1
|
Klingstedt T, Lantz L, Shirani H, Ge J, Hanrieder J, Vidal R, Ghetti B, Nilsson KPR. Thiophene-Based Ligands for Specific Assignment of Distinct Aβ Pathologies in Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1581-1595. [PMID: 38523263 PMCID: PMC10995944 DOI: 10.1021/acschemneuro.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Aggregated species of amyloid-β (Aβ) are one of the pathological hallmarks in Alzheimer's disease (AD), and ligands that selectively target different Aβ deposits are of great interest. In this study, fluorescent thiophene-based ligands have been used to illustrate the features of different types of Aβ deposits found in AD brain tissue. A dual-staining protocol based on two ligands, HS-276 and LL-1, with different photophysical and binding properties, was developed and applied on brain tissue sections from patients affected by sporadic AD or familial AD associated with the PSEN1 A431E mutation. When binding to Aβ deposits, the ligands could easily be distinguished for their different fluorescence, and distinct staining patterns were revealed for these two types of AD. In sporadic AD, HS-276 consistently labeled all immunopositive Aβ plaques, whereas LL-1 mainly stained cored and neuritic Aβ deposits. In the PSEN1 A431E cases, each ligand was binding to specific types of Aβ plaques. The ligand-labeled Aβ deposits were localized in distinct cortical layers, and a laminar staining pattern could be seen. Biochemical characterization of the Aβ aggregates in the individual layers also showed that the variation of ligand binding properties was associated with certain Aβ peptide signatures. For the PSEN1 A431E cases, it was concluded that LL-1 was binding to cotton wool plaques, whereas HS-276 mainly stained diffuse Aβ deposits. Overall, our findings showed that a combination of ligands was essential to identify distinct aggregated Aβ species associated with different forms of AD.
Collapse
Affiliation(s)
- Therése Klingstedt
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| | - Linda Lantz
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| | - Hamid Shirani
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| | - Junyue Ge
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,
The Sahlgrenska Academy, University of Gothenburg,
Mölndal Hospital, Mölndal 431 80, Sweden
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,
The Sahlgrenska Academy, University of Gothenburg,
Mölndal Hospital, Mölndal 431 80, Sweden
- Department
of Neurodegenerative Diseases, University
College London Institute of Neurology, Queen Square, London WC1N 3BG, United
Kingdom
| | - Ruben Vidal
- Department
of Pathology and Laboratory Medicine, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Bernardino Ghetti
- Department
of Pathology and Laboratory Medicine, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - K. Peter R. Nilsson
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| |
Collapse
|
2
|
Stepanchuk AA, Stys PK. Spectral Fluorescence Pathology of Protein Misfolding Disorders. ACS Chem Neurosci 2024; 15:898-908. [PMID: 38407017 DOI: 10.1021/acschemneuro.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Protein misfolding has been extensively studied in the context of neurodegenerative disorders and systemic amyloidoses. Due to misfolding and aggregation of proteins being highly heterogeneous and generating a variety of structures, a growing body of evidence illustrates numerous ways how the aggregates contribute to progression of diseases such as Alzheimer's disease, Parkinson's disease, and prion disorders. Different misfolded species of the same protein, commonly referred to as strains, appear to play a significant role in shaping the disease clinical phenotype and clinical progression. The distinct toxicity profiles of various misfolded proteins underscore their importance. Current diagnostics struggle to differentiate among these strains early in the disease course. This review explores the potential of spectral fluorescence approaches to illuminate the complexities of protein misfolding pathology and discusses the applications of advanced spectral methods in the detection and characterization of protein misfolding disorders. By examining spectrally variable probes, current data analysis approaches, and important considerations for the use of these techniques, this review aims to provide an overview of the progress made in this field and highlights directions for future research.
Collapse
Affiliation(s)
- Anastasiia A Stepanchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
3
|
Zangoli M, Monti F, Zanelli A, Marinelli M, Flammini S, Spallacci N, Zakrzewska A, Lanzi M, Salatelli E, Pierini F, Di Maria F. Multifunctional Photoelectroactive Materials for Optoelectronic Applications Based on Thieno[3,4-b]pyrazines and Thieno[1,2,5]thiadiazoles. Chemistry 2024; 30:e202303590. [PMID: 37983681 DOI: 10.1002/chem.202303590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
In this study, we introduce a novel family of symmetrical thiophene-based small molecules with a Donor-Acceptor-Donor structure. These compounds feature three different acceptor units: benzo[c][1,2,5]thiadiazole (Bz), thieno[3,4-b]pyrazine (Pz), and thieno[1,2,5]thiadiazole (Tz), coupled with electron donor units based on a carbazole-thiophene derivative. Using Density Functional Theory (DFT), we investigate how the molecular geometry and strength of the central acceptor unit impact the redox and spectroscopic properties. Notably, the incorporation of Pz and Tz moieties induces a significant redshift in the absorption and emission spectra, which extend into the near-infrared (NIR) region, simultaneously reducing their energy gaps (~1.4-1.6 eV). This shift is attributed to the increased coplanarity of the oligomeric inner core, both in the ground (S0 ) and excited (S1 ) states, due to the enhanced quinoidal character as supported by bond-length alternation (BLA) analysis. These structural changes promote better π-electron delocalization and facilitate photoinduced charge transfer processes in optoelectronic devices. Notably, we show that Pz- and Tz-containing molecules exhibit NIR electrochromic behavior and present ambivalent character in bulk heterojunction (BHJ) solar cells. Finally, theoretical calculations suggest that these molecules could serve as effective two-photon absorption (2PA) probes, further expanding their potential in optoelectronic applications.
Collapse
Affiliation(s)
- Mattia Zangoli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, 40129, Bologna, Italy
| | - Filippo Monti
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
| | - Alberto Zanelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
| | - Martina Marinelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Soraia Flammini
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
- RCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Nicol Spallacci
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
| | - Anna Zakrzewska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106, Warsaw, Poland
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Elisabetta Salatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106, Warsaw, Poland
| | - Francesca Di Maria
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, 40129, Bologna, Italy
| |
Collapse
|
4
|
Bajad NG, Kumar A, Singh SK. Recent Advances in the Development of Near-Infrared Fluorescent Probes for the in Vivo Brain Imaging of Amyloid-β Species in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2955-2967. [PMID: 37574911 DOI: 10.1021/acschemneuro.3c00304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
The deposition of β-amyloid (Aβ) plaques in the parenchymal and cortical regions of the brain of Alzheimer's disease (AD) patients is considered the foremost pathological hallmark of the disease. The early diagnosis of AD is paramount in order to effective management and treatment of the disease. Developing near-infrared fluorescence (NIRF) probes targeting Aβ species is a potential and attractive approach suitable for the early and timely diagnosis of AD. The advantages of the NIRF probes over other tools include real-time detection, higher sensitivity, resolution, comparatively inexpensive experimental setup, and noninvasive nature. Currently, enormous progress is being observed in the development of NIRF probes for the in vivo imaging of Aβ species. Several strategies, i.e., the classical push-pull approach, "turn-on" effect, aggregation-induced emission (AIE), and resonance energy transfer (RET), have been exploited for development. We have outlined and discussed the recently emerged NIRF probes with different design strategies targeting Aβ species for ex vivo and in vivo imaging. We believe that understanding the recent development enables the prospect of the rational design of probes and will pave the way for developing future novel probes for early diagnosis of AD.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
5
|
Richter-Dahlfors A, Kärkkäinen E, Choong FX. Fluorescent optotracers for bacterial and biofilm detection and diagnostics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2246867. [PMID: 37680974 PMCID: PMC10481766 DOI: 10.1080/14686996.2023.2246867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023]
Abstract
Effective treatment of bacterial infections requires methods that accurately and quickly identify which antibiotic should be prescribed. This review describes recent research on the development of optotracing methodologies for bacterial and biofilm detection and diagnostics. Optotracers are small, chemically well-defined, anionic fluorescent tracer molecules that detect peptide- and carbohydrate-based biopolymers. This class of organic molecules (luminescent conjugated oligothiophenes) show unique electronic, electrochemical and optical properties originating from the conjugated structure of the compounds. The photophysical properties are further improved as donor-acceptor-donor (D-A-D)-type motifs are incorporated in the conjugated backbone. Optotracers bind their biopolymeric target molecules via electrostatic interactions. Binding alters the optical properties of these tracer molecules, shown as altered absorption and emission spectra, as well as ON-like switch of fluorescence. As the optotracer provides a defined spectral signature for each binding partner, a fingerprint is generated that can be used for identification of the target biopolymer. Alongside their use for in situ experimentation, optotracers have demonstrated excellent use in studies of a number of clinically relevant microbial pathogens. These methods will find widespread use across a variety of communities engaged in reducing the effect of antibiotic resistance. This includes basic researchers studying molecular resistance mechanisms, academia and pharma developing new antimicrobials targeting biofilm infections and tests to diagnose biofilm infections, as well as those developing antibiotic susceptibility tests for biofilm infections (biofilm-AST). By iterating between the microbial world and that of plants, development of the optotracing technology has become a prime example of successful cross-feeding across the boundaries of disciplines. As optotracers offers a capacity to redefine the way we work with polysaccharides in the microbial world as well as with plant biomass, the technology is providing novel outputs desperately needed for global impact of the threat of antimicrobial resistance as well as our strive for a circular bioeconomy.
Collapse
Affiliation(s)
- Agneta Richter-Dahlfors
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elina Kärkkäinen
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ferdinand X. Choong
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Björk L, Klingstedt T, Nilsson KPR. Thiophene-Based Ligands: Design, Synthesis and Their Utilization for Optical Assignment of Polymorphic-Disease-Associated Protein Aggregates. Chembiochem 2023; 24:e202300044. [PMID: 36891883 PMCID: PMC10404026 DOI: 10.1002/cbic.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/10/2023]
Abstract
The development of ligands for detecting protein aggregates is of great interest, as these aggregated proteinaceous species are the pathological hallmarks of several devastating diseases, including Alzheimer's disease. In this regard, thiophene-based ligands have emerged as powerful tools for fluorescent assessment of these pathological entities. The intrinsic conformationally sensitive photophysical properties of poly- and oligothiophenes have allowed optical assignment of disease-associated protein aggregates in tissue sections, as well as real-time in vivo imaging of protein deposits. Herein, we recount the chemical evolution of different generations of thiophene-based ligands, and exemplify their use for the optical distinction of polymorphic protein aggregates. Furthermore, the chemical determinants for achieving a superior fluorescent thiophene-based ligand, as well as the next generation of thiophene-based ligands targeting distinct aggregated species are described. Finally, the directions for future research into the chemical design of thiophene-based ligands that can aid in resolving the scientific challenges around protein aggregation diseases are discussed.
Collapse
Affiliation(s)
- Linnea Björk
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
7
|
Lantz L, Shirani H, Ghetti B, Vidal R, Klingstedt T, Nilsson KPR. Thiophene-Based Ligands for Histological Multiplex Spectral Detection of Distinct Protein Aggregates in Alzheimer's Disease. Chemistry 2023; 29:e202203568. [PMID: 36645413 PMCID: PMC10101888 DOI: 10.1002/chem.202203568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
The aggregation and accumulation of proteins in the brain is the defining feature of many devastating neurodegenerative diseases. The development of fluorescent ligands that bind to these accumulations, or deposits, is essential for the characterization of these neuropathological lesions. We report the synthesis of donor-acceptor-donor (D-A-D) thiophene-based ligands with different emission properties. The D-A-D ligands displayed selectivity towards distinct disease-associated protein deposits in histological sections from postmortem brain tissue of individuals affected by Alzheimer's disease (AD). The ability of the ligands to selectively identify AD-associated pathological alterations, such as deposits composed of aggregates of the amyloid-β (Aβ) peptide or tau, was reduced when the chemical composition of the ligands was altered. When combining the D-A-D ligands with conventional thiophene-based ligands, superior spectral separation of distinct protein aggregates in AD tissue sections was obtained. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between aggregated proteinaceous species, as well as offer novel strategies for developing multiplex fluorescence detection of protein aggregates in tissue sections.
Collapse
Affiliation(s)
- Linda Lantz
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, 46202, Indiana, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, 46202, Indiana, USA
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
8
|
Sulheim E, WiderØe M, Bäck M, Nilsson KPR, Hammarström P, Nilsson LN, Davies CDL, Åslund AK. Contrast Enhanced Magnetic Resonance Imaging of Amyloid-β Plaques in a Murine Alzheimer’s Disease Model. J Alzheimers Dis 2023; 93:411-419. [PMID: 37038807 DOI: 10.3233/jad-220198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Background: Early detection of amyloid-β (Aβ) aggregates is a critical step to improve the treatment of Alzheimer’s disease (AD) because neuronal damage by the Aβ aggregates occurs before clinical symptoms are apparent. We have previously shown that luminescent conjugated oligothiophenes (LCOs), which are highly specific towards protein aggregates of Aβ, can be used to fluorescently label amyloid plaque in living rodents. Objective: We hypothesize that the LCO can be used to target gadolinium to the amyloid plaque and hence make the plaque detectable by T1-weighted magnetic resonance imaging (MRI). Methods: A novel LCO-gadolinium construct was synthesized to selectively bind to Aβ plaques and give contrast in conventional T1-weighted MR images after intravenous injection in Tg-APPSwe mice. Results: We found that mice with high plaque-burden could be identified using the LCO-Gd constructs by conventional MRI. Conclusion: Our study shows that MR imaging of amyloid plaques is challenging but feasible, and hence contrast-mediated MR imaging could be a valuable tool for early AD detection.
Collapse
Affiliation(s)
- Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, Norway
| | - Marius WiderØe
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marcus Bäck
- Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, Linköping, Sweden
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, Linköping, Sweden
| | - Lars N.G. Nilsson
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Andreas K.O. Åslund
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, Norway
| |
Collapse
|
9
|
Björk L, Bäck M, Lantz L, Ghetti B, Vidal R, Klingstedt T, Nilsson KPR. Proteophenes - Amino Acid Functionalized Thiophene-based Fluorescent Ligands for Visualization of Protein Deposits in Tissue Sections with Alzheimer's Disease Pathology. Chemistry 2022; 28:e202201557. [PMID: 35950816 PMCID: PMC9643645 DOI: 10.1002/chem.202201557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Protein deposits composed of specific proteins or peptides are associated with several neurodegenerative diseases and fluorescent ligands able to detect these pathological hallmarks are vital. Here, we report the synthesis of a class of thiophene-based ligands, denoted proteophenes, with different amino acid side-chain functionalities along the conjugated backbone, which display selectivity towards specific disease-associated protein aggregates in tissue sections with Alzheimer's disease (AD) pathology. The selectivity of the ligands towards AD associated pathological hallmarks, such as aggregates of the amyloid-β (Aβ) peptide or tau filamentous inclusions, was highly dependent on the chemical nature of the amino acid functionality, as well as on the location of the functionality along the pentameric thiophene backbone. Finally, the concept of synthesizing donor-acceptor-donor proteophenes with distinct photophysical properties was shown. Our findings provide the structural and functional basis for the development of new thiophene-based ligands that can be utilized for optical assignment of different aggregated proteinaceous species in tissue sections.
Collapse
Affiliation(s)
- Linnea Björk
- Department of PhysicsChemistry and BiologyLinköping University581 83LinköpingSweden
| | - Marcus Bäck
- Department of PhysicsChemistry and BiologyLinköping University581 83LinköpingSweden
| | - Linda Lantz
- Department of PhysicsChemistry and BiologyLinköping University581 83LinköpingSweden
| | - Bernardino Ghetti
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolis46202IndianaUSA
| | - Ruben Vidal
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolis46202IndianaUSA
| | - Therése Klingstedt
- Department of PhysicsChemistry and BiologyLinköping University581 83LinköpingSweden
| | - K. Peter R. Nilsson
- Department of PhysicsChemistry and BiologyLinköping University581 83LinköpingSweden
| |
Collapse
|
10
|
Just MK, Gram H, Theologidis V, Jensen PH, Nilsson KPR, Lindgren M, Knudsen K, Borghammer P, Van Den Berge N. Alpha-Synuclein Strain Variability in Body-First and Brain-First Synucleinopathies. Front Aging Neurosci 2022; 14:907293. [PMID: 35693346 PMCID: PMC9178288 DOI: 10.3389/fnagi.2022.907293] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Pathogenic alpha-synuclein (asyn) aggregates are a defining feature of neurodegenerative synucleinopathies, which include Parkinson's disease, Lewy body dementia, pure autonomic failure and multiple system atrophy. Early accurate differentiation between these synucleinopathies is challenging due to the highly heterogeneous clinical profile at early prodromal disease stages. Therefore, diagnosis is often made in late disease stages when a patient presents with a broad range of motor and non-motor symptoms easing the differentiation. Increasing data suggest the clinical heterogeneity seen in patients is explained by the presence of distinct asyn strains, which exhibit variable morphologies and pathological functions. Recently, asyn seed amplification assays (PMCA and RT-QuIC) and conformation-specific ligand assays have made promising progress in differentiating between synucleinopathies in prodromal and advanced disease stages. Importantly, the cellular environment is known to impact strain morphology. And, asyn aggregate pathology can propagate trans-synaptically along the brain-body axis, affecting multiple organs and propagating through multiple cell types. Here, we present our hypothesis that the changing cellular environments, an asyn seed may encounter during its brain-to-body or body-to-brain propagation, may influence the structure and thereby the function of the aggregate strains developing within the different cells. Additionally, we aim to review strain characteristics of the different synucleinopathies in clinical and preclinical studies. Future preclinical animal models of synucleinopathies should investigate if asyn strain morphology is altered during brain-to-body and body-to-brain spreading using these seeding amplification and conformation-specific assays. Such findings would greatly deepen our understanding of synucleinopathies and the potential link between strain and phenotypic variability, which may enable specific diagnosis of different synucleinopathies in the prodromal phase, creating a large therapeutic window with potential future applications in clinical trials and personalized therapeutics.
Collapse
Affiliation(s)
- Mie Kristine Just
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Hjalte Gram
- Department of Biomedicine, DANDRITE-Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Vasileios Theologidis
- Department of Biomedicine, DANDRITE-Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Poul Henning Jensen
- Department of Biomedicine, DANDRITE-Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - K. Peter R. Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karoline Knudsen
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Nathalie Van Den Berge
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Butina K, Lantz L, Choong FX, Tomac A, Shirani H, Löffler S, Nilsson KPR, Richter-Dahlfors A. Structural Properties Dictating Selective Optotracer Detection of S. aureus. Chembiochem 2022; 23:e202100684. [PMID: 35298076 PMCID: PMC9400997 DOI: 10.1002/cbic.202100684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Indexed: 11/09/2022]
Abstract
Optotracers are conformation‐sensitive fluorescent tracer molecules that detect peptide‐ and carbohydrate‐based biopolymers. Their binding to bacterial cell walls allows selective detection and visualisation of Staphylococcus aureus (S. aureus). Here, we investigated the structural properties providing optimal detection of S. aureus. We quantified spectral shifts and fluorescence intensity in mixes of bacteria and optotracers, using automatic peak analysis, cross‐correlation, and area‐under‐curve analysis. We found that the length of the conjugated backbone and the number of charged groups, but not their distribution, are important factors for selective detection of S. aureus. The photophysical properties of optotracers were greatly improved by incorporating a donor‐acceptor‐donor (D‐A‐D)‐type motif in the conjugated backbone. With significantly reduced background and binding‐induced on‐switch of fluorescence, these optotracers enabled real‐time recordings of S. aureus growth. Collectively, this demonstrates that chemical structure and photophysics are key tunable characteristics in the development of optotracers for selective detection of bacterial species.
Collapse
Affiliation(s)
| | - Linda Lantz
- Linköping University: Linkopings universitet, Dept. of Chemistry IFM, SWEDEN
| | | | - Ana Tomac
- Karolinska Institutet, Neuroscience, SWEDEN
| | - Hamid Shirani
- Linköping University: Linkopings universitet, Dept of Chemistry IFM, SWEDEN
| | | | - K Peter R Nilsson
- Linköping University: Linkopings universitet, Dept. of Chemistry IFM, SWEDEN
| | - Agneta Richter-Dahlfors
- Karolinska Institutet, Department of Neuroscience, Retzius väg 8, S-17177, Stockholm, SWEDEN
| |
Collapse
|
12
|
Lantz L, Shirani H, Klingstedt T, Nilsson KPR. Synthesis and Characterization of Thiophene-based Donor-Acceptor-Donor Heptameric Ligands for Spectral Assignment of Polymorphic Amyloid-β Deposits. Chemistry 2020; 26:7425-7432. [PMID: 32022335 PMCID: PMC7318160 DOI: 10.1002/chem.201905612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 11/29/2022]
Abstract
Protein deposits are associated with many devastating diseases and fluorescent ligands able to visualize these pathological entities are essential. Here, we report the synthesis of thiophene‐based donor–acceptor–donor heptameric ligands that can be utilized for spectral assignment of distinct amyloid‐β (Aβ) aggregates, one of the pathological hallmarks in Alzheimer's disease. The ability of the ligands to selectively distinguish Aβ deposits was abolished when the chemical composition of the ligands was altered. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between aggregated proteinaceous species consisting of the same peptide or protein. In addition, such ligands might aid in interpreting the potential role of polymorphic Aβ deposits in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Linda Lantz
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Hamid Shirani
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Therése Klingstedt
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|