1
|
Esposito A, D'Alonzo D, Stabile M, Firpo V, Migliaccio A, Artiano R, D'Errico S, De Gregorio E, Guaragna A. Synthesis of a di-O-acylated deoxynojirimycin (DNJ) derivative and evaluation of its antibacterial and antibiofilm activity against Staphylococcus aureus and Stenotrophomonas maltophilia. Carbohydr Res 2025; 550:109379. [PMID: 39862555 DOI: 10.1016/j.carres.2025.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Herein we report the synthesis of a novel di-O-acylated DNJ derivative, conceived to study whether iminosugar derivatization with a lipophilic acyl moiety could positively affect its antibacterial properties. The well-known PS-TPP/I2/ImH activating system was used to readily install the acyl chains on the iminosugar, leading to the desired compound in high yield. Biological assays revealed that a di-O-lauroyl DNJ derivative enhanced the antibacterial effect of gentamicin and amikacin against S. aureus and S. maltophilia strains, respectively, suggesting a potential role as antibiotic adjuvant. Furthermore, even though this compound displayed only a weak concentration-dependent inhibitory effect on biofilm formation in S. aureus, it was able to significantly reduce the viability of S. aureus and S. maltophilia preformed biofilms. The results confirm the antibacterial potential of piperidine iminosugars and open the way to further studies involving novel lipophilic derivatives to optimize the antibacterial adjuvant effect herein observed for iminosugar 12.
Collapse
Affiliation(s)
- Anna Esposito
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, I-80125, Italy.
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Naples, I-80126, Italy
| | - Maria Stabile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, I-80131, Italy
| | - Vincenzo Firpo
- Department of Chemical Sciences, University of Naples Federico II, Naples, I-80126, Italy
| | - Antonella Migliaccio
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, I-80131, Naples, Italy
| | - Rosaria Artiano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, I-80131, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, I-80131, Italy.
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, Naples, I-80126, Italy
| |
Collapse
|
2
|
Cimafonte M, Esposito A, De Fenza M, Zaccaria F, D’Alonzo D, Guaragna A. Synthesis of Natural and Sugar-Modified Nucleosides Using the Iodine/Triethylsilane System as N-Glycosidation Promoter. Int J Mol Sci 2024; 25:9030. [PMID: 39201716 PMCID: PMC11354600 DOI: 10.3390/ijms25169030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
The reagent system based on the combined use of Et3SiH/I2 acts as an efficient N-glycosidation promoter for the synthesis of natural and sugar-modified nucleosides. An analysis of reaction stereoselectivity in the absence of C2-positioned stereodirecting groups revealed high selectivity with six-membered substrates, depending on the nucleophilic character of the nucleobase or based on anomerization reactions. The synthetic utility of the Et3SiH/I2-mediated N-glycosidation reaction was highlighted by its use in the synthesis of the investigational drug apricitabine.
Collapse
Affiliation(s)
- Martina Cimafonte
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Anna Esposito
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, I-80125 Naples, Italy;
| | - Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Francesco Zaccaria
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (M.C.); (M.D.F.); (F.Z.); (A.G.)
| |
Collapse
|
3
|
Esposito A, Rossi A, Stabile M, Pinto G, De Fino I, Melessike M, Tamanini A, Cabrini G, Lippi G, Aureli M, Loberto N, Renda M, Galietta LJV, Amoresano A, Dechecchi MC, De Gregorio E, Bragonzi A, Guaragna A. Assessing the Potential of N-Butyl-l-deoxynojirimycin (l-NBDNJ) in Models of Cystic Fibrosis as a Promising Antibacterial Agent. ACS Pharmacol Transl Sci 2024; 7:1807-1822. [PMID: 38898954 PMCID: PMC11184606 DOI: 10.1021/acsptsci.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Over the past few years, l-iminosugars have revealed attractive pharmacological properties for managing rare diseases including Cystic Fibrosis (CF). The iminosugar N-butyl-l-deoxynojirimycin (l-NBDNJ, ent-1), prepared by a carbohydrate-based route, was herein evaluated for its anti-inflammatory and anti-infective potential in models of CF lung disease infection. A significant decrease in the bacterial load in the airways was observed in the murine model of Pseudomonas aeruginosa chronic infection in the presence of l-NBDNJ, also accompanied by a modest reduction of inflammatory cells. Mechanistic insights into the observed activity revealed that l-NBDNJ interferes with the expression of proteins regulating cytoskeleton assembly and organization of the host cell, downregulates the main virulence factors of P. aeruginosa involved in the host response, and affects pathogen adhesion to human cells. These findings along with the observation of the absence of an in vitro bacteriostatic/bactericidal action of l-NBDNJ suggest the potential use of this glycomimetic as an antivirulence agent in the management of CF lung disease.
Collapse
Affiliation(s)
- Anna Esposito
- Department
of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples I-80125, Italy
| | - Alice Rossi
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Maria Stabile
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples I-80131, Italy
| | - Gabriella Pinto
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
| | - Ida De Fino
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Medede Melessike
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Anna Tamanini
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Giulio Cabrini
- Center on
Innovative Therapies for Cystic Fibrosis, Department of Life Sciences
and Biotechnology, University of Ferrara, Ferrara I-40121, Italy
| | - Giuseppe Lippi
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Massimo Aureli
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20054, Italy
| | - Nicoletta Loberto
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, Milan I-20054, Italy
| | - Mario Renda
- Telethon
Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples I-80078, Italy
| | - Luis J. V. Galietta
- Telethon
Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples I-80078, Italy
- Department
of Translational Medical Sciences (DISMET), University of Naples Federico II, Naples I-80131, Italy
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
- Istituto
Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, Rome I-00136, Italy
| | - Maria Cristina Dechecchi
- Section
of Clinical Biochemistry, Department of Engineering for Innovation
Medicine, University of Verona, Verona I-37134, Italy
| | - Eliana De Gregorio
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples I-80131, Italy
| | - Alessandra Bragonzi
- Infections
and Cystic Fibrosis Unit, Division of Immunology, Transplantation
and Infectious Diseases, IRCCS San Raffaele
Scientific Institute, Milan I-20132, Italy
| | - Annalisa Guaragna
- Department
of Chemical Sciences, University of Naples
Federico II, Naples I-80126, Italy
| |
Collapse
|
4
|
De Pasquale V, Esposito A, Scerra G, Scarcella M, Ciampa M, Luongo A, D’Alonzo D, Guaragna A, D’Agostino M, Pavone LM. N-Substituted l-Iminosugars for the Treatment of Sanfilippo Type B Syndrome. J Med Chem 2023; 66:1790-1808. [PMID: 36696678 PMCID: PMC9923752 DOI: 10.1021/acs.jmedchem.2c01617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sanfilippo syndrome comprises a group of four genetic diseases due to the lack or decreased activity of enzymes involved in heparan sulfate (HS) catabolism. HS accumulation in lysosomes and other cellular compartments results in tissue and organ dysfunctions, leading to a wide range of clinical symptoms including severe neurodegeneration. To date, no approved treatments for Sanfilippo disease exist. Here, we report the ability of N-substituted l-iminosugars to significantly reduce substrate storage and lysosomal dysfunctions in Sanfilippo fibroblasts and in a neuronal cellular model of Sanfilippo B subtype. Particularly, we found that they increase the levels of defective α-N-acetylglucosaminidase and correct its proper sorting toward the lysosomal compartment. Furthermore, l-iminosugars reduce HS accumulation by downregulating protein levels of exostosin glycosyltransferases. These results highlight an interesting pharmacological potential of these glycomimetics in Sanfilippo syndrome, paving the way for the development of novel therapeutic approaches for the treatment of such incurable disease.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department
of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | - Anna Esposito
- Department
of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Gianluca Scerra
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Melania Scarcella
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariangela Ciampa
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Antonietta Luongo
- AORN
Sant’Anna e San Sebastiano, Via F. Palasciano, 81100 Caserta, Italy
| | - Daniele D’Alonzo
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia, 80126 Napoli, Italy
| | - Annalisa Guaragna
- Department
of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy,
| | - Massimo D’Agostino
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy,
| | - Luigi Michele Pavone
- Department
of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy,
| |
Collapse
|
5
|
Polydentate P, N-based ligands for palladium-catalyzed cross-coupling reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Esposito A, Talarico G, De Fenza M, D'Alonzo D, Guaragna A. Stereoconvergent Synthesis of Cyclopentenyl Nucleosides by Palladium‐Assisted Allylic Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anna Esposito
- University of Naples Federico II Chemical, Materials and Production Engineering Piazzale V. Tecchio 80, 80125 Naples 80125 Napoli ITALY
| | - Giovanni Talarico
- University of Naples Federico II: Universita degli Studi di Napoli Federico II Chemical Sciences ITALY
| | - Maria De Fenza
- University of Naples Federico II: Universita degli Studi di Napoli Federico II Chemical Sciences ITALY
| | - Daniele D'Alonzo
- University of Naples Federico II: Universita degli Studi di Napoli Federico II Chemical Sciences ITALY
| | - Annalisa Guaragna
- University of Naples Federico II: Universita degli Studi di Napoli Federico II Chemical, Materials and Production Engineering ITALY
| |
Collapse
|
7
|
Synthesis and antiviral properties of biomimetic iminosugar-based nucleosides. Eur J Med Chem 2022; 241:114618. [DOI: 10.1016/j.ejmech.2022.114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
|
8
|
Esposito A, Migliaccio A, Iula VD, Zarrilli R, Guaragna A, De Gregorio E. The Glucocorticoid PYED-1 Disrupts Mature Biofilms of Candida spp. and Inhibits Hyphal Development in Candida albicans. Antibiotics (Basel) 2021; 10:1396. [PMID: 34827334 PMCID: PMC8614962 DOI: 10.3390/antibiotics10111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Invasive Candida infections have become a global public health problem due to the increase of Candida species resistant against antifungal therapeutics. The glucocorticoid PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) has antimicrobial activity against various bacterial taxa. Consequently, it might be considered for the treatment of Candida infections. The antifungal activity of PYED-1 was evaluated against several fungal strains that were representative of the five species that causes the majority of Candida infections-namely, Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis and Candida krusei. PYED-1 exhibited a weak antifungal activity and a fungistatic effect on all five Candida species. On the other hand, PYED-1 exhibited a good anti-biofilm activity, and was able to eradicate the preformed biofilms of all Candida species analyzed. Moreover, PYED-1 inhibited germ tube and hyphae formation of C. albicans and reduced adhesion of C. albicans to abiotic surfaces by up to 30%.
Collapse
Affiliation(s)
- Anna Esposito
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80126 Naples, Italy; (A.E.); (A.G.)
| | - Antonella Migliaccio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.M.); (R.Z.)
| | - Vita Dora Iula
- Complex Operative Unit of Clinical Pathology, Ospedale del Mare-ASL NA1 Centro, 80145 Naples, Italy;
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.M.); (R.Z.)
| | - Annalisa Guaragna
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80126 Naples, Italy; (A.E.); (A.G.)
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
9
|
De Fenza M, Esposito A, D’Alonzo D, Guaragna A. Synthesis of Piperidine Nucleosides as Conformationally Restricted Immucillin Mimics. Molecules 2021; 26:1652. [PMID: 33809603 PMCID: PMC8001838 DOI: 10.3390/molecules26061652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
The de novo synthesis of piperidine nucleosides from our homologating agent 5,6-dihydro-1,4-dithiin is herein reported. The structure and conformation of nucleosides were conceived to faithfully resemble the well-known nucleoside drugs Immucillins H and A in their bioactive conformation. NMR analysis of the synthesized compounds confirmed that they adopt an iminosugar conformation bearing the nucleobases and the hydroxyl groups in the appropriate orientation.
Collapse
Affiliation(s)
- Maria De Fenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.D.F.); (A.E.); (D.D.)
| | - Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.D.F.); (A.E.); (D.D.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.D.F.); (A.E.); (D.D.)
| | - Annalisa Guaragna
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
10
|
Esposito A, D’Alonzo D, D’Errico S, De Gregorio E, Guaragna A. Toward the Identification of Novel Antimicrobial Agents: One-Pot Synthesis of Lipophilic Conjugates of N-Alkyl d- and l-Iminosugars. Mar Drugs 2020; 18:E572. [PMID: 33228211 PMCID: PMC7699595 DOI: 10.3390/md18110572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
In the effort to improve the antimicrobial activity of iminosugars, we report the synthesis of lipophilic iminosugars 10a-b and 11a-b based on the one-pot conjugation of both enantiomeric forms of N-butyldeoxynojirimycin (NBDNJ) and N-nonyloxypentyldeoxynojirimycin (NPDNJ) with cholesterol and a succinic acid model linker. The conjugation reaction was tuned using the established PS-TPP/I2/ImH activating system, which provided the desired compounds in high yields (94-96%) by a one-pot procedure. The substantial increase in the lipophilicity of 10a-b and 11a-b is supposed to improve internalization within the bacterial cell, thereby potentially leading to enhanced antimicrobial properties. However, assays are currently hampered by solubility problems; therefore, alternative administration strategies will need to be devised.
Collapse
Affiliation(s)
- Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (D.D.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (D.D.)
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy;
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Annalisa Guaragna
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|