1
|
Hiroto S, Chujo M. Donor-Acceptor-Donor Dyads with Electron-Rich π-Extended Azahelicenes to Panchromatic Absorbing Dyes. Chem Asian J 2025; 20:e202400830. [PMID: 39215744 DOI: 10.1002/asia.202400830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Panchromatic dyes have been highly useful in the realm of optical devices. Here, we report that panchromatic dyes with heterohelicenes have been successfully synthesized using a donor-acceptor strategy. Our synthesis resulted in the creation of π-extended aza[5]helicene oligomers with butadiyne linkages, which displayed bathochromically shifted absorption and emission spectra. The solvent-dependent optical measurements revealed the intramolecular charge transfer characteristic of these molecules, and theoretical calculations described the biased molecular orbitals on the azahelicene units that generated the charge-transfer characteristic. Encouraged by these results, we also prepared donor-acceptor-donor dyads using azahelicenes and dimide derivatives, resulting in panchromatic absorbing characteristics covering the range from 250 nm to 800 nm. Theoretical calculations showed the presence of mixed charge-transfer transitions and localized transitions on the azahelicene units, which led to a broad light-absorbing property covering the near IR region. Additionally, we conducted measurements of circular dichroism and circularly polarized luminescence for the obtained products. The g-values were reduced by oligomerization, indicating that the lowest energy transitions were allowed in nature.
Collapse
Affiliation(s)
- Satoru Hiroto
- Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Moeko Chujo
- Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
2
|
Zhang F, Brancaccio V, Saal F, Deori U, Radacki K, Braunschweig H, Rajamalli P, Ravat P. Ultra-Narrowband Circularly Polarized Luminescence from Multiple 1,4-Azaborine-Embedded Helical Nanographenes. J Am Chem Soc 2024; 146:29782-29791. [PMID: 39435966 DOI: 10.1021/jacs.4c11404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
In this manuscript we present a strategy to achieve ultranarrowband circularly polarized luminescence (CPL) from multiple 1,4-azaborine-embedded helical nanographenes. The impact of number and position of boron and nitrogen atoms in the rigid core of the molecule on optical properties─including absorption and emission maxima, photoluminescence quantum yield, Stokes shift, excited singlet-triplet energy gap and full width at half-maximum (fwhm) for CPL and fluorescence─was investigated. The molecules reported here exhibits ultranarrowband fluorescence (fwhm 16-17.5 nm in toluene) and CPL (fwhm 18-19 nm in toluene). To the best of our knowledge, this is among the narrowest CPL for any organic molecule reported to date. Quantum chemical calculations, including computed CPL spectra involving vibronic contributions, provide valuable insights for future molecular design aimed at achieving narrowband CPL.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Vincenzo Brancaccio
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Fridolin Saal
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Upasana Deori
- Materials Research Centre, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Krzysztof Radacki
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Pachaiyappan Rajamalli
- Materials Research Centre, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Prince Ravat
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| |
Collapse
|
3
|
Guo LF, Wang M, Zhao CH. The Solid-State Multi-Color Fluorescence Switching from a [2.2]Paracyclophane-Based Triarylborane. Chemistry 2024; 30:e202402287. [PMID: 39119858 DOI: 10.1002/chem.202402287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/10/2024]
Abstract
The fluorophores, the fluorescence of which can be switched between multi bright colors in the solid state, show promising applications not only in the sophisticated multicolor display but also in the advanced encryption and anti-counterfeiting systems. However, it is very challenging to obtain such fluorophores. Herein, we disclose such an example, g-BPhANMe2-Cp, which contains an electron-donating dimethylamino (NMe2) and an electron-accepting [(2-dimesitylboryl)phenyl]acetyl at the pseudo-gem position of [2.2]paracyclophane skeleton. This molecule can display tricolor mechanochromic luminescence (MCL) due to the different responses of the mechanically ground amorphous state to heating and solvent-fuming. Owing to the absence of intermolecular π-π interactions in the solid state, the fluorescence efficiency is very high irrespective of its morphological state (ΦF=0.60-0.87). Moreover, this molecule also displays reversible acidochromic luminescence (ACL) by protonation and deprotonation of NMe2 with trifluoroacetic acid (TFA) and triethylamine (TEA), respectively. The protonated sample fluoresces (ΦF=0.31) at much shorter wavelength due to the interruption of intramolecular charge transfer process. Therefore, with the combination of tricolor MCL and ACL properties, the solid-state emission of g-BPhANMe2-Cp can be switched among four bright fluorescence colors of yellow, green, cyan and blue via treatment with appropriate stimulus.
Collapse
Affiliation(s)
- Lian-Feng Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Min Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Cui-Hua Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
4
|
Qu C, Xu Y, Wang Y, Nie Y, Ye K, Zhang H, Zhang Z. Bridging of Cove Regions: A Strategy for Realizing Persistently Chiral Double Heterohelicenes with Attractive Luminescent Properties. Angew Chem Int Ed Engl 2024; 63:e202400661. [PMID: 38333930 DOI: 10.1002/anie.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
The racemization of chiral organic compounds is a common chemical phenomenon. However, it often poses configurational-stability issues to the application of this class of compounds. Achieving chiral organic compounds without the risk of racemization is fascinating, but it is challenging due to a lack of strategies. Here, we reveal the cove-regions bridging strategy for achieving persistently chiral multi-helicenes (incapable of racemization), based on the synthesized proof-of-concept double hetero[4]helicenes featuring macrocycle structures with a small 3D cavity. Additionally, we demonstrate that the strategy is also effective in tuning the electronic structures of multi-helicenes, resulting in a conversion from luminescence silence into thermally activated delayed fluorescence (TADF) for the present system. Furthermore, red circularly polarized TADF based on small double [4]helicene systems is achieved for the first time using this strategy. The disclosed cove-regions bridging strategy provides an opportunity to modulate the electronic structures and luminescent properties of multi-helicenes without concern for racemization, thus significantly enhancing the structural and property diversity of multi-helicenes for various applications.
Collapse
Affiliation(s)
- Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Yufang Nie
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
5
|
Vázquez-Domínguez P, Rizo JF, Arteaga JF, Jacquemin D, Favereau L, Ros A, Pischel U. Azaborahelicene fluorophores derived from four-coordinate N, C-boron chelates: synthesis, photophysical and chiroptical properties. Org Chem Front 2024; 11:843-853. [PMID: 38298564 PMCID: PMC10825847 DOI: 10.1039/d3qo01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024]
Abstract
A series of six azaborahelicenes with varying electron-donor substitution at the 4-position of the aryl residue (i.e., naphthyl) or with variable π-extension of the aryl residue (thianthrenyl, anthryl, pyrenyl) was prepared with an efficient and flexible synthetic protocol. These different types of functionalization afforded notably pronounced intramolecular charge-transfer (ICT) character for the dyes with the strongest electron donor substitution (NMe2) or easiest to oxidize aryl residues, as evidenced by photophysical investigations. These effects also impact the corresponding chiroptical properties of the separated M- and P-enantiomers, which notably display circularly polarized luminescence (CPL) with dissymmetry factors in the order of magnitude of 10-4 to 10-3. Theoretical calculations confirm the optical spectroscopy data and are in agreement with the proposed involvement of ICT processes.
Collapse
Affiliation(s)
- Pablo Vázquez-Domínguez
- Institute for Chemical Research (CSIC-US) C/Américo Vespucio 49 E-41092 Seville Spain
- Department of Organic Chemistry, Innovation Centre in Advanced Chemistry, ORFEO-CINQA, University of Seville C/Prof. García González 1 41012 Seville Spain
| | - José Francisco Rizo
- Institute for Chemical Research (CSIC-US) C/Américo Vespucio 49 E-41092 Seville Spain
| | - Jesús F Arteaga
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva Campus de El Carmen s/n E-21071 Huelva Spain
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230 F-44000 Nantes France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | | | - Abel Ros
- Institute for Chemical Research (CSIC-US) C/Américo Vespucio 49 E-41092 Seville Spain
| | - Uwe Pischel
- CIQSO - Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva Campus de El Carmen s/n E-21071 Huelva Spain
| |
Collapse
|
6
|
Takahashi H, Watanabe H, Ito S, Tanaka K, Chujo Y. Design and Synthesis of Far-Red to Near-Infrared Chromophores with Pyrazine-Based Boron Complexes. Chem Asian J 2023; 18:e202300489. [PMID: 37365136 DOI: 10.1002/asia.202300489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
We synthesized new binuclear boron complexes based on pyrazine with ortho and para substitution patterns. It was demonstrated that the para-linked complexes possess a significantly narrow energy gap between highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), leading to their far-red to near-infrared emission properties. Meanwhile, the ortho-substituted complex showed orange emission. Considering the HOMO and LUMO distributions of pyrazine, the boron complexation to the nitrogen atoms would stabilize its LUMO more efficiently than its HOMO because a nodal plane in the HOMO passes through the two nitrogen atoms. The theoretical study suggests that the para-substitution would not significantly perturb such a characteristic HOMO distribution originating from pyrazine in stark contrast to the ortho-substituted one. As a result, the HOMO-LUMO gap of the para-linked complex is dramatically narrower than that of the ortho-linked one.
Collapse
Grants
- Kato Foundation for Promotion of Science
- Grant-in-Aid for Early-Career Scientists
- 21K14673 JSPS KAKENHI
- 23K13793 JSPS KAKENHI
- 21H02001 JSPS KAKENHI
- 21K19002 JSPS KAKENHI
- 2401 The Ministry of Education, Culture, Sports, Science, and Technology, Japan
- JP24102013 The Ministry of Education, Culture, Sports, Science, and Technology, Japan
Collapse
Affiliation(s)
- Hiromasa Takahashi
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hiroyuki Watanabe
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
7
|
Zhang F, Rauch F, Swain A, Marder TB, Ravat P. Efficient Narrowband Circularly Polarized Light Emitters Based on 1,4-B,N-embedded Rigid Donor-Acceptor Helicenes. Angew Chem Int Ed Engl 2023; 62:e202218965. [PMID: 36799716 DOI: 10.1002/anie.202218965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/18/2023]
Abstract
Narrow-band emission is essential for applicable circularly polarized luminescence (CPL) active materials in ultrahigh-definition CP-OLEDs. One of the most promising classes of CPL active molecules, helicenes, however, typically exhibit broad emission with a large Stokes shift. We present, herein, a design strategy capitalizing on intramolecular donor-acceptor interactions between nitrogen and boron atoms to address this issue. 1,4-B,N-embedded configurationally stable single- and double helicenes were synthesized straightforwardly. Both helicenes show unprecedentedly narrow fluorescence and CPL bands (full width at half maximum between 17-28 nm, 0.07-0.13 eV) along with high fluorescence quantum yields (72-85 %). Quantum chemical calculations revealed that the relative localization of the natural transition orbitals, mainly on the rigid core of the molecule, and small values of root-mean-square displacements between S0 and S1 state geometries, contribute to the narrower emission.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Florian Rauch
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Am Hubland, 97074, Würzburg, Germany
| | - Asim Swain
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Am Hubland, 97074, Würzburg, Germany
| | - Prince Ravat
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
8
|
2,15-dibutoxy-6,11-dicyano[6]Helicene: Synthesis, electrochemical, photophysical properties and computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zhao F, Zhao J, Wang Y, Liu HT, Shang Q, Wang N, Yin X, Zheng X, Chen P. [5]Helicene-based chiral triarylboranes with large luminescence dissymmetry factors over a 10 -2 level: synthesis and design strategy via isomeric tuning of steric substitutions. Dalton Trans 2022; 51:6226-6234. [PMID: 35362491 DOI: 10.1039/d2dt00677d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Constructing chiral luminescent systems with both large luminescence dissymmetry factor (glum) and high luminous efficiency has been considered a great challenge. We herein describe a highly efficient approach to sterically stabilize the helical configurations of carbo[5]helicenes for improved CPL properties in a series of π-donor and π-acceptor substituted [5]helicenes (1, 2, 3, 4 and 5). Enabled by the ortho-installation of methyl groups as well as the steric effects of triarylamine (Ar3N) and triarylborane (Ar3B) handles in meta-substituted [5]helicenes, their optical resolution into enantiomers has been accomplished using preparative chiral HPLC. The molecular chirality of [5]helicenes can be transferred to Ar3B and Ar3N as light emitters, which allowed further investigations of their chiroptics, including optical rotation, circular dichroism (CD) and circularly polarized luminescence (CPL). Remarkably, 4 has been demonstrated to display dramatically enhanced CPL performance with a much larger glum (>1.2 × 10-2) and an increased emission quantum efficiency (ΦS = 0.75) compared with the other analogues, as a result of the isomeric tuning of substitutions with differential steric and electronic effects. These experimentally observed CPL activities were rationalized by TD-DFT computations for the angle (θμ,m) between electric and magnetic transition dipole moments in the excited states. In addition, the conspicuous intramolecular donor-acceptor charge transfer led to thermal responses in the emissions of 2 and 4 over a broad temperature range.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | | | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
10
|
Jia X, Nitsch J, Wu Z, Friedrich A, Krebs J, Krummenacher I, Fantuzzi F, Braunschweig H, Moos M, Lambert C, Engels B, Marder TB. One- and two-electron reduction of triarylborane-based helical donor-acceptor compounds. Chem Sci 2021; 12:11864-11872. [PMID: 34659727 PMCID: PMC8442707 DOI: 10.1039/d1sc02409d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
One-electron chemical reduction of 10-(dimesitylboryl)-N,N-di-p-tolylbenzo[c]phenanthrene-4-amine (3-B(Mes)2-[4]helix-9-N(p-Tol)2) 1 and 13-(dimesitylboryl)-N,N-di-p-tolyldibenzo[c,g]phenanthrene-8-amine (3-B(Mes)2-[5]helix-12-N(p-Tol)2) 2 gives rise to monoanions with extensive delocalization over the annulated helicene rings and the boron p z orbital. Two-electron chemical reduction of 1 and 2 produces open-shell biradicaloid dianions with temperature-dependent population of the triplet states due to small singlet-triplet gaps. These results have been confirmed by single-crystal X-ray diffraction, EPR and UV/vis-NIR spectroscopy, and DFT calculations.
Collapse
Affiliation(s)
- Xiangqing Jia
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jörn Nitsch
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Zhu Wu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
11
|
Krebs J, Haehnel M, Krummenacher I, Friedrich A, Braunschweig H, Finze M, Ji L, Marder TB. Synthesis and Structure of an o-Carboranyl-Substituted Three-Coordinate Borane Radical Anion. Chemistry 2021; 27:8159-8167. [PMID: 33769625 PMCID: PMC8252506 DOI: 10.1002/chem.202100938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Bis(1-(4-tolyl)-carboran-2-yl)-(4-tolyl)-borane [(1-(4-MeC6 H4 )-closo-1,2-C2 B10 H10 -2-)2 (4-MeC6 H4 )B] (1), a new bis(o-carboranyl)-(R)-borane was synthesised by lithiation of the o-carboranyl precursor and subsequent salt metathesis reaction with (4-tolyl)BBr2 . Cyclic voltammetry experiments on 1 show multiple distinct reduction events with a one-electron first reduction. In a selective reduction experiment the corresponding paramagnetic radical anion 1.- was isolated and characterized. Single-crystal structure analyses allow an in-depth comparison of 1, 1.- , their calculated geometries, and the S1 excited state of 1. Photophysical studies of 1 show a charge transfer (CT) emission with low quantum yield in solution but a strong increase in the solid state. TD-DFT calculations were used to identify transition-relevant orbitals.
Collapse
Affiliation(s)
- Johannes Krebs
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Martin Haehnel
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE)Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University127 West Youyi Road710072Xi'anP. R. China
| | - Todd B. Marder
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
12
|
Kubo H, Hirose T, Shimizu D, Matsuda K. Donor-Acceptor Type [5]Helicene Derivative with Strong Circularly Polarized Luminescence. CHEM LETT 2021. [DOI: 10.1246/cl.200913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiromu Kubo
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Daiki Shimizu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
13
|
Full J, Panchal SP, Götz J, Krause A, Nowak‐Król A. Modular Synthesis of Organoboron Helically Chiral Compounds: Cutouts from Extended Helices. Angew Chem Int Ed Engl 2021; 60:4350-4357. [PMID: 33244880 PMCID: PMC7898935 DOI: 10.1002/anie.202014138] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Indexed: 11/12/2022]
Abstract
Two types of helically chiral compounds bearing one and two boron atoms were synthesized by a modular approach. Formation of the helical scaffolds was executed by the introduction of boron to flexible biaryl and triaryl derived from small achiral building blocks. All-ortho-fused azabora[7]helicenes feature exceptional configurational stability, blue or green fluorescence with quantum yields (Φfl ) of 18-24 % in solution, green or yellow solid-state emission (Φfl up to 23 %), and strong chiroptical response with large dissymmetry factors of up to 1.12×10-2 . Azabora[9]helicenes consisting of angularly and linearly fused rings are blue emitters exhibiting Φfl of up to 47 % in CH2 Cl2 and 25 % in the solid state. As revealed by the DFT calculations, their P-M interconversion pathway is more complex than that of H1. Single-crystal X-ray analysis shows clear differences in the packing arrangement of methyl and phenyl derivatives. These molecules are proposed as primary structures of extended helices.
Collapse
Affiliation(s)
- Julian Full
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Santosh P. Panchal
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Julian Götz
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Ana‐Maria Krause
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Agnieszka Nowak‐Król
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
14
|
Full J, Panchal SP, Götz J, Krause A, Nowak‐Król A. Modulare Synthese helikal‐chiraler Organobor‐Verbindungen: Ausschnitte verlängerter Helices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julian Full
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Santosh P. Panchal
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Julian Götz
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Ana‐Maria Krause
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Agnieszka Nowak‐Król
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
15
|
Nandi RP, Sudhakar P, Kalluvettukuzhy NK, Thilagar P. Triarylborane-Appended Anils and Boranils: Solid-State Emission, Mechanofluorochromism, and Phosphorescence. Chemistry 2020; 26:16306-16317. [PMID: 32578898 DOI: 10.1002/chem.202001470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/24/2020] [Indexed: 01/08/2023]
Abstract
Herein, the design, synthesis, optical properties, and mechanofluorochromism characteristics of a series of conjugates having covalently linked triarylborane (TAB) and anil/boranil units (TAB-anil: 1 a-3 a and TAB-boranil: 1-3) are reported. The electronic interactions between TAB and anil/boranil in 1 a-3 a and 1-3 were fine-tuned by changing the boryl moiety's position on the phenyl spacer connecting the BMes2 (Mes=mesityl) and anil/boranil units. A boryl moiety at the meta position (1 a) of the phenyl spacer stabilizes the enolic form (E-OH), whereas a boryl moiety at the para position (2 a and 3 a) stabilizes the keto form (Z-NH) in the solid state. However, in solution 1 a, 2 a, and 3 a exhibit keto-enol tautomerism in both ground and excited states. Compounds 1 a-3 a and 1-3 show red-shifted absorption compared with 4 a and 4, which are devoid of TAB moieties, which indicate effective participation of an empty p orbital on the boron center in 1 a-3 a and 1-3. Compounds 1 and 2 showed fluorescence variations in response to external stimuli such as mechanical grinding. Long phosphorescence lifetimes of 18-46 ms were observed for compounds 1-3. The observed optical properties of 1 a-3 a and 1-3 are rationalized in the context of quantum mechanical calculations.
Collapse
Affiliation(s)
- Rajendra Prasad Nandi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pagidi Sudhakar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Neena K Kalluvettukuzhy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
16
|
Anderson KP, Waddington MA, Balaich GJ, Stauber JM, Bernier NA, Caram JR, Djurovich PI, Spokoyny AM. A molecular boron cluster-based chromophore with dual emission. Dalton Trans 2020; 49:16245-16251. [PMID: 32379258 DOI: 10.1039/d0dt00826e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bromination of the luminescent borane, anti-B18H22, via electrophilic substitution using AlCl3 and Br2, yields the monosubstituted derivative 4-Br-anti-B18H21 as an air-stable crystalline solid. In contrast to the unsubstituted parent compound, 4-Br-anti-B18H21 possesses dual emission upon excitation with UV light and exhibits fluorescence at 410 nm and phosphorescence at 503 nm, with Φtotal = 0.07 in oxygen-free cyclohexane. Increased oxygen content in cyclohexane solution quenches the phosphorescence signal. The fluorescent signal intensity remains unaffected by oxygen, suggesting that this molecule could be used as a ratiometric oxygen probe.
Collapse
Affiliation(s)
- Kierstyn P Anderson
- Department of Chemistry and Biochemistry and California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rauch F, Endres P, Friedrich A, Sieh D, Hähnel M, Krummenacher I, Braunschweig H, Finze M, Ji L, Marder TB. An Iterative Divergent Approach to Conjugated Starburst Borane Dendrimers. Chemistry 2020; 26:12951-12963. [PMID: 32428359 PMCID: PMC7590090 DOI: 10.1002/chem.202001985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/13/2020] [Indexed: 12/21/2022]
Abstract
Using a new divergent approach, conjugated triarylborane dendrimers were synthesized up to the 2nd generation. The synthetic strategy consists of three steps: 1) functionalization, via iridium catalyzed C-H borylation; 2) activation, via fluorination of the generated boronate ester with K[HF2 ] or [N(nBu4 )][HF2 ]; and 3) expansion, via reaction of the trifluoroborate salts with aryl Grignard reagents. The concept was also shown to be viable for a convergent approach. All but one of the conjugated borane dendrimers exhibit multiple, distinct and reversible reduction potentials, making them potentially interesting materials for applications in molecular accumulators. Based on their photophysical properties, the 1st generation dendrimers exhibit good conjugation over the whole system. However, the conjugation does not increase further upon expansion to the 2nd generation, but the molar extinction coefficients increase linearly with the number of triarylborane subunits, suggesting a potential application as photonic antennas.
Collapse
Affiliation(s)
- Florian Rauch
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Peter Endres
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Daniel Sieh
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Martin Hähnel
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Lei Ji
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Frontiers Science Center for Flexible Electronics (FSCFE)Shaanxi Institute of Flexible Electronics (SIFE) &Shaanxi Institute of Biomedical Materials and Engineering (SIBME)Northwestern Polytechnical University127 West Youryi Road710072Xi'anChina
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
18
|
Rauch F, Fuchs S, Friedrich A, Sieh D, Krummenacher I, Braunschweig H, Finze M, Marder TB. Highly Stable, Readily Reducible, Fluorescent, Trifluoromethylated 9-Borafluorenes. Chemistry 2020; 26:12794-12808. [PMID: 31999019 PMCID: PMC7589458 DOI: 10.1002/chem.201905559] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 01/29/2023]
Abstract
Three different perfluoroalkylated borafluorenes (F Bf) were prepared and their electronic and photophysical properties were investigated. The systems have four trifluoromethyl moieties on the borafluorene moiety as well as two trifluoromethyl groups at the ortho positions of their exo-aryl moieties. They differ with regard to the para substituents on their exo-aryl moieties, being a proton (F XylF Bf, F Xyl: 2,6-bis(trifluoromethyl)phenyl), a trifluoromethyl group (F MesF Bf, F Mes: 2,4,6-tris(trifluoromethyl)phenyl) or a dimethylamino group (p-NMe2 -F XylF Bf, p-NMe2 -F Xyl: 4-(dimethylamino)-2,6-bis(trifluoromethyl)phenyl), respectively. All derivatives exhibit extraordinarily low reduction potentials, comparable to those of perylenediimides. The most electron-deficient derivative F MesF Bf was also chemically reduced and its radical anion isolated and characterized. Furthermore, all compounds exhibit very long fluorescent lifetimes of about 250 ns up to 1.6 μs; however, the underlying mechanisms responsible for this differ. The donor-substituted derivative p-NMe2 -F XylF Bf exhibits thermally activated delayed fluorescence (TADF) from a charge-transfer (CT) state, whereas the F MesF Bf and F XylF Bf borafluorenes exhibit only weakly allowed locally excited (LE) transitions due to their symmetry and low transition-dipole moments.
Collapse
Affiliation(s)
- Florian Rauch
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sonja Fuchs
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Daniel Sieh
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
19
|
Abstract
Helicenes, chiral members of the family of polyaromatic hydrocarbons, have been increasingly used in a variety of applications in recent years. Despite their intriguing properties, wider utilization is hindered by difficult functionalization of its skeleton, which would provide access to finely tuned derivatives of desired properties. Herein, the recent advancements in the field of helicene functionalization are discussed with an emphasis on different types of transformations, their versatility, and regioselectivity.
Collapse
Affiliation(s)
- Martin Jakubec
- Department of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 2/135, Prague 6, 165 02, Czech Republic
| | - Jan Storch
- Department of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 2/135, Prague 6, 165 02, Czech Republic
| |
Collapse
|
20
|
Rauch F, Krebs J, Günther J, Friedrich A, Hähnel M, Krummenacher I, Braunschweig H, Finze M, Marder TB. Electronically Driven Regioselective Iridium-Catalyzed C-H Borylation of Donor-π-Acceptor Chromophores Containing Triarylboron Acceptors. Chemistry 2020; 26:10626-10633. [PMID: 32510684 PMCID: PMC7497074 DOI: 10.1002/chem.202002348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Indexed: 12/11/2022]
Abstract
We observed a surprisingly high electronically driven regioselectivity for the iridium-catalyzed C-H borylation of donor-π-acceptor (D-π-A) systems with diphenylamino (1) or carbazolyl (2) moieties as the donor, bis(2,6-bis(trifluoromethyl)phenyl)boryl (B(F Xyl)2 ) as the acceptor, and 1,4-phenylene as the π-bridge. Under our conditions, borylation was observed only at the sterically least encumbered para-positions of the acceptor group. As boronate esters are versatile building blocks for organic synthesis (C-C coupling, functional group transformations) the C-H borylation represents a simple potential method for post-functionalization by which electronic or other properties of D-π-A systems can be fine-tuned for specific applications. The photophysical and electrochemical properties of the borylated (1-(Bpin)2 ) and unborylated (1) diphenylamino-substituted D-π-A systems were investigated. Interestingly, the borylated derivative exhibits coordination of THF to the boronate ester moieties, influencing the photophysical properties and exemplifying the non-innocence of boronate esters.
Collapse
Affiliation(s)
- Florian Rauch
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Julian Günther
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Martin Hähnel
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute, for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
21
|
Narsaria AK, Rauch F, Krebs J, Endres P, Friedrich A, Krummenacher I, Braunschweig H, Finze M, Nitsch J, Bickelhaupt FM, Marder TB. Computationally Guided Molecular Design to Minimize the LE/CT Gap in D-π-A Fluorinated Triarylboranes for Efficient TADF via D and π-Bridge Tuning. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002064. [PMID: 32774198 PMCID: PMC7405949 DOI: 10.1002/adfm.202002064] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 05/16/2023]
Abstract
In this combined experimental and theoretical study, a computational protocol is reported to predict the excited states in D-π-A compounds containing the B(FXyl)2 (FXyl = 2,6-bis(trifluoromethyl)phenyl) acceptor group for the design of new thermally activated delayed fluorescence (TADF) emitters. To this end, the effect of different donor and π-bridge moieties on the energy gaps between local and charge-transfer singlet and triplet states is examined. To prove this computationally aided design concept, the D-π-B(FXyl)2 compounds 1-5 were synthesized and fully characterized. The photophysical properties of these compounds in various solvents, polymeric film, and in a frozen matrix were investigated in detail and show excellent agreement with the computationally obtained data. Furthermore, a simple structure-property relationship is presented on the basis of the molecular fragment orbitals of the donor and the π-bridge, which minimize the relevant singlet-triplet gaps to achieve efficient TADF emitters.
Collapse
Affiliation(s)
- Ayush K. Narsaria
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 1083AmsterdamNL‐1081 HVThe Netherlands
| | - Florian Rauch
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Johannes Krebs
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Peter Endres
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Alexandra Friedrich
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Ivo Krummenacher
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Maik Finze
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - Jörn Nitsch
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
- Institute for Sustainable Chemistry & Catalysis with Boron Julius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 1083AmsterdamNL‐1081 HVThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 135NijmegenNL‐6525 AJThe Netherlands
| | - Todd B. Marder
- Institute for Inorganic ChemistryJulius‐Maximilians‐Universität WürzburgAm HublandWürzburgD‐97074Germany
| |
Collapse
|
22
|
Belaidi H, Rauch F, Zhang Z, Latouche C, Boucekkine A, Marder TB, Halet J. Insights into the Optical Properties of Triarylboranes with Strongly Electron‐Accepting Bis(fluoromesityl)boryl Groups: when Theory Meets Experiment. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Houmam Belaidi
- Univ Rennes, CNRSInstitut des Sciences Chimiques de Rennes UMR 6226 35000 Rennes France
| | - Florian Rauch
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Zuolun Zhang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- State Key Laboratory of Supramolecular Structure and Materials College of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Camille Latouche
- Institut des Matériaux Jean RouxelUniversité de Nantes, CNRS 2 rue de la Houssinière, BP 32229 44322 Nantes cedex 3 France
| | - Abdou Boucekkine
- Univ Rennes, CNRSInstitut des Sciences Chimiques de Rennes UMR 6226 35000 Rennes France
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jean‐François Halet
- Univ Rennes, CNRSInstitut des Sciences Chimiques de Rennes UMR 6226 35000 Rennes France
| |
Collapse
|
23
|
Zhao ZH, Liang X, He MX, Zhang MY, Zhao CH. Triarylborane-based [5]Helicenes with Full-Color Circularly Polarized Luminescence. Org Lett 2019; 21:9569-9573. [DOI: 10.1021/acs.orglett.9b03734] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zheng-Hua Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xiao Liang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Mao-Xia He
- Environment Research Institute, Shandong University, Qing Dao 266237, P. R. China
| | - Meng-Yuan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Cui-Hua Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|