1
|
Liu S, Chen H, Fan L, Zhang X. Highly Robust {In 2}-Organic Framework for Efficiently Catalyzing CO 2 Cycloaddition and Knoevenagel Condensation. Inorg Chem 2023; 62:3562-3572. [PMID: 36791403 DOI: 10.1021/acs.inorgchem.2c04130] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
To improve the catalytic performance of metal-organic frameworks (MOFs), creating higher defects is now considered as the most effective strategy, which can not only optimize the Lewis acidity of metal ions but also create more pore space to enhance diffusion and mass transfer in the channels. Herein, the exquisite combination of scarcely reported [In2(CO2)5(H2O)2(DMF)2] clusters and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) under solvothermal conditions generated a highly robust nanoporous framework of {[In2(BDCP)(DMF)2(H2O)2](NO3)}n (NUC-65) with nanocaged voids (14.1 Å) and rectangular nanochannels (15.94 Å × 11.77 Å) along the a axis. It is worth mentioning that an In(1) ion displays extremely low tetra-coordination modes after the thermal removal of its associated four solvent molecules of H2O and DMF. Activated {[In2(BDCP)](Br)}n (NUC-65Br), as a defective material because of its extremely unsaturated metal centers, could be generated by bromine ion exchange, solvent exchange, and vacuum drying. Catalytic experiments proved that the conversion of epichlorohydrin with 1 atm CO2 into 4-(chloromethyl)-1,3-dioxolan-2-one catalyzed by 0.11 mol % NUC-65Br could reach 99% at 65 °C within 24 h. Moreover, with the aid of 5 mol % cocatalyst n-Bu4NBr, heterogeneous NUC-65Br owns excellent universal catalytic performance in most epoxides under mild conditions. In addition, NUC-65Br, as a heterogeneous catalyst, exhibits higher activity and better selectivity for Knoevenagel condensation of aldehydes and malononitrile. Hence, this work offers a fresh insight into the design of structure defect cationic metal-organic frameworks, which can be better applied to various fields because of their promoted performance.
Collapse
Affiliation(s)
- Shurong Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongtai Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
2
|
Becerra J, Nguyen DT, Nair Gopalakrishnan V, Do TO. Chemically Bonded Plasmonic Triazole-Functionalized Au/Zeolitic Imidazole Framework (ZIF-67) for Enhanced CO 2 Photoreduction. CHEMSUSCHEM 2022; 15:e202201535. [PMID: 36121437 DOI: 10.1002/cssc.202201535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The design of functionalized metallic nanoparticles is considered an emerging technique to ensure the interaction between metal and semiconductor material. In the literature, this interface interaction is mainly governed by electrostatic or van der Waals forces, limiting the injection of electrons under light irradiation. To enhance the transfer of electrons between two compounds, close contact or chemical bonding at the interface is required. Herein, a new approach was reported for the synthesis of chemically bonded plasmonic Au NPs/ZIF-67 nanocomposites. The structure of ZIF-67 was grown on the surface of functionalized plasmonic Au NPs using 1H-1,2,4-triazole-3-thiol as the capping agent, which acted as both stabilizer of Au nanoparticles and a molecular linker for ZIF-67 formation. As a result, the synthesized material exhibited outstanding photocatalytic CO2 reduction with a methanol production rate of 2.70 mmol h-1 g-1 cat under sunlight irradiation. This work emphasizes that the diligent use of capping agents, with suitable functional groups, could facilitate the formation of intimate heterostructure for enhanced photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Jorge Becerra
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| | - Duc-Trung Nguyen
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| | - Vishnu Nair Gopalakrishnan
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| | - Trong-On Do
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, G1V0A6, Quebec, QC, Canada
| |
Collapse
|
3
|
Wang S, Wu L, Li J, Deng C, Xue J, Tang D, Ji H, Chen C, Zhang Y, Zhao J. In Situ Observation of Hot Carrier Transfer at Plasmonic Au/Metal‐Organic Frameworks (MOFs) Interfaces. Chemistry 2022; 28:e202200919. [DOI: 10.1002/chem.202200919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shuobo Wang
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Wu
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jikun Li
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chaoyuan Deng
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jing Xue
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Daojian Tang
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
4
|
Dai C, Zhang Y, Chen J, Zhong X, Zhang L, Zhang B. Support Morphology Effect on Selective Hydrogenation of 3-Nitrostyrene to 3-Vinylaniline over Pt/α-Fe 2 O 3 Catalysts. Chemistry 2022; 28:e202200199. [PMID: 35543283 DOI: 10.1002/chem.202200199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 01/21/2023]
Abstract
Selective hydrogenation of substituted nitroaromatic compounds is an extremely important and challenging reaction. Supported metal catalysts attract much attention in this reaction because the properties of metal nanoparticles (NPs) can be modified by the nature of the support. Herein, the support morphology on the catalytic performance of selective hydrogenation of 3-nitrostyrene to 3-vinylaniline was investigated. Pt NPs supported on octadecahedral α-Fe2 O3 supports with a truncated hexagonal bipyramid shape (Pt/α-Fe2 O3 -O) and rod-shaped α-Fe2 O3 supports (Pt/α-Fe2 O3 -R) were prepared by glycol reduction method. Detailed characterizations reveal that the electronic structure and dispersion of Pt NPs can be modified by the supports. The Pt/α-Fe2 O3 -O catalyst exhibited superior catalytic performance for hydrogenation of 3-nitrostyrene because of its low coordinated Pt sites and the small Pt NPs size, which is benefit from the high-index exposed surfaces of truncated hexagonal bipyramid-shaped α-Fe2 O3 support. The structural evolution during the catalytic reaction was investigated in detail by identical location transmission electron microscopy (IL-TEM) method, which found that the high cycling activity of Pt/α-Fe2 O3 -O catalyst during the cycle experiment results from the stability of Pt NPs.
Collapse
Affiliation(s)
- Chengshan Dai
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.,School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, P. R. China
| | - Ying Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.,School of Petrochemical Engineering, Liaoning Petrochemical University, 1 Dandong Road, Wanghua District, Fushun, 113001, P. R. China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.,School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, P. R. China
| | - Xia Zhong
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.,School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, P. R. China
| | - Liyun Zhang
- Department of Chemical Engineering, Qufu Normal University, 57 Jingxuan Road, Qufu, 273165, P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.,School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
5
|
Zhang Z, Wang H, Li Y, Xie M, Li C, Lu H, Peng Y, Shi Z. Confined Pyrolysis Synthesis of Well-dispersed Cobalt Copper Bimetallic Three-dimensional N-Doped Carbon Framework as Efficient Water Splitting Electrocatalyst. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1504-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Wang S, Li F, Liu Y, Zhang Q, Song H. Fast catalytic transfer hydrogenation of phenol to cyclohexanol over urea modified Ni@CN nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d2nj03040c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ni@CN-450 catalyst prepared via direct pyrolysis of Ni-MOF-74(N) exhibited superior catalytic activity in catalytic transfer hydrogenation.
Collapse
Affiliation(s)
- Shuai Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Feng Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Yanxiu Liu
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Qiang Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Hua Song
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| |
Collapse
|
7
|
Zhang M, Li J, Wang R, Zhao S, Zang S, Mak TCW. Construction of Core-Shell MOF@COF Hybrids with Controllable Morphology Adjustment of COF Shell as a Novel Platform for Photocatalytic Cascade Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101884. [PMID: 34378352 PMCID: PMC8498909 DOI: 10.1002/advs.202101884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Indexed: 05/16/2023]
Abstract
Recently, novel core-shell MOF@COF hybrids display excellent performance in various fields because of their inherited advantages from their parent MOFs and/or COFs. However, it is still a grand challenge to adjust the morphology of MOFs and/or COFs for consequent performance improvement. Herein, a Ti-MOF@TpTt hybrid coated with ultra-thin COF nanobelt, which is different from the fibrillar-like parent COF, is successfully synthesized through a sequential growth strategy. The as-obtained Pd decorated Ti-MOF@TpTt catalyst exhibits much higher photocatalytic performance than those of Ti-MOF, TpTt-COF, and Ti-MOF@TpTt hybrids with fibrillar-like COF shell for the photocatalytic cascade reactions of ammonia borane (AB) hydrolysis and nitroarenes hydrogenation. These can be attributed to its high BET surface area, core-shell structure, and type II heterojunction, which offers more accessible active sites and improves the separation efficiency of photo-generated carriers. Finally, the possible mechanisms of the cascade reaction are also proposed to well explain the improved performance of this photocatalytic system. This work presents a constructive route for designing core-shell MOF@COF hybrids with controllable morphology adjustment of COF shell, leading to the improved photocatalytic ability to broaden the applications of MOF/COF hybrid materials.
Collapse
Affiliation(s)
- Meng‐Yao Zhang
- Henan Key Laboratory of Crystalline Molecular Functional MaterialsHenan International Joint Laboratory of Tumor Theranostical Cluster MaterialsGreen Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Jun‐Kang Li
- Henan Key Laboratory of Crystalline Molecular Functional MaterialsHenan International Joint Laboratory of Tumor Theranostical Cluster MaterialsGreen Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional MaterialsHenan International Joint Laboratory of Tumor Theranostical Cluster MaterialsGreen Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Shu‐Na Zhao
- Henan Key Laboratory of Crystalline Molecular Functional MaterialsHenan International Joint Laboratory of Tumor Theranostical Cluster MaterialsGreen Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Shuang‐Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional MaterialsHenan International Joint Laboratory of Tumor Theranostical Cluster MaterialsGreen Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Thomas C. W. Mak
- Henan Key Laboratory of Crystalline Molecular Functional MaterialsHenan International Joint Laboratory of Tumor Theranostical Cluster MaterialsGreen Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|