU, but iron adducts (other than the cluster itself) were not observed at physiologically relevant Fe2+ concentrations. Our data indicate that either Fe2+ or sulfur transfer can occur first, but that the transfer of sulfane sulfur (S0) to IscU must occur first if Zn2+ is bound to IscU, suggesting that it is the key step that initiates cluster assembly. Following this, [2Fe-2S] cluster formation is a largely concerted reaction once Fe2+ is introduced.
Collapse
Affiliation(s)
- Sophie P Bennett
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Rita Puglisi
- The Wohl Institute, King's College London, Denmark Hill Campus London SE5 8AF UK
| | - Annalisa Pastore
- The Wohl Institute, King's College London, Denmark Hill Campus London SE5 8AF UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
10
|
Kim Y, Sridharan A, Suess DLM. The Elusive Mononitrosylated [Fe 4 S 4 ] Cluster in Three Redox States. Angew Chem Int Ed Engl 2022; 61:e202213032. [PMID: 36194444 PMCID: PMC9669169 DOI: 10.1002/anie.202213032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Iron-sulfur clusters are well-established targets in biological nitric oxide (NO) chemistry, but the key intermediate in these processes-a mononitrosylated [Fe4 S4 ] cluster-has not been fully characterized in a protein or a synthetic model thereof. Here, we report the synthesis of a three-member redox series of isostructural mononitrosylated [Fe4 S4 ] clusters. Mononitrosylation was achieved by binding NO to a 3 : 1 site-differentiated [Fe4 S4 ]+ cluster; subsequent oxidation and reduction afforded the other members of the series. All three clusters feature a local high-spin Fe3+ center antiferromagnetically coupled to 3 [NO]- . The observation of an anionic NO ligand suggests that NO binding is accompanied by formal electron transfer from the cluster to NO. Preliminary reactivity studies with the monocationic cluster demonstrate that exposure to excess NO degrades the cluster, supporting the intermediacy of mononitrosylated intermediates in NO sensing/signaling.
Collapse
Affiliation(s)
- Youngsuk Kim
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
- Department of ChemistryPusan National UniversityBusan46241Republic of Korea
| | - Arun Sridharan
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
| | - Daniel L. M. Suess
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
| |
Collapse
|
11
|
Park JC, Jeong H, Kim Y, Lee HS. Trehalose biosynthetic gene otsB of Corynebacterium glutamicum is regulated by whcE in response to oxidative stress. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35040429 DOI: 10.1099/mic.0.001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene whcE of Corynebacterium glutamicum plays a positive role in oxidative stress responses and the WhcE protein interacts with SpiE. By utilizing 2D-PAGE analysis, we identified the otsB gene to be under the control of whcE. The transcription of otsB, encoding trehalose 6-phosphatase, was stimulated by oxidative stress, and whcE and spiE were involved in diamide-mediated transcriptional stimulation. The ΔotsB strain was created and found to be sensitive to the thiol-specific oxidant diamide, suggesting a role of the gene in stress responses. Genes located upstream of otsB, such as NCgl2534 and otsA, formed an operon and purified WhcE was able to bind to the promoter region of the operon (PNCgl2534), but the binding was only possible in the presence of the oxidant diamide. In addition, the transcriptional activation of PNCgl2534 by WhcE was demonstrated in in vivo assays and the transcription was stimulated in cells exposed to the oxidant diamide. These findings indicate that WhcE is a transcriptional activator, and otsB, which is involved in trehalose biosynthesis, has a role in oxidative stress responses in C. glutamicum.
Collapse
Affiliation(s)
- Jung Chul Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 390-711, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| |
Collapse
|
12
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
13
|
|
14
|
Truzzi DR, Medeiros NM, Augusto O, Ford PC. Dinitrosyl Iron Complexes (DNICs). From Spontaneous Assembly to Biological Roles. Inorg Chem 2021; 60:15835-15845. [PMID: 34014639 DOI: 10.1021/acs.inorgchem.1c00823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dinitrosyl iron complexes (DNICs) are spontaneously and rapidly generated in cells. Their assembly requires nitric oxide (NO), biothiols, and nonheme iron, either labile iron or iron-sulfur clusters. Despite ubiquitous detection by electron paramagnetic resonance in NO-producing cells, the DNIC's chemical biology remains only partially understood. In this Forum Article, we address the reaction mechanisms for endogenous DNIC formation, with a focus on a labile iron pool as the iron source. The capability of DNICs to promote S-nitrosation is discussed in terms of S-nitrosothiol generation associated with the formation and chemical reactivity of DNICs. We also highlight how elucidation of the chemical reactivity and the dynamics of DNICs combined with the development of detection/quantification methods can provide further information regarding their participation in physiological and pathological processes.
Collapse
Affiliation(s)
- Daniela R Truzzi
- Departamento de Bioquímica, Instituto de Química de São Paulo, Universidade de São Paulo, Caixa Postal 26077, CEP05513-970 São Paulo, São Paulo, Brazil
| | - Nathalia M Medeiros
- Departamento de Bioquímica, Instituto de Química de São Paulo, Universidade de São Paulo, Caixa Postal 26077, CEP05513-970 São Paulo, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química de São Paulo, Universidade de São Paulo, Caixa Postal 26077, CEP05513-970 São Paulo, São Paulo, Brazil
| | - Peter C Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
15
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Crack JC, Gray E, Le Brun NE. Sensing mechanisms of iron-sulfur cluster regulatory proteins elucidated using native mass spectrometry. Dalton Trans 2021; 50:7887-7897. [PMID: 34037038 PMCID: PMC8204329 DOI: 10.1039/d1dt00993a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
The ability to sense and respond to various key environmental cues is important for the survival and adaptability of many bacteria, including pathogens. The particular sensitivity of iron-sulfur (Fe-S) clusters is exploited in nature, such that multiple sensor-regulator proteins, which coordinate the detection of analytes with a (in many cases) global transcriptional response, are Fe-S cluster proteins. The fragility and sensitivity of these Fe-S clusters make studying such proteins difficult, and gaining insight of what they sense, and how they sense it and transduce the signal to affect transcription, is a major challenge. While mass spectrometry is very widely used in biological research, it is normally employed under denaturing conditions where non-covalently attached cofactors are lost. However, mass spectrometry under conditions where the protein retains its native structure and, thus, cofactors, is now itself a flourishing field, and the application of such 'native' mass spectrometry to study metalloproteins is now relatively widespread. Here we describe recent advances in using native MS to study Fe-S cluster proteins. Through its ability to accurately measure mass changes that reflect chemistry occurring at the cluster, this approach has yielded a remarkable richness of information that is not accessible by other, more traditional techniques.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
| | - Elizabeth Gray
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
17
|
Choi G, Kim D, Im H, Choi SH. A Nitric Oxide-Responsive Transcriptional Regulator NsrR Cooperates With Lrp and CRP to Tightly Control the hmpA Gene in Vibrio vulnificus. Front Microbiol 2021; 12:681196. [PMID: 34093504 PMCID: PMC8175989 DOI: 10.3389/fmicb.2021.681196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is an important antimicrobial effector produced by the host innate immune system to counteract invading pathogens. To survive and establish a successful infection, a fulminating human pathogen Vibrio vulnificus expresses the hmpA gene encoding an NO dioxygenase in an NO-responsive manner. In this study, we identified an Rrf2-family transcriptional regulator NsrR that is predicted to contain the Fe-S cluster coordinated by three cysteine residues. Transcriptome analysis showed that NsrR controls the expression of multiple genes potentially involved in nitrosative stress responses. Particularly, NsrR acts as a strong repressor of hmpA transcription and relieves the repression of hmpA upon exposure to NO. Notably, nsrR and hmpA are transcribed divergently, and their promoter regions overlap with each other. Molecular biological analyses revealed that NsrR directly binds to this overlapping promoter region, which is alleviated by loss of the Fe-S cluster, leading to the subsequent derepression of hmpA under nitrosative stress. We further found that a leucine-responsive regulatory protein (Lrp) negatively regulates hmpA in an NsrR-dependent manner by directly binding to the promoter region, presumably resulting in a DNA conformation change to support the repression by NsrR. Meanwhile, a cyclic AMP receptor protein (CRP) positively regulates hmpA probably through repression of nsrR and lrp by directly binding to each promoter region in a sequential cascade. Altogether, this collaborative regulation of NsrR along with Lrp and CRP enables an elaborate control of hmpA transcription, contributing to survival under host-derived nitrosative stress and thereby the pathogenesis of V. vulnificus.
Collapse
Affiliation(s)
- Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Dukyun Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hanhyeok Im
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
Tian S, Fan R, Albert T, Khade RL, Dai H, Harnden KA, Hosseinzadeh P, Liu J, Nilges MJ, Zhang Y, Moënne-Loccoz P, Guo Y, Lu Y. Stepwise nitrosylation of the nonheme iron site in an engineered azurin and a molecular basis for nitric oxide signaling mediated by nonheme iron proteins. Chem Sci 2021; 12:6569-6579. [PMID: 34040732 PMCID: PMC8132939 DOI: 10.1039/d1sc00364j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mononitrosyl and dinitrosyl iron species, such as {FeNO}7, {FeNO}8 and {Fe(NO)2}9, have been proposed to play pivotal roles in the nitrosylation processes of nonheme iron centers in biological systems. Despite their importance, it has been difficult to capture and characterize them in the same scaffold of either native enzymes or their synthetic analogs due to the distinct structural requirements of the three species, using redox reagents compatible with biomolecules under physiological conditions. Here, we report the realization of stepwise nitrosylation of a mononuclear nonheme iron site in an engineered azurin under such conditions. Through tuning the number of nitric oxide equivalents and reaction time, controlled formation of {FeNO}7 and {Fe(NO)2}9 species was achieved, and the elusive {FeNO}8 species was inferred by EPR spectroscopy and observed by Mössbauer spectroscopy, with complemental evidence for the conversion of {FeNO}7 to {Fe(NO)2}9 species by UV-Vis, resonance Raman and FT-IR spectroscopies. The entire pathway of the nitrosylation process, Fe(ii) → {FeNO}7 → {FeNO}8 → {Fe(NO)2}9, has been elucidated within the same protein scaffold based on spectroscopic characterization and DFT calculations. These results not only enhance the understanding of the dinitrosyl iron complex formation process, but also shed light on the physiological roles of nitric oxide signaling mediated by nonheme iron proteins. Stepwise nitrosylation from Fe(ii) to {FeNO}7, {FeNO}8 and then to {Fe(NO)2}9 is reported for the first time in the same protein scaffold, providing deeper understanding of the detailed mechanism of dinitrosyl iron complex formation.![]()
Collapse
Affiliation(s)
- Shiliang Tian
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA USA +1-412-268-1061 +1-412-268-1704
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University 3181 S.W. Sam Jackson Park Road Portland OR USA +1-503-346-3429
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology 1 Castle Point Terrace Hoboken NJ USA +1-201-216-8240 +1-201-216-5513
| | - Huiguang Dai
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| | - Kevin A Harnden
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| | - Jing Liu
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| | - Mark J Nilges
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology 1 Castle Point Terrace Hoboken NJ USA +1-201-216-8240 +1-201-216-5513
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University 3181 S.W. Sam Jackson Park Road Portland OR USA +1-503-346-3429
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA USA +1-412-268-1061 +1-412-268-1704
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL USA +1-217-333-2619
| |
Collapse
|
19
|
Abstract
Iron-sulfur clusters constitute a large and widely distributed group of protein cofactors that play key roles in a wide range of metabolic processes. The inherent reactivity of iron-sulfur clusters toward small molecules, for example, O2, NO, or free Fe, makes them ideal for sensing changes in the cellular environment. Nondenaturing, or native, MS is unique in its ability to preserve the noncovalent interactions of many (if not all) species, including stable intermediates, while providing accurate mass measurements in both thermodynamic and kinetic experimental regimes. Here, we provide practical guidance for the study of iron-sulfur proteins by native MS, illustrated by examples where it has been used to unambiguously determine the type of cluster coordinated to the protein framework. We also describe the use of time-resolved native MS to follow the kinetics of cluster conversion, allowing the elucidation of the precise series of molecular events for all species involved. Finally, we provide advice on a unique approach to a typical thermodynamic titration, uncovering early, quasi-stable, intermediates in the reaction of a cluster with nitric oxide, resulting in cluster nitrosylation.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, UK.
| |
Collapse
|
20
|
Yousuf S, Karlinsey JE, Neville SL, McDevitt CA, Libby SJ, Fang FC, Frawley ER. Manganese import protects Salmonella enterica serovar Typhimurium against nitrosative stress. Metallomics 2020; 12:1791-1801. [PMID: 33078811 DOI: 10.1039/d0mt00178c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nitric oxide (NO˙) is a radical molecule produced by mammalian phagocytic cells as part of the innate immune response to bacterial pathogens. It exerts its antimicrobial activity in part by impairing the function of metalloproteins, particularly those containing iron and zinc cofactors. The pathogenic Gram-negative bacterium Salmonella enterica serovar typhimurium undergoes dynamic changes in its cellular content of the four most common metal cofactors following exposure to NO˙ stress. Zinc, iron and magnesium all decrease in response to NO˙ while cellular manganese increases significantly. Manganese acquisition is driven primarily by increased expression of the mntH and sitABCD transporters following derepression of MntR and Fur. ZupT also contributes to manganese acquisition in response to nitrosative stress. S. Typhimurium mutants lacking manganese importers are more sensitive to NO˙, indicating that manganese is important for resistance to nitrosative stress.
Collapse
Affiliation(s)
- Shehla Yousuf
- Rhodes College Biology Department, 2000 North Parkway, Memphis, TN 38112, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
The solution chemistry of nitric oxide and other reactive nitrogen species. Nitric Oxide 2020; 103:31-46. [DOI: 10.1016/j.niox.2020.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
|
22
|
Zhu W, Walker LM, Tao L, Iavarone AT, Wei X, Britt RD, Elliott SJ, Klinman JP. Structural Properties and Catalytic Implications of the SPASM Domain Iron-Sulfur Clusters in Methylorubrum extorquens PqqE. J Am Chem Soc 2020; 142:12620-12634. [PMID: 32643933 DOI: 10.1021/jacs.0c02044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding the relationship between the metallocofactor and its protein environment is the key to uncovering the mechanism of metalloenzymes. PqqE, a radical S-adenosylmethionine enzyme in pyrroloquinoline quinone (PQQ) biosynthesis, contains three iron-sulfur cluster binding sites. Two auxiliary iron-sulfur cluster binding sites, designated as AuxI and AuxII, use distinctive ligands compared to other proteins in the family while their functions remain unclear. Here, we investigate the electronic properties of these iron-sulfur clusters and compare the catalytic efficiency of wild-type (WT) Methylorubrum extorquens AM1 PqqE to a range of mutated constructs. Using native mass spectrometry, protein film electrochemistry, and electron paramagnetic resonance spectroscopy, we confirm the previously proposed incorporation of a mixture of [2Fe-2S] and [4Fe-4S] clusters at the AuxI site and are able to assign redox potentials to each of the three iron-sulfur clusters. Significantly, a conservative mutation at AuxI, C268H, shown to selectively incorporate a [4Fe-4S] cluster, catalyzes an enhancement of uncoupled S-adenosylmethionine cleavage relative to WT, together with the elimination of detectable peptide cross-linked product. While a [4Fe-4S] cluster can be tolerated at the AuxI site, the aggregate findings suggest a functional [2Fe-2S] configuration within the AuxI site. PqqE variants with nondestructive ligand replacements at AuxII also show that the reduction potential at this site can be manipulated by changing the electronegativity of the unique aspartate ligand. A number of novel mechanistic features are proposed based on the kinetic and spectroscopic data. Additionally, bioinformatic analyses suggest that the unique ligand environment of PqqE may be relevant to its role in PQQ biosynthesis within an oxygen-dependent biosynthetic pathway.
Collapse
Affiliation(s)
- Wen Zhu
- California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States
| | - Lindsey M Walker
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Lizhi Tao
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States
| | - Xuetong Wei
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, United States
| | - R David Britt
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Sean J Elliott
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Judith P Klinman
- California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, United States.,Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Jia M, Sen S, Wachnowsky C, Fidai I, Cowan JA, Wysocki VH. Characterization of [2Fe-2S]-Cluster-Bridged Protein Complexes and Reaction Intermediates by use of Native Mass Spectrometric Methods. Angew Chem Int Ed Engl 2020; 59:6724-6728. [PMID: 32031732 PMCID: PMC7170024 DOI: 10.1002/anie.201915615] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 01/08/2023]
Abstract
Many iron-sulfur proteins involved in cluster trafficking form [2Fe-2S]-cluster-bridged complexes that are often challenging to characterize because of the inherent instability of the cluster at the interface. Herein, we illustrate the use of fast, online buffer exchange coupled to a native mass spectrometry (OBE nMS) method to characterize [2Fe-2S]-cluster-bridged proteins and their transient cluster-transfer intermediates. The use of this mechanistic and protein-characterization tool is demonstrated with holo glutaredoxin 5 (GLRX5) homodimer and holo GLRX5:BolA-like protein 3 (BOLA3) heterodimer. Using the OBE nMS method, cluster-transfer reactions between the holo-dimers and apo-ferredoxin (FDX2) are monitored, and intermediate [2Fe-2S] species, such as (FDX2:GLRX5:[2Fe-2S]:GSH) and (FDX2:BOLA3:GLRX5:[2Fe-2S]:GSH) are detected. The OBE nMS method is a robust technique for characterizing iron-sulfur-cluster-bridged protein complexes and transient iron-sulfur-cluster transfer intermediates.
Collapse
Affiliation(s)
- Mengxuan Jia
- Department of Chemistry and Biochemistry; Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210 (USA)
| | - Sambuddha Sen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (USA)
| | - Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (USA)
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (USA)
| | - J. A. Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 (USA)
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry; Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210 (USA)
| |
Collapse
|
24
|
Jia M, Sen S, Wachnowsky C, Fidai I, Cowan JA, Wysocki VH. Characterization of [2Fe–2S]‐Cluster‐Bridged Protein Complexes and Reaction Intermediates by use of Native Mass Spectrometric Methods. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengxuan Jia
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
- Resource for Native Mass Spectrometry Guided Structural BiologyThe Ohio State University Columbus OH 43210 USA
| | - Sambuddha Sen
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
| | - Christine Wachnowsky
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
| | - Insiya Fidai
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
| | - James A. Cowan
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
| | - Vicki H. Wysocki
- Department of Chemistry and BiochemistryThe Ohio State University Columbus OH 43210 USA
- Resource for Native Mass Spectrometry Guided Structural BiologyThe Ohio State University Columbus OH 43210 USA
| |
Collapse
|
25
|
Stewart MYY, Bush MJ, Crack JC, Buttner MJ, Le Brun NE. Interaction of the Streptomyces Wbl protein WhiD with the principal sigma factor σ HrdB depends on the WhiD [4Fe-4S] cluster. J Biol Chem 2020; 295:9752-9765. [PMID: 32303639 PMCID: PMC7363131 DOI: 10.1074/jbc.ra120.012708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/15/2020] [Indexed: 12/29/2022] Open
Abstract
The bacterial protein WhiD belongs to the Wbl family of iron-sulfur [Fe-S] proteins present only in the actinomycetes. In Streptomyces coelicolor, it is required for the late stages of sporulation, but precisely how it functions is unknown. Here, we report results from in vitro and in vivo experiments with WhiD from Streptomyces venezuelae (SvWhiD), which differs from S. coelicolor WhiD (ScWhiD) only at the C terminus. We observed that, like ScWhiD and other Wbl proteins, SvWhiD binds a [4Fe-4S] cluster that is moderately sensitive to O2 and highly sensitive to nitric oxide (NO). However, although all previous studies have reported that Wbl proteins are monomers, we found that SvWhiD exists in a monomer-dimer equilibrium associated with its unusual C-terminal extension. Several Wbl proteins of Mycobacterium tuberculosis are known to interact with its principal sigma factor SigA. Using bacterial two-hybrid, gel filtration, and MS analyses, we demonstrate that SvWhiD interacts with domain 4 of the principal sigma factor of Streptomyces, σHrdB (σHrdB 4). Using MS, we determined the dissociation constant (Kd ) for the SvWhiD-σHrdB 4 complex as ∼0.7 μm, consistent with a relatively tight binding interaction. We found that complex formation was cluster dependent and that a reaction with NO, which was complete at 8-10 NO molecules per cluster, resulted in dissociation into the separate proteins. The SvWhiD [4Fe-4S] cluster was significantly less sensitive to reaction with O2 and NO when SvWhiD was bound to σHrdB 4, consistent with protection of the cluster in the complex.
Collapse
Affiliation(s)
- Melissa Y Y Stewart
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
26
|
Pellicer Martinez MT, Crack JC, Stewart MYY, Bradley JM, Svistunenko DA, Johnston AWB, Cheesman MR, Todd JD, Le Brun NE. Mechanisms of iron- and O 2-sensing by the [4Fe-4S] cluster of the global iron regulator RirA. eLife 2019; 8:e47804. [PMID: 31526471 PMCID: PMC6748827 DOI: 10.7554/elife.47804] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023] Open
Abstract
RirA is a global regulator of iron homeostasis in Rhizobium and related α-proteobacteria. In its [4Fe-4S] cluster-bound form it represses iron uptake by binding to IRO Box sequences upstream of RirA-regulated genes. Under low iron and/or aerobic conditions, [4Fe-4S] RirA undergoes cluster conversion/degradation to apo-RirA, which can no longer bind IRO Box sequences. Here, we apply time-resolved mass spectrometry and electron paramagnetic resonance spectroscopy to determine how the RirA cluster senses iron and O2. The data indicate that the key iron-sensing step is the O2-independent, reversible dissociation of Fe2+ from [4Fe-4S]2+ to form [3Fe-4S]0. The dissociation constant for this process was determined as Kd = ~3 µM, which is consistent with the sensing of 'free' iron in the cytoplasm. O2-sensing occurs through enhanced cluster degradation under aerobic conditions, via O2-mediated oxidation of the [3Fe-4S]0 intermediate to form [3Fe-4S]1+. This work provides a detailed mechanistic/functional view of an iron-responsive regulator.
Collapse
Affiliation(s)
- Ma Teresa Pellicer Martinez
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Melissa YY Stewart
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | | | - Andrew WB Johnston
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Jonathan D Todd
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| |
Collapse
|
27
|
Grabarczyk DB, Ash PA, Myers WK, Dodd EL, Vincent KA. Dioxygen controls the nitrosylation reactions of a protein-bound [4Fe4S] cluster. Dalton Trans 2019; 48:13960-13970. [DOI: 10.1039/c9dt00924h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron–sulfur clusters are exceptionally tuneable protein cofactors, and as one of their many roles they are involved in biological responses to nitrosative stress.
Collapse
Affiliation(s)
- Daniel B. Grabarczyk
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Philip A. Ash
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - William K. Myers
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Erin L. Dodd
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Kylie A. Vincent
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| |
Collapse
|