1
|
Wang J, Zhou F, Xu Y, Zhang L. Organometallic Photocatalyst-Promoted Synthesis and Modification of Carbohydrates under Photoirradiation. CHEM REC 2025; 25:e202400161. [PMID: 39727226 DOI: 10.1002/tcr.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Indexed: 12/28/2024]
Abstract
Carbohydrates are natural, renewable, chemical compounds that play crucial roles in biological systems. Thus, efficient and stereoselective glycosylation is an urgent task for the preparation of pure and structurally well-defined carbohydrates. Photoredox catalysis has emerged as a powerful tool in carbohydrate chemistry, providing an alternative for addressing some of the challenges of glycochemistry. Over the last few decades, Ir- and Ru-based organometallic photocatalysts have attracted significant interest because of their high stability, high-energy triplet state, strong visible-light absorption, long luminescence lifetime, and amenability to ligand modification. This review highlights the recent progress in the organometallic photocatalyst-promoted synthesis and modification of carbohydrates under photoirradiation, as well as the related benefits and drawbacks.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| |
Collapse
|
2
|
Fu Y, Simeth NA, Szymanski W, Feringa BL. Visible and near-infrared light-induced photoclick reactions. Nat Rev Chem 2024; 8:665-685. [PMID: 39112717 DOI: 10.1038/s41570-024-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet-triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Göttingen, Germany.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Kasana S, Nigam V, Singh S, Kurmi BD, Patel P. A New Insight Into The Huisgen Reaction: Heterogeneous Copper Catalyzed Azide-Alkyne Cycloaddition for the Synthesis of 1,4-Disubstituted Triazole (From 2018-2023). Chem Biodivers 2024; 21:e202400109. [PMID: 38640439 DOI: 10.1002/cbdv.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
The Huisgen cycloaddition, often referred to as 1,3-Dipolar cycloaddition, is a well-established method for synthesizing 1,4-disubstituted triazoles. Originally conducted under thermal conditions [3+2] cycloaddition reactions were limited by temperature, prolonged reaction time, and regioselectivity. The introduction of copper catalyzed azide-alkyne cycloaddition (CuAAC) revitalized interest, giving rise to the concept of "click chemistry". The CuAAC has emerged as a prominent method for producing 1,2,3-triazole with excellent yields and exceptional regioselectivity even in unfavorable conditions. Copper catalysts conventionally facilitate azide-alkyne cycloadditions, but challenges include instability and recycling issues. In recent years, there has been a growing demand for heterogeneous and porous catalysts in various chemical reactions. Chemists have been more interested in heterogenous catalysts as a result of the difficulties in separating homogenous catalysts from reaction products. These catalysts are favored for their abundant active sites, extensive surface area, easy separation from reaction mixtures, and the ability to be reused. Heterogeneous catalysts have garnered significant attention due to their broad industrial utility, characterized by cost-effectiveness, stability, resistance to thermal degradation, and ease of removal compared to their homogeneous counterparts. The present review covers recent advancements from year 2018 to 2023 in the field of click reactions for obtaining 1,2,3-triazoles through Cu catalyzed 1,3-dipolar azide-alkyne cycloaddition and the properties of the catalyst, reaction conditions such as solvent, temperature, reaction time, and the impact of different heterogeneous copper catalysts on product yield.
Collapse
Affiliation(s)
- Shivani Kasana
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vaibhav Nigam
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Surbhi Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
4
|
Fang R, Zheng L, Chen X, Wang C, Chen Y. An FeCl 3-catalyzed three-component reaction for the synthesis of β-(1,2,3-triazolyl)-ketones using DMF as a one-carbon source. Org Biomol Chem 2024; 22:3866-3870. [PMID: 38646715 DOI: 10.1039/d4ob00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
An FeCl3-catalyzed oxidative condensation of NH-1,2,3-triazoles, aryl methyl ketones (or acetophenones) and DMF (N,N-dimethylformamide) for the synthesis of β-(1,2,3-triazolyl)-ketones was developed. DMF serves as a one-carbon source, and the resulting products display diverse reaction selectivity, highlighting the existence of distinct approaches.
Collapse
Affiliation(s)
- Ruilin Fang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Lei Zheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuyang Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Can Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yunfeng Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
5
|
Ando H, Takamura H, Kadota I, Tanaka K. Strongly reducing helical phenothiazines as recyclable organophotoredox catalysts. Chem Commun (Camb) 2024; 60:4765-4768. [PMID: 38529587 DOI: 10.1039/d4cc00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Recyclable phenothiazine organophotoredox catalysts (PTHS 1-3, E1/2ox* = -2.34 to -2.40 V vs. SCE) have been developed. When the recycling performance was evaluated, PTHS-1 could be recovered at least four times without loss of its catalytic activity. These recyclable organophotoredox catalysts represent a promising tool for sustainable organic synthesis.
Collapse
Affiliation(s)
- Haru Ando
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Kenta Tanaka
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| |
Collapse
|
6
|
Abdelbaki H, Djemoui A, Souli L, Souadia A, Ouahrani MR, Djemoui B, Lahrech MB, Messaoudi M, Ben Amor I, Benarfa A, Alsalme A, Bechelany M, Barhoum A. Plant mediated synthesis of flower-like Cu 2O microbeads from Artimisia campestris L. extract for the catalyzed synthesis of 1,4-disubstituted 1,2,3-triazole derivatives. Front Chem 2024; 11:1342988. [PMID: 38298761 PMCID: PMC10829102 DOI: 10.3389/fchem.2023.1342988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
This study presents a novel method for synthesizing 1,4-disubstituted 1,2,3-triazole derivatives through a one-pot, multi-component addition reaction using flower-like Cu2O microbeads as a catalyst. The flower-like Cu2O microbeads were synthesized using an aqueous extract of Artimisia Campestris L. This extract demonstrated the capability to reduce and stabilize Cu2O particles during their initial formation, resulting in the formation of a porous flower-like morphology. These Cu2O microbeads exhibit distinctive features, including a cubic close-packed (ccp) crystal structure with an average crystallite size of 22.8 nm, bandgap energy of 2.7 eV and a particle size of 6 µm. Their catalytic activity in synthesizing 1,4-disubstituted 1,2,3-triazole derivatives was investigated through systematic exploration of key parameters such as catalyst quantity (1, 5, 10, 15, 20, and 30 mg/mL), solvent type (dimethylformamide/H2O, ethanol/H2O, dichloromethane/H2O, chloroform, acetone, and dimethyl sulfoxide), and catalyst reusability (four cycles). The Cu2O microbeads significantly increased the product yield from 20% to 85.3%. The green synthesis and outstanding catalytic attributes make these flower-like Cu2O microbeads promising, efficient, and recyclable catalysts for sustainable and effective chemical transformations.
Collapse
Affiliation(s)
- Halla Abdelbaki
- Department of Chemistry, Faculty of Exact Sciences, University of El Oued, El Oued, Algeria
- Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, Faculty of Natural Sciences and Life, University of El Oued, El Oued, Algeria
| | - Amar Djemoui
- Laboratory of Organic Chemistry and Natural Substance, Department of Chemistry, Faculty of Exact Sciences and Computer Science, ZIANE Achour University, Djelfa, Algeria
| | - Lahcene Souli
- Laboratory of Organic Chemistry and Natural Substance, Department of Chemistry, Faculty of Exact Sciences and Computer Science, ZIANE Achour University, Djelfa, Algeria
| | - Ahmed Souadia
- Laboratory of Physico-Chemistry of Materials and Environment, Department of Chemistry, Faculty of Exact Sciences and Computer Science, ZIANE Achour University, Djelfa, Algeria
| | - Mohammed Ridha Ouahrani
- Department of Chemistry, Faculty of Exact Sciences, University of El Oued, El Oued, Algeria
- Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, Faculty of Natural Sciences and Life, University of El Oued, El Oued, Algeria
| | - Brahim Djemoui
- Department of Chemistry, Faculty of Exact and Applied Sciences (FSEA), Oran University1, Oran, Algeria
| | - Mokhtar Boualem Lahrech
- Laboratory of Organic Chemistry and Natural Substance, Department of Chemistry, Faculty of Exact Sciences and Computer Science, ZIANE Achour University, Djelfa, Algeria
| | | | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Adel Benarfa
- Laboratoire des Sciences Fondamentales (LSF), University of Amar Télidji Laghouat, Laghouat, Algeria
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC)-PTAPC, Laghouat, Algeria
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mikhael Bechelany
- InstitutEuropéen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, Place Eugène Bataillon, Montpellier, France
- Gulf University for Science and Technology, GUST, Mubarak Al-Abdullah, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
7
|
Adrion DM, Karunaratne WV, Lopez SA. Multiconfigurational photodynamics simulations reveal the mechanism of photodecarbonylations of cyclopropenones in explicit aqueous environments. Chem Sci 2023; 14:13205-13218. [PMID: 38023495 PMCID: PMC10664470 DOI: 10.1039/d3sc03805j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Gas-evolving photochemical reactions use light and mild conditions to access strained organic compounds irreversibly. Cyclopropenones are a class of light-responsive molecules used in bioorthogonal photoclick reactions; their excited-state decarbonylation reaction mechanisms are misunderstood due to their ultrafast (<100 femtosecond) lifetimes. We have combined multiconfigurational quantum mechanical (QM) calculations and non-adiabatic molecular dynamics (NAMD) simulations to uncover the excited-state mechanism of cyclopropenone and a photoprotected cyclooctyne-(COT)-precursor in gaseous and explicit aqueous environments. We explore the role of H-bonding with fully quantum mechanical explicitly solvated NAMD simulations for the decarbonylation reaction. The cyclopropenones pass through asynchronous conical intersections and have dynamically concerted photodecarbonylation mechanisms. The COT-precursor has a higher quantum yield of 55% than cyclopropenone (28%) because these trajectories prefer to break a σCC bond to avoid the strained trans-cyclooctene geometries. Our solvated simulations show an increased quantum yield (58%) for the systems studied here.
Collapse
Affiliation(s)
- Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University Boston Massachusetts 02115 USA
| | - Waruni V Karunaratne
- Department of Chemistry and Chemical Biology, Northeastern University Boston Massachusetts 02115 USA
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University Boston Massachusetts 02115 USA
| |
Collapse
|
8
|
Benito G, D'Agostino I, Carradori S, Fantacuzzi M, Agamennone M, Puca V, Grande R, Capasso C, Carta F, Supuran CT. Erlotinib-containing benzenesulfonamides as anti- Helicobacter pylori agents through carbonic anhydrase inhibition. Future Med Chem 2023; 15:1865-1883. [PMID: 37886837 DOI: 10.4155/fmc-2023-0208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Aim: Development of dual-acting antibacterial agents containing Erlotinib, a recognized EGFR inhibitor used as an anticancer agent, with differently spaced benzenesulfonamide moieties known to bind and inhibit Helicobacter pylori carbonic anhydrase (HpCA) or the antiviral Zidovudine. Methods & materials: Through rational design, ten derivatives were obtained via a straightforward synthesis including a click chemistry reaction. Inhibitory activity against a panel of pathogenic carbonic anhydrases and antibacterial susceptibility of H. pylori ATCC 43504 were assessed. Docking studies on α-carbonic anhydrase enzymes and EGFR were conducted to gain insight into the binding mode of these compounds. Results & conclusion: Some compounds proved to be strong inhibitors of HpCA and showed good anti-H. pylori activity. Computational studies on the targeted enzymes shed light on the interaction hotspots.
Collapse
Affiliation(s)
- Germán Benito
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | | | - Simone Carradori
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Mariangela Agamennone
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Valentina Puca
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Rossella Grande
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
- Center for Advanced Studies & Technology, 'G. d'Annunzio' University of Chieti - Pescara, Chieti, 66100, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture & Food Sciences, National Research Council, Institute of Biosciences & Bioresources, Naples, 80131, Italy
| | - Fabrizio Carta
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| |
Collapse
|
9
|
Vlocskó RB, Xie G, Török B. Green Synthesis of Aromatic Nitrogen-Containing Heterocycles by Catalytic and Non-Traditional Activation Methods. Molecules 2023; 28:molecules28104153. [PMID: 37241894 DOI: 10.3390/molecules28104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent advances in the environmentally benign synthesis of aromatic N-heterocycles are reviewed, focusing primarily on the application of catalytic methods and non-traditional activation. This account features two main parts: the preparation of single ring N-heterocycles, and their condensed analogs. Both groups include compounds with one, two and more N-atoms. Due to the large number of protocols, this account focuses on providing representative examples to feature the available methods.
Collapse
Affiliation(s)
- R Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Guoshu Xie
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
10
|
Arora A, Singh K. Click Chemistry Mediated by Photochemical Energy. ChemistrySelect 2022. [DOI: 10.1002/slct.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amandeep Arora
- Department of Natural and Applied Science University of Dubuque 2000 University Ave. Dubuque, IA 52001 USA
| | - Kamaljeet Singh
- TLC Pharmaceutical Standards 130 Pony Drive, Newmarket ON Canada L3Y 7B6 USA
| |
Collapse
|
11
|
Sun R, Xiao YQ, Hu CX, Shang P, Wang JP, Jiang XF. The Synthesis and Photocatalytic Property of Cuprous Iodide-based Coordination Polymer. CHEM LETT 2022. [DOI: 10.1246/cl.220300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Sun
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Yu-Qing Xiao
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Chu-Xing Hu
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Ping Shang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Ju-Ping Wang
- Hubei Key Laboratory of Processing and Application of Catalytic materials, Huanggang Normal University, Huanggang, Hubei, 438000, P. R. China
| | - Xuan-Feng Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| |
Collapse
|
12
|
Qin L, Ren R, Huang X, Xu X, Shi H, Huai R, Song N, Yang L, Wang S, Zhang D, Zhou Z. Photocatalytic activity of an Anderson-type polyoxometalate with mixed copper(I)/copper(II) ions for visible-light enhancing heterogeneous catalysis. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Lu H, Qiu YC, Zhao Q, Tang R, Chen T, Hu L, Wu ZG. An efficient approach for 3-haloquinoline synthesis: PhI(OAc)2-mediated A3-X type tandem annulation of amine, aldehyde, alkyne and halide salt. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Eldeeb M, Sanad EF, Ragab A, Ammar YA, Mahmoud K, Ali MM, Hamdy NM. Anticancer Effects with Molecular Docking Confirmation of Newly Synthesized Isatin Sulfonamide Molecular Hybrid Derivatives against Hepatic Cancer Cell Lines. Biomedicines 2022; 10:722. [PMID: 35327524 PMCID: PMC8945686 DOI: 10.3390/biomedicines10030722] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
The current study investigated the cytotoxic effect of ten sulfonamide-derived isatins, following molecular hybridization, based on the association principles, on hepatocellular carcinoma (HCC) HepG2 and Huh7 cell lines, compared for safety using human normal retina pigmented epithelial (RPE-1) cells. The ten compounds showed variable in vitro cytotoxicity on HepG2 and Huh7 cells, using the MTT assay. Four compounds (4/10) were highly cytotoxic to both HepG2 and HuH7. However, only 3 of these 4 were of the highest safety margin on RPE-1 cells in vitro and in the in vivo acute (14-day) oral toxicity study. These later, superior three compounds' structures are 3-hydroxy-3-(2-oxo-2-(p-tolyl)ethyl)-5-(piperidin-1-ylsulfonyl)indolin-2-one (3a), N-(4-(2-(2-oxo-5-(piperidin-1-ylsulfonyl)indolin-3-ylidene)acetyl)phenyl)acetamide (4b), and N-(3-(2-(2-oxo-5-(piperidin-1-ylsulfonyl)indolin-3-ylidene)acetyl)phenyl)acetamide (4c). The half-maximal inhibitory concentration (IC50) of the tested compounds (3a, 4b, and 4c) on HepG2 cells were approximately 16.8, 44.7, and 39.7 μM, respectively. The 3a, 4b, and 4c compounds significantly decreased the angiogenic marker epithelial growth factor receptor (EGFR) level and that was further confirmed via molecular docking inside the EFGR active site (PDB: 1M17). The binding free energies ranged between -19.21 and -21.74 Kcal/mol compared to Erlotinib (-25.65 Kcal/mol). The most promising compounds, 3a, 4b, and 4c, showed variable anticancer potential on "hallmarks of cancer", significant cytotoxicity, and apoptotic anti-angiogenic and anti-invasive effects, manifested as suppression of Bcl-2, urokinase plasminogen activation, and heparanase expression in HepG2-treated cells' lysate, compared to non-treated HepG2 cells. In conclusion, compound "3a" is highly comparable to doxorubicin regarding cell cycle arrest at G2/M, the pre-G0 phases and early and late apoptosis induction and is comparable to Erlotinib regarding binding to EGFR active site. Therefore, the current study could suggest that compound "3a" is, hopefully, the most safe and active synthesized isatin sulfonamide derivative for HCC management.
Collapse
Affiliation(s)
- Mahmoud Eldeeb
- Department of Biochemistry, Biotechnology Research Institute, National Research Centre, 12622 Giza, Egypt; (M.E.); (M.M.A.)
| | - Eman F. Sanad
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt;
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (for Boys, Cairo Branch), Al-Azhar University, 11884 Cairo, Egypt; (A.R.); (Y.A.A.)
| | - Yousry A. Ammar
- Department of Chemistry, Faculty of Science (for Boys, Cairo Branch), Al-Azhar University, 11884 Cairo, Egypt; (A.R.); (Y.A.A.)
| | - Khaled Mahmoud
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 12622 Giza, Egypt;
| | - Mamdouh M. Ali
- Department of Biochemistry, Biotechnology Research Institute, National Research Centre, 12622 Giza, Egypt; (M.E.); (M.M.A.)
| | - Nadia M. Hamdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt;
| |
Collapse
|
15
|
Liu Z, Chen H, Gan X, Wang L, Lin P, Li J, Huang X, Tian R, Liu X, Gao W, Tang B. Consecutive 2-azidoallylation/click cycloaddition of active methylene for synthesis of functionalized hepta-1,6-dienes with a bis-1,2,3-triazole scaffold. Org Chem Front 2022. [DOI: 10.1039/d2qo01118b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A tandem 2-azidoallylation/click cycloaddition reaction to access novel hepta-1,6-diene skelecton can be successfully accomplished with methylene compounds, phenolic substituted vinyl azide and alkynes in one pot.
Collapse
Affiliation(s)
- Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Huimin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Xingxing Gan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Lianxiao Wang
- No.1 Middle School of Qihe Shandong, Dezhou, 253000, P. R. China
| | - Ping Lin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jiayi Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Xiuxiu Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Rongbiao Tian
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Xuan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
16
|
Abstract
1,2,3-triazoles represent a functional heterocyclic core that has been at the center of modern organic chemistry since the beginning of click chemistry. Being a versatile framework, such an aromatic ring can be observed in uncountable molecules useful in medicine and photochemistry, just to name a few. This review summarizes the progress achieved in their synthesis from 2015 to today, with particular emphasis on the development of new catalytic and eco-compatible approaches. In doing so, we subdivided the report based on their degree of functionalization and, for each subparagraph, we outlined the role of the catalyst employed.
Collapse
|
17
|
Giofrè SV, Tiecco M, Ferlazzo A, Romeo R, Ciancaleoni G, Germani R, Iannazzo D. Base‐Free Copper‐Catalyzed Azide‐Alkyne Click Cycloadditions (CuAAc) in Natural Deep Eutectic Solvents as Green and Catalytic Reaction Media**. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali Università di Messina Viale Annunziata 98168 Messina Italy
| | - Matteo Tiecco
- Dipartimento di Chimica, Biologia e Biotecnologie Università di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Angelo Ferlazzo
- Dipartimento di Ingegneria Università of Messina Contrada Di Dio 98166 Messina Italy
| | - Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali Università di Messina Viale Annunziata 98168 Messina Italy
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale (DCCI) Università di Pisa Via Giuseppe Moruzzi, 13 56124 Pisa Italy
| | - Raimondo Germani
- Dipartimento di Chimica, Biologia e Biotecnologie Università di Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria Università of Messina Contrada Di Dio 98166 Messina Italy
| |
Collapse
|
18
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
19
|
Liu EC, Topczewski JJ. Enantioselective Nickel-Catalyzed Alkyne-Azide Cycloaddition by Dynamic Kinetic Resolution. J Am Chem Soc 2021; 143:5308-5313. [PMID: 33798335 PMCID: PMC8130861 DOI: 10.1021/jacs.1c01354] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The triazole heterocycle has been widely adopted as an isostere for the amide bond. Many native amides are α-chiral, being derived from amino acids. This makes α-N-chiral triazoles attractive building blocks. This report describes the first enantioselective triazole synthesis that proceeds via nickel-catalyzed alkyne-azide cycloaddition (NiAAC). This dynamic kinetic resolution is enabled by a spontaneous [3,3]-sigmatropic rearrangement of the allylic azide. The 1,4,5-trisubstituted triazole products, derived from internal alkynes, are complementary to those commonly obtained by the related CuAAC reaction. Initial mechanistic experiments indicate that the NiAAC reaction proceeds through a monometallic Ni complex, which is distinct from the CuAAC manifold.
Collapse
Affiliation(s)
- En-Chih Liu
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Joseph J Topczewski
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Guselnikova O, Váňa J, Phuong LT, Panov I, Rulíšek L, Trelin A, Postnikov P, Švorčík V, Andris E, Lyutakov O. Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate. Chem Sci 2021; 12:5591-5598. [PMID: 34163774 PMCID: PMC8179579 DOI: 10.1039/d0sc05898j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Plasmon assistance promotes a range of chemical transformations by decreasing their activation energies. In a common case, thermal and plasmon assistance work synergistically: higher temperature results in higher plasmon-enhanced catalysis efficiency. Herein, we report an unexpected tenfold increase in the reaction efficiency of surface plasmon-assisted Huisgen dipolar azide-alkyne cycloaddition (AAC) when the reaction mixture is cooled from room temperature to -35 °C. We attribute the observed increase in the reaction efficiency to complete plasmon-induced annihilation of the reaction barrier, prolongation of plasmon lifetime, and decreased relaxation of plasmon-excited-states under cooling. Furthermore, control quenching experiments supported by theoretical calculations indicate that plasmon-mediated substrate excitation to an electronic triplet state may play the key role in plasmon-assisted chemical transformation. Last but not least, we demonstrated the possible applicability of plasmon assistance to biological systems by AAC coupling of biotin to gold nanoparticles performed at -35 °C.
Collapse
Affiliation(s)
- Olga Guselnikova
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Linh Trinh Phuong
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
| | - Illia Panov
- Group of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals, Czech Academy of Sciences Rozvojová 1/135 165 02 Prague Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Andrii Trelin
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
| | - Pavel Postnikov
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology 166 28 Prague Czech Republic
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| |
Collapse
|
21
|
Kiranmye T, Vadivelu M, Magadevan D, Sampath S, Parthasarathy K, Aman N, Karthikeyan K. Sunlight‐Assisted Photocatalytic Sustainable Synthesis of 1,4‐Disubstituted 1,2,3‐Triazoles and Benzimidazoles Using TiO
2
−Cu
2
(OH)PO
4
Under Solvent‐Free Condition. ChemistrySelect 2021. [DOI: 10.1002/slct.202004427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tayyala Kiranmye
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 India
| | - Murugan Vadivelu
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 India
| | - Deviga Magadevan
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 India
| | - Sugirdha Sampath
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 India
- Department of Metallurgical & Materials Engineering Indian Institute of Technology, Madras Chennai 600036 India
| | - Kannabiran Parthasarathy
- Animal & Mineral Origin Drug Research Laboratory (AMDRL) Siddha Central Research Institute Central Council for Research in Siddha, Arignar Anna Hospital Campus, Arumbakkam Chennai 600 106 India
| | - Noor Aman
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 India
| | - Kesavan Karthikeyan
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 India
| |
Collapse
|
22
|
El Idrissi M, Eşme A, Hakmaoui Y, Ríos-Gutiérrez M, Aitouna AO, Salah M, Zeroual A, Domingo LR. Divulging the various chemical reactivity of trifluoromethyl-4-vinyl-benzene as well as methyl-4-vinyl-benzene in [3+2] cycloaddition reactions. J Mol Graph Model 2021; 102:107760. [DOI: 10.1016/j.jmgm.2020.107760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
|
23
|
Hu CX, Xuan YH, Jiang ZH, Lu T, Yang J, Yuan H, Tian YP, Sun ZG, Jiang XF. Self-assembly of cuprous iodide cluster-based calix[4]resorcinarenes and photocatalytic properties. CrystEngComm 2021. [DOI: 10.1039/d1ce01069g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cluster-based complexes 1 and 2 with [Cu6I5] and [Cu8I8] polynuclear motifs were constructed via a conformation-adaptive self-assembly strategy, respectively. Two Cu(i) complexes exhibited photocatalytic activity to the CuAAC reaction in water solution.
Collapse
Affiliation(s)
- Chu-Xing Hu
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Ya-Hui Xuan
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Zi-Hao Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Tao Lu
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Jie Yang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Hui Yuan
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - You-Ping Tian
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, P.R. China
| | - Zheng-Guang Sun
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Xuan-Feng Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| |
Collapse
|
24
|
Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chem Soc Rev 2020; 50:766-897. [PMID: 33350402 DOI: 10.1039/d0cs00493f] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The late stage functionalization (LSF) of complex biorelevant compounds is a powerful tool to speed up the identification of structure-activity relationships (SARs) and to optimize ADME profiles. To this end, visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of drugs by unlocking site-specific reactivities under generally mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments in the field while emphasizing the expected future progress and potential applications. Along with paragraphs discussing the visible-light photocatalytic synthetic protocols so far available for LSF of drugs and drug candidates, useful and readily accessible synoptic tables of such transformations, divided by functional groups, will be provided, thus enabling a useful, fast, and easy reference to them.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Sangwan R, Khanam A, Mandal PK. An Overview on the Chemical
N
‐Functionalization of Sugars and Formation of
N
‐Glycosides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rekha Sangwan
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute Sector 10, Jankipuram extn., Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Ariza Khanam
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute Sector 10, Jankipuram extn., Sitapur Road 226 031 Lucknow India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute Sector 10, Jankipuram extn., Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| |
Collapse
|