1
|
Beyer J, Grønbech TBE, Zhang J, Kato K, Brummerstedt Iversen B. Electron density and thermal motion of diamond at elevated temperatures. Acta Crystallogr A Found Adv 2023; 79:41-50. [PMID: 36601762 PMCID: PMC9813686 DOI: 10.1107/s2053273322010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022] Open
Abstract
The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson-Hansen-Coppens-Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be ΘD = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range.
Collapse
Affiliation(s)
- Jonas Beyer
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Thomas Bjørn Egede Grønbech
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jiawei Zhang
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Kenichi Kato
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Bo Brummerstedt Iversen
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark,Correspondence e-mail:
| |
Collapse
|
2
|
Vosegaard ES, Thomsen MK, Krause L, Grønbech TBE, Mamakhel A, Takahashi S, Nishibori E, Iversen BB. Synchrotron X-ray Electron Density Analysis of Chemical Bonding in the Graphitic Carbon Nitride Precursor Melamine. Chemistry 2022; 28:e202201295. [PMID: 35760733 PMCID: PMC9804335 DOI: 10.1002/chem.202201295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 01/05/2023]
Abstract
Melamine is a precursor and building block for graphitic carbon nitride (g-CN) materials, a group of layered materials showing great promise for catalytic applications. The synthetic pathway to g-CN includes a polycondensation reaction of melamine by evaporation of ammonia. Melamine molecules in the crystal organize into wave-like planes with an interlayer distance of 3.3 Å similar to that of g-CN. Here we present an extensive investigation of the experimental electron density of melamine obtained from modelling of synchrotron radiation X-ray single-crystal diffraction data measured at 25 K with special focus on the molecular geometry and intermolecular interactions. Both intra- and interlayer structures are dominated by hydrogen bonding and π-interactions. Theoretical gas-phase optimizations of the experimental molecular geometry show that bond lengths and angles for atoms in the same chemical environment (C-N bonds in the ring, amine groups) differ significantly more for the experimental geometry than for the gas-phase-optimized geometries, indicating that intermolecular interactions in the crystal affects the molecular geometry. In the experimental crystal geometry, one amine group has significantly more sp3 -like character than the others, hinting at a possible formation mechanism of g-CN. Topological analysis and energy frameworks show that the nitrogen atom in this amine group participates in weak intralayer hydrogen bonding. We hypothesize that melamine condenses to g-CN within the layers and that the unique amine group plays a key role in the condensation process.
Collapse
Affiliation(s)
- Emilie S. Vosegaard
- Department of Chemistry and iNANOAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | - Maja K. Thomsen
- Department of Chemistry and iNANOAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | - Lennard Krause
- Department of Chemistry and iNANOAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | - Thomas B. E. Grønbech
- Department of Chemistry and iNANOAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | - Aref Mamakhel
- Department of Chemistry and iNANOAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | - Seiya Takahashi
- Department of PhysicsFaculty of Pure and Applied Sciences andTsukuba Research Center for Energy Materials Science (TREMS)University of TsukubaTsukubaIbaraki305-8571Japan
| | - Eiji Nishibori
- Department of PhysicsFaculty of Pure and Applied Sciences andTsukuba Research Center for Energy Materials Science (TREMS)University of TsukubaTsukubaIbaraki305-8571Japan
| | - Bo B. Iversen
- Department of Chemistry and iNANOAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| |
Collapse
|
3
|
Yang J, Li Y, Qiu Q, Wang R, Yan W, Yu Y, Niu L, Pei H, Wei H, Ouyang L, Ye H, Xu D, Wei Y, Chen Q, Chen L. Small Molecules Promote Selective Denaturation and Degradation of Tubulin Heterodimers through a Low-Barrier Hydrogen Bond. J Med Chem 2022; 65:9159-9173. [PMID: 35762925 DOI: 10.1021/acs.jmedchem.2c00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here, we report a novel mechanism to selectively degrade target proteins. 3-(3-Phenoxybenzyl)amino-β-carboline (PAC), a tubulin inhibitor, promotes selective degradation of αβ-tubulin heterodimers. Biochemical studies have revealed that PAC specifically denatures tubulin, making it prone to aggregation that predisposes it to ubiquitinylation and then degradation. The degradation is mediated by a single hydrogen bond formed between the pyridine nitrogen of PAC and βGlu198, which is identified as a low-barrier hydrogen bond (LBHB). In contrast, another two tubulin inhibitors that only form normal hydrogen bonds with βGlu198 exhibit no degradation effect. Thus, the LBHB accounts for the degradation. We then screened for compounds capable of forming an LBHB with βGlu198 and demonstrated that BML284, a Wnt signaling activator, also promotes tubulin heterodimer degradation through the LBHB. Our study provided a unique example of LBHB function and identified a novel approach to obtain tubulin degraders.
Collapse
Affiliation(s)
- Jianhong Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yong Li
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qiang Qiu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Ruihan Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wei Yan
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yamei Yu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lu Niu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Heying Pei
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Haoche Wei
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Liang Ouyang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Haoyu Ye
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuquan Wei
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qiang Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
4
|
Rincón D, Doerr M, Daza MC. Hydrogen Bonds and n → π* Interactions in the Acetylation of Propranolol Catalyzed by Candida antarctica Lipase B: A QTAIM Study. ACS OMEGA 2021; 6:20992-21004. [PMID: 34423207 PMCID: PMC8375099 DOI: 10.1021/acsomega.1c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Enzyme-substrate interactions play a crucial role in enzymatic catalysis. Quantum theory of atoms in molecules (QTAIM) calculations are extremely useful in computational studies of these interactions because they provide very detailed information about the strengths and types of molecular interactions. QTAIM also provides information about the intramolecular changes that occur in the catalytic reaction. Here, we analyze the enzyme-substrate interactions and the topological properties of the electron density in the enantioselective step of the acylation of (R,S)-propranolol, an aminoalcohol with therapeutic applications, catalyzed by Candida antarctica lipase B. Eight reaction paths (four for each enantiomer) are investigated and the energies, atomic charges, hydrogen bonds, and n → π* interactions of propranolol, the catalytic triad (composed of D187, H224, and S105), and the oxyanion hole are analyzed. It is found that D187 acts as an electron density reservoir for H224, and H224 acts as an electron density reservoir for the active site of the protein. It releases electron density when the tetrahedral intermediate is formed from the Michaelis complex and receives it when the enzyme-product complex is formed. Hydrogen bonds can be grouped into noncovalent and covalent hydrogen bonds. The latter are stronger and more important for the reaction than the former. We also found weak n → π* interactions, which are characterized by QTAIM and the natural bond orbital (NBO) analysis.
Collapse
|
5
|
Ohtani R, Matsunari H, Yamamoto T, Kimoto K, Isobe M, Fujii K, Yashima M, Fujii S, Kuwabara A, Hijikata Y, Noro S, Ohba M, Kageyama H, Hayami S. Responsive Four‐Coordinate Iron(II) Nodes in FePd(CN)
4. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hiromu Matsunari
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Takafumi Yamamoto
- Laboratory for Materials and Structures Tokyo Institute of Technology 4259 Nagatsuta, Midori Yokohama 226-8503 Japan
| | - Koji Kimoto
- Research Center for Advanced Measurement and Characterization National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Masaaki Isobe
- Research Center for Functional Materials National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Kotaro Fujii
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1-W4-17, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Masatomo Yashima
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1-W4-17, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Susumu Fujii
- Nanostructures Research Laboratory Japan Fine Ceramics Center 2-4-1 Mutsuno, Atsuta Nagoya 456-8587 Japan
- Center for Materials Research by Information Integration National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Akihide Kuwabara
- Nanostructures Research Laboratory Japan Fine Ceramics Center 2-4-1 Mutsuno, Atsuta Nagoya 456-8587 Japan
- Center for Materials Research by Information Integration National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan
| | - Shin‐ichiro Noro
- Faculty of Environmental Earth Science Hokkaido University Sapporo 060-0810 Japan
| | - Masaaki Ohba
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroshi Kageyama
- Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Shinya Hayami
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
6
|
Ohtani R, Matsunari H, Yamamoto T, Kimoto K, Isobe M, Fujii K, Yashima M, Fujii S, Kuwabara A, Hijikata Y, Noro SI, Ohba M, Kageyama H, Hayami S. Responsive Four-Coordinate Iron(II) Nodes in FePd(CN) 4. Angew Chem Int Ed Engl 2020; 59:19254-19259. [PMID: 32662185 DOI: 10.1002/anie.202008187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Metal node design is crucial for obtaining structurally diverse coordination polymers (CPs) and metal-organic frameworks with desirable properties; however, FeII ions are exclusively six-coordinated. Herein, we present a cyanide-bridged three-dimensional (3D) CP, FePd(CN)4 , bearing four-coordinate FeII ions, which is synthesized by thermal treatment of a two-dimensional (2D) six-coordinate FeII CP, Fe(H2 O)2 Pd(CN)4 ⋅4 H2 O, to remove water molecules. Atomic-resolution transmission electron microscopy and powder X-ray and neutron diffraction measurements revealed that the FePd(CN)4 structure is composed of a two-fold interpenetrated PtS topology network, where the FeII center demonstrates an intermediate geometry between tetrahedral and square-planar coordination. This four-coordinate FeII center with the distorted geometry can act as a thermo-responsive flexible node in the PtS network.
Collapse
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiromu Matsunari
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Takafumi Yamamoto
- Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226-8503, Japan
| | - Koji Kimoto
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Masaaki Isobe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kotaro Fujii
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masatomo Yashima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Susumu Fujii
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya, 456-8587, Japan.,Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Akihide Kuwabara
- Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya, 456-8587, Japan.,Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Shin-Ichiro Noro
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroshi Kageyama
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
7
|
Tolborg K, Iversen BB. Electron Density Studies in Materials Research. Chemistry 2019; 25:15010-15029. [DOI: 10.1002/chem.201903087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/13/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Kasper Tolborg
- Center for Materials CrystallographyDepartment of Chemistry and iNANOAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Bo B. Iversen
- Center for Materials CrystallographyDepartment of Chemistry and iNANOAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|