1
|
Matsia S, Papadopoulos A, Hatzidimitriou A, Schumacher L, Koldemir A, Pöttgen R, Panagiotopoulou A, Chasapis CT, Salifoglou A. Hybrid Lanthanide Metal-Organic Compounds with Flavonoids: Magneto-Optical Properties and Biological Activity Profiles. Int J Mol Sci 2025; 26:1198. [PMID: 39940971 PMCID: PMC11818910 DOI: 10.3390/ijms26031198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Lanthanides have seen rapid growth in the pharmaceutical and biomedical field, thus necessitating the development of hybrid metal-organic materials capable of exerting defined biological activities. Ternary hybrid lanthanide compounds were synthesized through reaction systems of Ln(III) (Ln = La, Nd, Eu) involving the antioxidant flavonoid chrysin (Chr) and 1,10-phenanhtroline (phen) under solvothermal conditions, thus leading to pure crystalline materials. The so-derived compounds were characterized physicochemically in the solid state through analytical (elemental analysis), spectroscopic (FT-IR, UV-visible, luminescence, ESI-MS, circular dichroism, 151Eu Mössbauer), magnetic susceptibility, and X-ray crystallographic techniques. The analytical and spectroscopic data corroborate the 3D structure of the mononuclear complex assemblies and are in line with theoretical calculations (Bond Valence Sum and Hirshfeld analysis), with their luminescence suggesting quenching on the flavonoid-phen electronic signature. Magnetic susceptibility data suggest potential correlations, which could be envisioned, supporting future functional sensors. At the biological level, the title compounds were investigated for their (a) ability to interact with bovine serum albumin and (b) antibacterial efficacy against Gram(-) (E. coli) and Gram(+) (S. aureus) bacteria, collectively revealing distinctly configured biological profiles and suggesting analogous applications in cellular (patho)physiologies.
Collapse
Affiliation(s)
- Sevasti Matsia
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.M.); (A.P.)
| | - Anastasios Papadopoulos
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.M.); (A.P.)
| | - Antonios Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Lars Schumacher
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany; (L.S.); (A.K.); (R.P.)
| | - Aylin Koldemir
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany; (L.S.); (A.K.); (R.P.)
| | - Rainer Pöttgen
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, D-48149 Münster, Germany; (L.S.); (A.K.); (R.P.)
| | - Angeliki Panagiotopoulou
- Institute of Biosciences & Applications, National Centre of Scientific Research “Demokritos”, Aghia Paraskevi, 15310 Attiki, Greece;
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - Athanasios Salifoglou
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.M.); (A.P.)
| |
Collapse
|
2
|
Valdés JJ, Petrash DA, Konhauser KO. A novel in-silico model explores LanM homologs among Hyphomicrobium spp. Commun Biol 2024; 7:1539. [PMID: 39562649 PMCID: PMC11576760 DOI: 10.1038/s42003-024-07258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Investigating microorganisms in metal-enriched environments holds the potential to revolutionize the sustainable recovery of critical metals such as lanthanides (Ln3+). We observe Hyphomicrobium spp. as part of a Fe2+/Mn2+-oxidizing consortia native to the ferruginous bottom waters of a Ln3+-enriched lake in Czechia. Notably, one species shows similarities to recently discovered bacteria expressing proteins with picomolar Ln3+ affinity. This finding was substantiated by developing an in-silico ionic competition model and recombinant expression of a homolog protein (Hm-LanM) from Hyphomicrobium methylovorum. Biochemical assays validate Hm-LanM preference for lighter Ln3+ ions (from lanthanum to gadolinium). This is comparable to established prototypes. Bioinformatics analyses further uncover additional H. methylovorum metabolic biomolecules in genomic proximity to Hm-LanM analogously dependent on Ln3+, including an outer membrane receptor that binds Ln3+-chelating siderophores. These combined observations underscore the remarkable strategy of Hyphomicrobium spp. for thriving in relatively Ln3+ enriched zones of metal-polluted environments.
Collapse
Affiliation(s)
- James J Valdés
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia.
| | - Daniel A Petrash
- Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Prague 5, Czechia.
- Institute of Soil Biology and Biogeochemistry, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Gao Y, Licup GL, Bigham NP, Cantu DC, Wilson JJ. Chelator-Assisted Precipitation-Based Separation of the Rare Earth Elements Neodymium and Dysprosium from Aqueous Solutions. Angew Chem Int Ed Engl 2024; 63:e202410233. [PMID: 39030817 DOI: 10.1002/anie.202410233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The rare earth elements (REEs) are critical resources for many clean energy technologies, but are difficult to obtain in their elementally pure forms because of their nearly identical chemical properties. Here, an analogue of macropa, G-macropa, was synthesized and employed for an aqueous precipitation-based separation of Nd3+ and Dy3+. G-macropa maintains the same thermodynamic preference for the large REEs as macropa, but shows smaller thermodynamic stability constants. Molecular dynamics studies demonstrate that the binding affinity differences of these chelators for Nd3+ and Dy3+ is a consequence of the presence or absence of an inner-sphere water molecule, which alters the donor strength of the macrocyclic ethers. Leveraging the small REE affinity of G-macropa, we demonstrate that within aqueous solutions of Nd3+, Dy3+, and G-macropa, the addition of HCO3 - selectively precipitates Dy2(CO3)3, leaving the Nd3+-G-macropa complex in solution. With this method, remarkably high separation factors of 841 and 741 are achieved for 50 : 50 and 75 : 25 mixtures. Further studies involving Nd3+:Dy3+ ratios of 95 : 5 in authentic magnet waste also afford an efficient separation as well. Lastly, G-macropa is recovered via crystallization with HCl and used for subsequent extractions, demonstrating its good recyclability.
Collapse
Affiliation(s)
- Yangyang Gao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, United States
| | - Gerra L Licup
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, 89557, United States
| | - Nicholas P Bigham
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, 89557, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, United States
| |
Collapse
|
4
|
Zytnick AM, Gutenthaler-Tietze SM, Aron AT, Reitz ZL, Phi MT, Good NM, Petras D, Daumann LJ, Martinez-Gomez NC. Identification and characterization of a small-molecule metallophore involved in lanthanide metabolism. Proc Natl Acad Sci U S A 2024; 121:e2322096121. [PMID: 39078674 PMCID: PMC11317620 DOI: 10.1073/pnas.2322096121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024] Open
Abstract
Many bacteria secrete metallophores, low-molecular-weight organic compounds that bind ions with high selectivity and affinity, in order to access essential metals from the environment. Previous work has elucidated the structures and biosynthetic machinery of metallophores specific for iron, zinc, nickel, molybdenum, and copper. No physiologically relevant lanthanide-binding metallophore has been discovered despite the knowledge that lanthanide metals (Ln) have been revealed to be essential cofactors for certain alcohol dehydrogenases across a diverse range of phyla. Here, we report the biosynthetic machinery, the structure, and the physiological relevance of a lanthanophore, methylolanthanin. The structure of methylolanthanin exhibits a unique 4-hydroxybenzoate moiety which has not previously been described in other metallophores. We find that production of methylolanthanin is required for normal levels of Ln accumulation in the methylotrophic bacterium Methylobacterium extorquens AM1, while overexpression of the molecule greatly increases bioaccumulation and adsorption. Our results provide a clearer understanding of how Ln-utilizing bacteria sense, scavenge, and store Ln; essential processes in the environment where Ln are poorly bioavailable. More broadly, the identification of this lanthanophore opens doors for study of how biosynthetic gene clusters are repurposed for additional functions and the complex relationship between metal homeostasis and fitness.
Collapse
Affiliation(s)
- Alexa M. Zytnick
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA94720
| | - Sophie M. Gutenthaler-Tietze
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
- Chair of Bioinorganic Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf40225, Germany
| | - Allegra T. Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO80210
| | - Zachary L. Reitz
- Bioinformatics Group, Wageningen University, Wageningen6708PB, The Netherlands
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93117
| | - Manh Tri Phi
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Nathan M. Good
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA94720
| | - Daniel Petras
- Interfaculty Institute of Microbiology and Medicine, Universität Tübingen, Tübingen72074, Germany
| | - Lena J. Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
- Chair of Bioinorganic Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf40225, Germany
| | | |
Collapse
|
5
|
Rocha RA, Alexandrov K, Scott C. Rare earth elements in biology: From biochemical curiosity to solutions for extractive industries. Microb Biotechnol 2024; 17:e14503. [PMID: 38829373 PMCID: PMC11146143 DOI: 10.1111/1751-7915.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024] Open
Abstract
Rare earth elements (REEs) are critical for our modern lifestyles and the transition to a low-carbon economy. Recent advances in our understanding of the role of REEs in biology, particularly methylotrophy, have provided opportunities to explore biotechnological innovations to improve REE mining and recycling. In addition to bacterial accumulation and concentration of REEs, biological REE binders, including proteins (lanmodulin, lanpepsy) and small molecules (metallophores and cofactors) have been identified that enable REE concentration and separation. REE-binding proteins have also been used in several mechanistically distinct REE biosensors, which have potential application in mining and medicine. Notably, the role of REEs in biology has only been known for a decade, suggesting their considerable scope for developing new understanding and novel applications.
Collapse
Affiliation(s)
- Raquel A. Rocha
- ARC Centre of Excellence in Synthetic BiologyCanberraAustralian Capital TerritoryAustralia
- CSIRO Advanced Engineering Biology Future Science Platform, Black Mountain Science and Innovation ParkCanberraAustralian Capital TerritoryAustralia
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic BiologyCanberraAustralian Capital TerritoryAustralia
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQueenslandAustralia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Colin Scott
- ARC Centre of Excellence in Synthetic BiologyCanberraAustralian Capital TerritoryAustralia
- CSIRO Advanced Engineering Biology Future Science Platform, Black Mountain Science and Innovation ParkCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
6
|
Jung H, Su Z, Inaba Y, West AC, Banta S. Genetic Modification of Acidithiobacillus ferrooxidans for Rare-Earth Element Recovery under Acidic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19902-19911. [PMID: 37983372 DOI: 10.1021/acs.est.3c05772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
As global demands for rare-earth elements (REEs) continue to grow, the biological recovery of REEs has been explored as a promising strategy, driven by potential economic and environmental benefits. It is known that calcium-binding domains, including helix-loop-helix EF hands and repeats-in-toxin (RTX) domains, can bind lanthanide ions due to their similar ionic radii and coordination preference to calcium. Recently, the lanmodulin protein from Methylorubrum extorquens was reported, which has evolved a high affinity for lanthanide ions over calcium. Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile, which has been explored for use in bioleaching for metal recovery. In this report, A. ferrooxidans was engineered for the recombinant intracellular expression of lanmodulin. In addition, an RTX domain from the adenylate cyclase protein of Bordetella pertussis, which has previously been shown to bind Tb3+, was expressed periplasmically via fusion with the endogenous rusticyanin protein. The binding of lanthanides (Tb3+, Pr3+, Nd3+, and La3+) was improved by up to 4-fold for cells expressing lanmodulin and 13-fold for cells expressing the RTX domains in both pure and mixed metal solutions. Interestingly, the presence of lanthanides in the growth media enhanced protein expression, likely by influencing protein stability. Both engineered cell lines exhibited higher recoveries and selectivities for four tested lanthanides (Tb3+, Pr3+, Nd3+, and La3+) over non-REEs (Fe2+ and Co2+) in a synthetic magnet leachate, demonstrating the potential of these new strains for future REE reclamation and recycling applications.
Collapse
Affiliation(s)
- Heejung Jung
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Zihang Su
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Yuta Inaba
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Alan C West
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
7
|
Malcomson T, Edwards-Yates L, Kerridge A. Tailoring the pore size of expanded porphyrinoids for lanthanide selectivity. RSC Adv 2023; 13:28426-28433. [PMID: 37771918 PMCID: PMC10523133 DOI: 10.1039/d3ra05710k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Despite increase in demand, capacity for the recycling of rare earth elements remains limited, partly due to the inefficiencies with processes currently utilised in the separation of lanthanides. This study highlights the potential use of expanded porphyrinoids in lanthanide separation through selective binding, dependent on the tailored pore size of the macrocycle. Each emerging trend is subjected to multi-factored analysis to decompose the underlying source. Results promote the viability of size-based separation with preferential binding of larger lanthanum(iii) ions to amethyrin and isoamethyrin macrocycles, while smaller macrocycles such as pentaphyrin(0.0.0.0.0) present a preferential binding of lutetium(iii) ions. Additionally, the porphyrin(2.2.2.2) macrocycle shows a selectivity for gadolinium(iii) ions over both larger and smaller ions. An upper limit of applicable pore size is shown to be ≈2.8 Å, beyond which the formed complexes are predicted to be less stable than the corresponding nitrate complexes.
Collapse
Affiliation(s)
- Thomas Malcomson
- Department of Chemistry, School of Natural Sciences, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | | |
Collapse
|
8
|
Mattocks JA, Jung JJ, Lin CY, Dong Z, Yennawar NH, Featherston ER, Kang-Yun CS, Hamilton TA, Park DM, Boal AK, Cotruvo JA. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature 2023; 618:87-93. [PMID: 37259003 PMCID: PMC10232371 DOI: 10.1038/s41586-023-05945-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 06/02/2023]
Abstract
Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number1-3. The natural lanthanide-binding protein lanmodulin (LanM)4,5 is a sustainable alternative to conventional solvent-extraction-based separation6. Here we characterize a new LanM, from Hansschlegelia quercus (Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated to Hans-LanM's quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM from Methylorubrum extorquens reveals distinct metal coordination strategies, rationalizing Hans-LanM's greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at the Hans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan J Jung
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Ziye Dong
- Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Emily R Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Christina S Kang-Yun
- Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Timothy A Hamilton
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Dan M Park
- Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Amie K Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
9
|
Daumann LJ, Pol A, Op den Camp HJM, Martinez-Gomez NC. A perspective on the role of lanthanides in biology: Discovery, open questions and possible applications. Adv Microb Physiol 2022; 81:1-24. [PMID: 36167440 DOI: 10.1016/bs.ampbs.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Because of their use in high technologies like computers, smartphones and renewable energy applications, lanthanides (belonging to the group of rare earth elements) are essential for our daily lives. A range of applications in medicine and biochemical research made use of their photo-physical properties. The discovery of a biological role for lanthanides has boosted research in this new field. Several methanotrophs and methylotrophs are strictly dependent on the presence of lanthanides in the growth medium while others show a regulatory response. After the first demonstration of a lanthanide in the active site of the XoxF-type pyrroloquinoline quinone methanol dehydrogenases, follow-up studies showed the same for other pyrroloquinoline quinone-containing enzymes. In addition, research focused on the effect of lanthanides on regulation of gene expression and uptake mechanism into bacterial cells. This review briefly describes the discovery of the role of lanthanides in biology and focuses on open questions in biological lanthanide research and possible application of lanthanide-containing bacteria and enzymes in recovery of these special elements.
Collapse
Affiliation(s)
- Lena J Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arjan Pol
- Department of Microbiology, RIBES, Radboud University, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, RIBES, Radboud University, Nijmegen, The Netherlands.
| | - N Cecilia Martinez-Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States
| |
Collapse
|
10
|
Schäfer A, Vetsova VA, Schneider EK, Kappes M, Seitz M, Daumann LJ, Weis P. Ion Mobility Studies of Pyrroloquinoline Quinone Aza-Crown Ether-Lanthanide Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:722-730. [PMID: 35300493 DOI: 10.1021/jasms.2c00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lanthanide-dependent enzymes and their biomimetic complexes have arisen as an interesting target of research in the past decade. These enzymes, specifically, pyrroloquinoline quinone (PQQ)-bearing methanol dehydrogenases, efficiently convert alcohols to the respective aldehydes. To rationally design bioinspired alcohol dehydrogenation catalysts, it is imperative to understand the species involved in catalysis. However, given the extremely flexible coordination sphere of lanthanides, it is often difficult to assess the number and nature of the active species. Here, we show how such questions can be addressed by using a combination of ion mobility spectrometry, mass spectrometry, and quantum-chemical calculations to study the test systems PQQ and lanthanide-PQQ-crown ether ligand complexes. Specifically, we determine the gas-phase structures of [PQQH2]-, [PQQH2+H2O]-, [PQQH2+MeOH]-, [PQQ-15c5+H]+, and [PQQ-15c5+Ln+NO3]2+ (Ln = La to Lu, except Pm). In the latter case, a trend to smaller collision cross sections across the lanthanide series is clearly observable, in line with the well-known lanthanide contraction. We hope that in the future such investigations will help to guide the design and understanding of lanthanide-based biomimetic complexes optimized for catalytic function.
Collapse
Affiliation(s)
- Alexander Schäfer
- Karlsruhe Institute of Technology Institute of Physical Chemistry Fritz-Haber-Weg 2, 76128 Karlsruhe, Germany
| | - Violeta A Vetsova
- Department of Chemistry Ludwig Maximilian University of Munich Butenandtstraße 5-13, 81377 Munich, Germany
| | - Erik K Schneider
- Karlsruhe Institute of Technology Institute of Physical Chemistry Fritz-Haber-Weg 2, 76128 Karlsruhe, Germany
| | - Manfred Kappes
- Karlsruhe Institute of Technology Institute of Physical Chemistry Fritz-Haber-Weg 2, 76128 Karlsruhe, Germany
- Karlsruhe Institute of Technology Institute of Nanotechnology Hermann von Helmholtz Pl 1,76344 Eggenstein Leopoldshafen, Germany
| | - Michael Seitz
- University of Tübingen Institute of Inorganic Chemistry Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Lena J Daumann
- Department of Chemistry Ludwig Maximilian University of Munich Butenandtstraße 5-13, 81377 Munich, Germany
| | - Patrick Weis
- Karlsruhe Institute of Technology Institute of Physical Chemistry Fritz-Haber-Weg 2, 76128 Karlsruhe, Germany
| |
Collapse
|
11
|
Li D, Gao S, Ye K, Wang Q, Xie C, Wu W, Feng L, Jiang L, Zheng K, Pang Q. Membrane-active La(III) and Ce(III) complexes as potent antibacterial agents: synthesis, characterization, in vitro, in silico, and in vivo studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Pallares RM, Charrier M, Tejedor-Sanz S, Li D, Ashby PD, Ajo-Franklin CM, Ralston CY, Abergel RJ. Precision Engineering of 2D Protein Layers as Chelating Biogenic Scaffolds for Selective Recovery of Rare-Earth Elements. J Am Chem Soc 2022; 144:854-861. [PMID: 34985894 DOI: 10.1021/jacs.1c10802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rare-earth elements, which include the lanthanide series, are key components of many clean energy technologies, including wind turbines and photovoltaics. Because most of these 4f metals are at high risk of supply chain disruption, the development of new recovery technologies is necessary to avoid future shortages, which may impact renewable energy production. This paper reports the synthesis of a non-natural biogenic material as a potential platform for bioinspired lanthanide extraction. The biogenic material takes advantage of the atomically precise structure of a 2D crystalline protein lattice with the high lanthanide binding affinity of hydroxypyridinonate chelators. Luminescence titration data demonstrated that the engineered protein layers have affinities for all tested lanthanides in the micromolar-range (dissociation constants) and a higher binding affinity for the lanthanide ions with a smaller ionic radius. Furthermore, competitive titrations confirmed the higher selectivity (up to several orders of magnitude) of the biogenic material for lanthanides compared to other cations commonly found in f-element sources. Lastly, the functionalized protein layers could be reused in several cycles by desorbing the bound metal with citrate solutions. Taken together, these results highlight biogenic materials as promising bioadsorption platforms for the selective binding of lanthanides, with potential applications in the recovery of these critical elements from waste.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marimikel Charrier
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sara Tejedor-Sanz
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dong Li
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Caroline M Ajo-Franklin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Corie Y Ralston
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Nuclear Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Gutenthaler SM, Tsushima S, Steudtner R, Gailer M, Hoffmann-Röder A, Drobot B, Daumann LJ. Lanmodulin peptides – unravelling the binding of the EF-Hand loop sequences stripped from the structural corset. Inorg Chem Front 2022; 9:4009-4021. [PMID: 36091973 PMCID: PMC9362731 DOI: 10.1039/d2qi00933a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022]
Abstract
Lanmodulin (LanM), a naturally lanthanide (Ln)-binding protein with a remarkable selectivity for Lns over Ca(ii) and affinities in the picomolar range, is an attractive target to address challenges in Ln separation. Why LanM has such a high selectivity is currently not entirely understood; both specific amino acid sequences of the EF-Hand loops and cooperativity effects have been suggested. Here, we removed the effect of cooperativity and synthesised all four 12-amino acid EF-Hand loop peptides, and investigated their affinity for two Lns (Eu(iii) and Tb(iii)), the actinide Cm(iii) and Ca(ii). Using isothermal titration calorimetry and time-resolved laser fluorescence spectroscopy (TRLFS) combined with parallel factor analysis, we show that the four short peptides behave very similarly, having affinities in the micromolar range for Eu(iii) and Tb(iii). Ca(ii) was shown not to bind to the peptides, which was verified with circular dichroism spectroscopy. This technique also revealed an increase in structural organisation upon Eu(iii) addition, which was supported by molecular dynamics simulations. Lastly, we put Eu(iii) and Cm(iii) in direct competition using TRLFS. Remarkably, a slightly higher affinity for Cm(iii) was found. Our results demonstrate that the picomolar affinities in LanM are largely an effect of pre-structuring and therefore a reduction of flexibility in combination with cooperative effects, and that all EF-Hand loops possess similar affinities when detached from the protein backbone, albeit still retaining the high selectivity for lanthanides and actinides over calcium. Taking a closer look at Lanmodulin’s remarkable selectivity for lanthanides (Ln) over Ca(ii) and high Ln/actinide affinities on the amino acid level by investigating the four binding-loops as peptides with Ca(ii), Eu(iii), Tb(iii) and Cm(iii).![]()
Collapse
Affiliation(s)
- Sophie M. Gutenthaler
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstraße 5-13, 81377 München, Germany
| | - Satoru Tsushima
- Institute of Resource Ecology Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400, 01328 Dresden, Germany
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Meguro 152-8550, Tokyo, Japan
| | - Robin Steudtner
- Institute of Resource Ecology Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manuel Gailer
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstraße 5-13, 81377 München, Germany
| | - Anja Hoffmann-Röder
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstraße 5-13, 81377 München, Germany
| | - Björn Drobot
- Institute of Resource Ecology Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Lena J. Daumann
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstraße 5-13, 81377 München, Germany
| |
Collapse
|
14
|
Singer H, Drobot B, Zeymer C, Steudtner R, Daumann LJ. Americium preferred: lanmodulin, a natural lanthanide-binding protein favors an actinide over lanthanides. Chem Sci 2021; 12:15581-15587. [PMID: 35003587 PMCID: PMC8654097 DOI: 10.1039/d1sc04827a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
The separation and recycling of lanthanides is an active area of research with a growing demand that calls for more environmentally friendly lanthanide sources. Likewise, the efficient and industrial separation of lanthanides from the minor actinides (Np, Am–Fm) is one of the key questions for closing the nuclear fuel cycle; reducing costs and increasing safety. With the advent of the field of lanthanide-dependent bacterial metabolism, bio-inspired applications are in reach. Here, we utilize the natural lanthanide chelator lanmodulin and the luminescent probes Eu3+ and Cm3+ to investigate the inter-metal competition behavior of all lanthanides (except Pm) and the major actinide plutonium as well as three minor actinides neptunium, americium and curium to lanmodulin. Using time-resolved laser-induced fluorescence spectroscopy we show that lanmodulin has the highest relative binding affinity to Nd3+ and Eu3+ among the lanthanide series. When equimolar mixtures of Cm3+ and Am3+ are added to lanmodulin, lanmodulin preferentially binds to Am3+ over Cm3+ whilst Nd3+ and Cm3+ bind with similar relative affinity. The results presented show that a natural lanthanide-binding protein can bind a major and various minor actinides with high relative affinity, paving the way to bio-inspired separation applications. In addition, an easy and versatile method was developed, using the fluorescence properties of only two elements, Eu and Cm, for inter-metal competition studies regarding lanthanides and selected actinides and their binding to biological molecules. In need of environmentally friendly methods for the separation and recycling of lanthanides and actinides, the binding of the protein lanmodulin to lanthanides and actinides was studied using time resolved laser induced fluorescence spectroscopy.![]()
Collapse
Affiliation(s)
- Helena Singer
- Department of Chemistry, Ludwig-Maximilians-University Munich Butenandtstraße 5 - 13 81377 München Germany
| | - Björn Drobot
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400 01328 Dresden Germany
| | - Cathleen Zeymer
- Department of Chemistry, Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400 01328 Dresden Germany
| | - Lena J Daumann
- Department of Chemistry, Ludwig-Maximilians-University Munich Butenandtstraße 5 - 13 81377 München Germany
| |
Collapse
|
15
|
Daumann LJ. A Natural Lanthanide-Binding Protein Facilitates Separation and Recovery of Rare Earth Elements. ACS CENTRAL SCIENCE 2021; 7:1780-1782. [PMID: 34849400 PMCID: PMC8620551 DOI: 10.1021/acscentsci.1c01247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Lena J. Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| |
Collapse
|
16
|
Knasin AL, Schelter EJ. Synthetic modeling of the structure and function of the rare-earth dependent methanol dehydrogenase cofactor. Methods Enzymol 2021; 650:19-55. [PMID: 33867022 DOI: 10.1016/bs.mie.2021.01.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Historically, rare-earth ions have been considered irrelevant to biology. Recently, the active sites of certain methanol dehydrogenase (MDH) enzymes have been shown to contain a redox-inactive, rare-earth (RE) cation coordinated by the redox-active pyrroloquinoline quinone (PQQ) cofactor. Importantly, it was demonstrated that rare earths were essential for the growth of certain methylotrophs that incorporated the XoxF-MDH. In this chapter, we summarize the optimized synthesis of a previously published rare-earth complex that serves as a model of the active site of this RE-containing MDH enzyme. The structure and reactivity of the metalated complex, [La(LQQ)(NO3)3] are also discussed. [La(LQQ)(NO3)3] catalytically oxidizes the test alcohol substrate, p-methylbenzyl alcohol, 4MeBnOH, to p-methylbenzaldehyde, 4MePhCHO, in the presence of a base (2,6-lutidine) and a terminal oxidant (ferrocenium hexafluorophosphate) with ~17 turnovers. By studying this synthetic model, we have developed a body of evidence about both the reactivity and the mechanism of dehydrogenation of alcohols as a molecular analogue to a native, rare-earth dependent enzyme.
Collapse
Affiliation(s)
- Alison L Knasin
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
17
|
Vetsova VA, Fisher KR, Lumpe H, Schäfer A, Schneider EK, Weis P, Daumann LJ. Pyrroloquinoline Quinone Aza-Crown Ether Complexes as Biomimetics for Lanthanide and Calcium Dependent Alcohol Dehydrogenases*. Chemistry 2021; 27:10087-10098. [PMID: 33872420 PMCID: PMC8361747 DOI: 10.1002/chem.202100346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/23/2022]
Abstract
Understanding the role of metal ions in biology can lead to the development of new catalysts for several industrially important transformations. Lanthanides are the most recent group of metal ions that have been shown to be important in biology, that is, in quinone‐dependent methanol dehydrogenases (MDH). Here we evaluate a literature‐known pyrroloquinoline quinone (PQQ) and 1‐aza‐15‐crown‐5 based ligand platform as scaffold for Ca2+, Ba2+, La3+ and Lu3+ biomimetics of MDH and we evaluate the importance of ligand design, charge, size, counterions and base for the alcohol oxidation reaction using NMR spectroscopy. In addition, we report a new straightforward synthetic route (3 steps instead of 11 and 33 % instead of 0.6 % yield) for biomimetic ligands based on PQQ. We show that when studying biomimetics for MDH, larger metal ions and those with lower charge in this case promote the dehydrogenation reaction more effectively and that this is likely an effect of the ligand design which must be considered when studying biomimetics. To gain more information on the structures and impact of counterions of the complexes, we performed collision induced dissociation (CID) experiments and observe that the nitrates are more tightly bound than the triflates. To resolve the structure of the complexes in the gas phase we combined DFT‐calculations and ion mobility measurements (IMS). Furthermore, we characterized the obtained complexes and reaction mixtures using Electron Paramagnetic Resonance (EPR) spectroscopy and show the presence of a small amount of quinone‐based radical.
Collapse
Affiliation(s)
- Violeta A Vetsova
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Katherine R Fisher
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Henning Lumpe
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Alexander Schäfer
- Karlsruhe Institute of Technology, Institute of Physical Chemistry, Fritz-Haber-Weg 2, 76128, Karlsruhe, Germany
| | - Erik K Schneider
- Karlsruhe Institute of Technology, Institute of Physical Chemistry, Fritz-Haber-Weg 2, 76128, Karlsruhe, Germany
| | - Patrick Weis
- Karlsruhe Institute of Technology, Institute of Physical Chemistry, Fritz-Haber-Weg 2, 76128, Karlsruhe, Germany
| | - Lena J Daumann
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
18
|
Gutenthaler SM, Phi MT, Singer H, Daumann LJ. Activity assays of methanol dehydrogenases. Methods Enzymol 2021; 650:57-79. [PMID: 33867025 DOI: 10.1016/bs.mie.2021.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The field of methanol dehydrogenases (MDHs) has experienced revival in the recent decade due to the observation of lanthanide-dependent MDH, in addition to widely known calcium-MDH. With the advent of lanthanide-dependent alcohol dehydrogenases, the need for reliable assays to evaluate and compare activities between different MDHs is obvious: from extremophilic to neutrophilic organisms, or with different lanthanide ions in the active site. Here we outline four assays that have been reported for Ln-MDH, discussing the advantages and disadvantages of the assays and their components. It should be noted, in 1990Day and Anthony produced a comprehensive summary in Methods in Enzymology on the available methods for Ca-MDH assays at the time (Day & Anthony, 1990). This chapter is an updated appraisal of the most important developments in the last 30years.
Collapse
Affiliation(s)
- Sophie M Gutenthaler
- Department of Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Manh Tri Phi
- Department of Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Helena Singer
- Department of Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Lena J Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, München, Germany.
| |
Collapse
|
19
|
Lumpe H, Mayer P, Daumann LJ. Crystal structure of a calcium(II)-pyrroloquinoline quinone (PQQ) complex outside a protein environment. Acta Crystallogr C Struct Chem 2020; 76:1051-1056. [PMID: 33273141 PMCID: PMC7716187 DOI: 10.1107/s2053229620014278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is an important cofactor of calcium- and lanthanide-dependent alcohol dehydrogenases, and has been known for over 30 years. Crystal structures of Ca-MDH enzymes (MDH is methanol dehydrogenase) have been known for some time; however, crystal structures of PQQ with biorelevant metal ions have been lacking in the literature for decades. We report here the first crystal structure analysis of a Ca-PQQ complex outside the protein environment, namely, poly[[undecaaquabis(μ-4,5-dioxo-4,5-dihydro-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylato)tricalcium(II)] dihydrate], {[Ca3(C14H3N2O8)2(H2O)11]·2H2O}n. The complex crystallized as Ca3PQQ2·13H2O with Ca2+ in three different positions and PQQ3-, including an extensive hydrogen-bond network. Similarities and differences to the recently reported structure with biorelevant europium (Eu2PQQ2) are discussed.
Collapse
Affiliation(s)
- Henning Lumpe
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich, Bavaria 81377, Germany
| | - Peter Mayer
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich, Bavaria 81377, Germany
| | - Lena J. Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich, Bavaria 81377, Germany
| |
Collapse
|