1
|
Shah A, Wort JL, Ma Y, Pliotas C. Enabling structural biological electron paramagnetic resonance spectroscopy in membrane proteins through spin labelling. Curr Opin Chem Biol 2025; 84:102564. [PMID: 39709893 DOI: 10.1016/j.cbpa.2024.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS), combined with site-directed spin-labelling, represents a powerful tool for the investigation of biomacromolecules, emerging as a keystone approach in structural biology. Increasingly, PDS is applied to study highly complex integral membrane protein systems, such as mechanosensitive ion channels, transporters, G-protein coupled receptors, ion pumps, and outer membrane proteins elucidating their dynamics and revealing conformational ensembles. Indeed, PDS offers a platform to study intermediate or lowly-populated states that are otherwise invisible to other modern methods, such as X-ray crystallography, cryo-EM, and hydrogen-deuterium exchange-mass spectrometry. Importantly, advances in spin labelling strategies welcome a new era of membrane protein investigation under near-native or in-cell conditions. Here, we review recent integral membrane protein PDS applications, and highlight well-suited, emerging spin labelling strategies that show promise for future studies.
Collapse
Affiliation(s)
- Anokhi Shah
- BioEmPiRe Centre for Structural Biological EPR Spectroscopy, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Joshua L Wort
- BioEmPiRe Centre for Structural Biological EPR Spectroscopy, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Yue Ma
- BioEmPiRe Centre for Structural Biological EPR Spectroscopy, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Christos Pliotas
- BioEmPiRe Centre for Structural Biological EPR Spectroscopy, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
2
|
Hunter HR, Kankati S, Hasanbasri Z, Saxena S. Endogenous Cu(II) Labeling for Distance Measurements on Proteins by EPR. Chemistry 2024; 30:e202403160. [PMID: 39401409 DOI: 10.1002/chem.202403160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/14/2024] [Indexed: 11/13/2024]
Abstract
In-cell measurements of the relationship between structure and dynamics to protein function is at the forefront of biophysics. Recently, developments in EPR methodology have demonstrated the sensitivity and power of this method to measure structural constraints in-cell. However, the need to spin label proteins ex-situ or use noncanonical amino acids to achieve endogenous labeling remains a bottleneck. In this work we expand the methodology to endogenously spin label proteins with Cu(II) spin labels and describe how to assess in-cell spin labeling. We quantify the amount of Cu(II)-NTA in cells, assess spin labeling, and account for orientational effects during distance measurements. We compare the efficacy of using heat-shock and hypotonic swelling to deliver spin label, showing that hypotonic swelling is a facile and reproducible method to efficiently deliver Cu(II)-NTA into E. coli. Notably, over six repeats we accomplish a bulk average of 57 μM spin labeled sites, surpassing existing endogenous labeling methods. The results of this work open the door for endogenous spin labeling that is easily accessible to the broader biophysical community.
Collapse
Affiliation(s)
- Hannah R Hunter
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shashank Kankati
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
3
|
Cheng CC, Tsai RF, Lin CK, Tan KT, Kalendra V, Simenas M, Lin CW, Chiang YW. In-Cell DEER Spectroscopy of Nanodisc-Delivered Membrane Proteins in Living Cell Membranes. JACS AU 2024; 4:3766-3770. [PMID: 39483229 PMCID: PMC11522923 DOI: 10.1021/jacsau.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024]
Abstract
Membrane proteins are integral to numerous cellular processes, yet their conformational dynamics in native environments remains difficult to study. This study introduces a nanodelivery method using nanodiscs to transport spin-labeled membrane proteins into the membranes of living cells, enabling direct in-cell double electron-electron resonance (DEER) spectroscopy measurements. We investigated the membrane protein BsYetJ, incorporating spin labels at key positions to monitor conformational changes. Our findings demonstrate successful delivery and high-quality DEER data for BsYetJ in both Gram-negative E. coli and Gram-positive B. subtilis membranes. The delivered BsYetJ retains its ability to transport calcium ions. DEER analysis reveals distinct conformational states of BsYetJ in different membrane environments, highlighting the influence of lipid composition on the protein structure. This nanodelivery method overcomes traditional limitations, enabling the study of membrane proteins in more physiologically relevant conditions.
Collapse
Affiliation(s)
- Chu-Chun Cheng
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Ruei-Fong Tsai
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Che-Kai Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Kui-Thong Tan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Vidmantas Kalendra
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Chun-Wei Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
4
|
Ovcherenko SS, Raizvich AE, Rogozhnikova OY, Tormyshev VM, Trukhin DV, Koval VV, Salnikov GE, Genaev AM, Shernyukov AV, Bagryanskaya EG. Redox Transformations of the OX063 Radical in Biological Media: Oxidative Decay of Initial Trityl with Further Formation of Structurally-Modified TAM. Chemistry 2024; 30:e202400718. [PMID: 39003595 DOI: 10.1002/chem.202400718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024]
Abstract
Being a low-toxic and hydrophilic representative of TAM, OX063 has shown its suitability for in-vivo and in-cell EPR experiments and design of spin labels. Using 13C labeling, we investigated the course of oxidative degradation of OX063 into quinone-methide (QM) under the influence of superoxide as well as further thiol-promoted reduction of QM into TAM radical, which formally corresponds to substitution of a carboxyl function by a hydroxyl group. We found these transformations being quantitative in model reactions mimicking specific features of biological media and confirmed the presence of these reactions in the blood and liver homogenate of mice in vitro. The emergence of the trityl with the hydroxyl group can be masked by an initial TAM in EPR spectra and may introduce distortions into EPR-derived oximetry data if they have been obtained for objects under hypoxia. 13C labeling allows one to detect its presence, considering its different hyperfine splitting constant on 13C1 (2.04 mT) as compared to OX063 (2.30 mT). The potential involvement of these reactions should be considered when using TAM in spin-labeling of biopolymers intended for subsequent EPR experiments, as well as in the successful application of TAM in experiments in vivo and in cell.
Collapse
Affiliation(s)
- Sergey S Ovcherenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russian Federation
| | - Arthur E Raizvich
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russian Federation
| | - Olga Yu Rogozhnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Victor M Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Dmitry V Trukhin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Georgii E Salnikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Alexander M Genaev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Andrey V Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
5
|
Hirsch M, Hofmann L, Yakobov I, Kahremany S, Sameach H, Shenberger Y, Gevorkyan-Airapetov L, Ruthstein S. An efficient EPR spin-labeling method enables insights into conformational changes in DNA. BIOPHYSICAL REPORTS 2024; 4:100168. [PMID: 38945453 PMCID: PMC11298882 DOI: 10.1016/j.bpr.2024.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Electron paramagnetic resonance (EPR) is a powerful tool for elucidating both static and dynamic conformational alterations in macromolecules. However, to effectively utilize EPR for such investigations, the presence of paramagnetic centers, known as spin labels, is required. The process of spin labeling, particularly for nucleotides, typically demands intricate organic synthesis techniques. In this study, we introduce a unique addition-elimination reaction method with a simple spin-labeling process, facilitating the monitoring of structural changes within nucleotide sequences. Our investigation focuses on three distinct labeling positions with a DNA sequence, allowing the measurement of distance between two spin labels. The experimental mean distances obtained agreed with the calculated distances, underscoring the efficacy of this straightforward spin-labeling approach in studying complex biological processes such as transcription mechanism using EPR measurements.
Collapse
Affiliation(s)
- Melanie Hirsch
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Lukas Hofmann
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Idan Yakobov
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Shirin Kahremany
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Hila Sameach
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
6
|
Pierro A, Bonucci A, Magalon A, Belle V, Mileo E. Impact of Cellular Crowding on Protein Structural Dynamics Investigated by EPR Spectroscopy. Chem Rev 2024; 124:9873-9898. [PMID: 39213496 DOI: 10.1021/acs.chemrev.3c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of how the intracellular medium influences protein structural dynamics and protein-protein interactions is a captivating area of research for scientists aiming to comprehend biomolecules in their native environment. As the cellular environment can hardly be reproduced in vitro, direct investigation of biomolecules within cells has attracted growing interest in the past two decades. Among magnetic resonances, site-directed spin labeling coupled to electron paramagnetic resonance spectroscopy (SDSL-EPR) has emerged as a powerful tool for studying the structural properties of biomolecules directly in cells. Since the first in-cell EPR experiment was reported in 2010, substantial progress has been made, and this Review provides a detailed overview of the developments and applications of this spectroscopic technique. The strategies available for preparing a cellular sample and the EPR methods that can be applied to cells will be discussed. The array of spin labels available, along with their strengths and weaknesses in cellular contexts, will also be described. Several examples will illustrate how in-cell EPR can be applied to different biological systems and how the cellular environment affects the structural and dynamic properties of different proteins. Lastly, the Review will focus on the future developments expected to expand the capabilities of this promising technique.
Collapse
Affiliation(s)
- Annalisa Pierro
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Alessio Bonucci
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Axel Magalon
- Aix Marseille University, CNRS, Laboratoire de Chimie Bactérienne (LCB), IMM, IM2B, Marseille, France
| | - Valérie Belle
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Elisabetta Mileo
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| |
Collapse
|
7
|
Li S, Deng P, Chang Q, Feng M, Shang Y, Song Y, Liu Y. In Situ Generation and High Bioresistance of Trityl-based Semiquinone Methide Radicals Under Anaerobic Conditions in Cellular Systems. Chemistry 2024; 30:e202400985. [PMID: 38932665 DOI: 10.1002/chem.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Bioreduction of spin labels and polarizing agents (generally stable radicals) has been an obstacle limiting the in-cell applications of pulsed electron paramagnetic resonance (EPR) spectroscopy and dynamic nuclear polarization (DNP). In this work, we have demonstrated that two semiquinone methide radicals (OXQM⋅ and CTQM⋅) can be easily produced from the trityl-based quinone methides (OXQM and CTQM) via reduction by various reducing agents including biothiols and ascorbate under anaerobic conditions. Both radicals have relatively low pKa's and exhibit EPR single line signals at physiological pH. Moreover, the bioreduction of OXQM in three cell lysates enables quantitative generation of OXQM⋅ which was most likely mediated by flavoenzymes. Importantly, the resulting OXQM⋅ exhibited extremely high stability in the E.coli lysate under anaerobic conditions with 76- and 14.3-fold slower decay kinetics as compared to the trityl OX063 and a gem-diethyl pyrrolidine nitroxide, respectively. Intracellular delivery of OXQM into HeLa cells was also achieved by covalent conjugation with a cell-permeable peptide as evidenced by the stable intracellular EPR signal from the OXQM⋅ moiety. Owing to extremely high resistance of OXQM⋅ towards bioreduction, OXQM and its derivatives show great application potential in in-cell EPR and in-cell DNP studies for various cells which can endure short-term anoxic treatments.
Collapse
Affiliation(s)
- Shuai Li
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Peng Deng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Qi Chang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Meirong Feng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yixuan Shang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yuguang Song
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yangping Liu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
8
|
Bogdanov A, Frydman V, Seal M, Rapatskiy L, Schnegg A, Zhu W, Iron M, Gronenborn AM, Goldfarb D. Extending the Range of Distances Accessible by 19F Electron-Nuclear Double Resonance in Proteins Using High-Spin Gd(III) Labels. J Am Chem Soc 2024; 146:6157-6167. [PMID: 38393979 PMCID: PMC10921402 DOI: 10.1021/jacs.3c13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Fluorine electron-nuclear double resonance (19F ENDOR) has recently emerged as a valuable tool in structural biology for distance determination between F atoms and a paramagnetic center, either intrinsic or conjugated to a biomolecule via spin labeling. Such measurements allow access to distances too short to be measured by double electron-electron resonance (DEER). To further extend the accessible distance range, we exploit the high-spin properties of Gd(III) and focus on transitions other than the central transition (|-1/2⟩ ↔ |+1/2⟩), that become more populated at high magnetic fields and low temperatures. This increases the spectral resolution up to ca. 7 times, thus raising the long-distance limit of 19F ENDOR almost 2-fold. We first demonstrate this on a model fluorine-containing Gd(III) complex with a well-resolved 19F spectrum in conventional central transition measurements and show quantitative agreement between the experimental spectra and theoretical predictions. We then validate our approach on two proteins labeled with 19F and Gd(III), in which the Gd-F distance is too long to produce a well-resolved 19F ENDOR doublet when measured at the central transition. By focusing on the |-5/2⟩ ↔ |-3/2⟩ and |-7/2⟩ ↔ |-5/2⟩ EPR transitions, a resolution enhancement of 4.5- and 7-fold was obtained, respectively. We also present data analysis strategies to handle contributions of different electron spin manifolds to the ENDOR spectrum. Our new extended 19F ENDOR approach may be applicable to Gd-F distances as large as 20 Å, widening the current ENDOR distance window.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Veronica Frydman
- Department
of Chemical Research Support, The Weizmann
Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Manas Seal
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Leonid Rapatskiy
- Max
Planck Institute for Chemical Energy Conversion, 34-36 Stiftstraße, Mülheim an der Ruhr, 45470, Germany
| | - Alexander Schnegg
- Max
Planck Institute for Chemical Energy Conversion, 34-36 Stiftstraße, Mülheim an der Ruhr, 45470, Germany
| | - Wenkai Zhu
- Department
of Structural Biology, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Mark Iron
- Department
of Chemical Research Support, The Weizmann
Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Daniella Goldfarb
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| |
Collapse
|
9
|
Gopinath A, Rath T, Morgner N, Joseph B. Lateral gating mechanism and plasticity of the β-barrel assembly machinery complex in micelles and Escherichia coli. PNAS NEXUS 2024; 3:pgae019. [PMID: 38312222 PMCID: PMC10833450 DOI: 10.1093/pnasnexus/pgae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024]
Abstract
The β-barrel assembly machinery (BAM) mediates the folding and insertion of the majority of outer membrane proteins (OMPs) in gram-negative bacteria. BAM is a penta-heterooligomeric complex consisting of the central β-barrel BamA and four interacting lipoproteins BamB, C, D, and E. The conformational switching of BamA between inward-open (IO) and lateral-open (LO) conformations is required for substrate recognition and folding. However, the mechanism for the lateral gating or how the structural details observed in vitro correspond with the cellular environment remains elusive. In this study, we addressed these questions by characterizing the conformational heterogeneity of BamAB, BamACDE, and BamABCDE complexes in detergent micelles and/or Escherichia coli using pulsed dipolar electron spin resonance spectroscopy (PDS). We show that the binding of BamB does not induce any visible changes in BamA, and the BamAB complex exists in the IO conformation. The BamCDE complex induces an IO to LO transition through a coordinated movement along the BamA barrel. However, the extracellular loop 6 (L6) is unaffected by the presence of lipoproteins and exhibits large segmental dynamics extending to the exit pore. PDS experiments with the BamABCDE complex in intact E. coli confirmed the dynamic behavior of both the lateral gate and the L6 in the native environment. Our results demonstrate that the BamCDE complex plays a key role in the function by regulating lateral gating in BamA.
Collapse
Affiliation(s)
- Aathira Gopinath
- Department of Physics, Freie Universität Berlin, Berlin, 14195, Germany
- Institute of Biophysics, Goethe Universität Frankfurt, Frankfurt, 60438, Germany
| | - Tobias Rath
- Institute of Physical and Theoretical Chemistry, Goethe Universität Frankfurt, Frankfurt, 60438, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe Universität Frankfurt, Frankfurt, 60438, Germany
| | - Benesh Joseph
- Department of Physics, Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
10
|
Bogetti X, Saxena S. Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics. Chempluschem 2024; 89:e202300506. [PMID: 37801003 DOI: 10.1002/cplu.202300506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Electron paramagnetic resonance (EPR) has become a powerful probe of conformational heterogeneity and dynamics of biomolecules. In this Review, we discuss different computational modeling techniques that enrich the interpretation of EPR measurements of dynamics or distance restraints. A variety of spin labels are surveyed to provide a background for the discussion of modeling tools. Molecular dynamics (MD) simulations of models containing spin labels provide dynamical properties of biomolecules and their labels. These simulations can be used to predict EPR spectra, sample stable conformations and sample rotameric preferences of label sidechains. For molecular motions longer than milliseconds, enhanced sampling strategies and de novo prediction software incorporating or validated by EPR measurements are able to efficiently refine or predict protein conformations, respectively. To sample large-amplitude conformational transition, a coarse-grained or an atomistic weighted ensemble (WE) strategy can be guided with EPR insights. Looking forward, we anticipate an integrative strategy for efficient sampling of alternate conformations by de novo predictions, followed by validations by systematic EPR measurements and MD simulations. Continuous pathways between alternate states can be further sampled by WE-MD including all intermediate states.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
11
|
Mandato A, Hasanbasri Z, Saxena S. Double Quantum Coherence ESR at Q-Band Enhances the Sensitivity of Distance Measurements at Submicromolar Concentrations. J Phys Chem Lett 2023; 14:8909-8915. [PMID: 37768093 PMCID: PMC10577775 DOI: 10.1021/acs.jpclett.3c02372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Recently, there have been remarkable improvements in pulsed ESR sensitivity, paving the way for broader applicability of ESR in the measurement of biological distance constraints, for instance, at physiological concentrations and in more complex systems. Nevertheless, submicromolar distance measurements with the commonly used nitroxide spin label take multiple days. Therefore, there remains a need for rapid and reliable methods of measuring distances between spins at nanomolar concentrations. In this work, we demonstrate the power of double quantum coherence (DQC) experiments at Q-band frequencies. With the help of short and intense pulses, we showcase DQC signals on nitroxide-labeled proteins with modulation depths close to 100%. We show that the deep dipolar modulations aid in the resolution of bimodal distance distributions. Finally, we establish that distance measurements with protein concentrations as low as 25 nM are feasible. This limit is approximately 4-fold lower than previously possible. We anticipate that nanomolar concentration measurements will lead to further advancements in the use of ESR, especially in cellular contexts.
Collapse
Affiliation(s)
- Alysia Mandato
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
12
|
Asanbaeva NB, Novopashina DS, Rogozhnikova OY, Tormyshev VM, Kehl A, Sukhanov AA, Shernyukov AV, Genaev AM, Lomzov AA, Bennati M, Meyer A, Bagryanskaya EG. 19F electron nuclear double resonance (ENDOR) spectroscopy for distance measurements using trityl spin labels in DNA duplexes. Phys Chem Chem Phys 2023; 25:23454-23466. [PMID: 37609874 DOI: 10.1039/d3cp02969g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The combination of fluorine labeling and pulsed electron-nuclear double resonance (ENDOR) is emerging as a powerful technique for obtaining structural information about proteins and nucleic acids. In this work, we explored the capability of Mims 19F ENDOR experiments on reporting intermolecular distances in trityl- and 19F-labeled DNA duplexes at three electron paramagnetic resonance (EPR) frequencies (34, 94, and 263 GHz). For spin labeling, we used the hydrophobic Finland trityl radical and hydrophilic OX063 trityl radical. Fluorine labels were introduced into two positions of a DNA oligonucleotide. The results indicated that hyperfine splittings visible in the ENDOR spectra are consistent with the most populated interspin distances between 19F and the trityl radical predicted from molecular dynamic (MD) simulations. Moreover, for some cases, ENDOR spectral simulations based on MD results were able to reproduce the conformational distribution reflected in the experimental ENDOR line broadening. Additionally, MD simulations provided more detailed information about the melting of terminal base pairs of the oligonucleotides and about the configuration of the trityls relative to a DNA end.
Collapse
Affiliation(s)
- N B Asanbaeva
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - D S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia
| | - O Yu Rogozhnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - V M Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - A Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - A A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, 10/7 Sibirsky Tract, Kazan 420029, Russia
| | - A V Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - A M Genaev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - A A Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia
| | - M Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg August University of Göttingen, Tammannstr.6, Göttingen, Germany
| | - A Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg August University of Göttingen, Tammannstr.6, Göttingen, Germany
| | - E G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| |
Collapse
|
13
|
Wang XW, Zhang X, Cui CY, Li B, Goldfarb D, Yang Y, Su XC. Stabilizing Nitroxide Spin Labels for Structural and Conformational Studies of Biomolecules by Maleimide Treatment. Chemistry 2023; 29:e202301350. [PMID: 37354082 DOI: 10.1002/chem.202301350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
Nitroxide (NO) spin radicals are effective in characterizing structures, interactions and dynamics of biomolecules. The EPR applications in cell lysates or intracellular milieu require stable spin labels, but NO radicals are unstable in such conditions. We showed that the destabilization of NO radicals in cell lysates or even in cells is caused by NADPH/NADH related enzymes, but not by the commonly believed reducing reagents such as GSH. Maleimide stabilizes the NO radicals in the cell lysates by consumption of the NADPH/NADH that are essential for the enzymes involved in destabilizing NO radicals, instead of serving as the solo thiol scavenger. The maleimide treatment retains the crowding properties of the intracellular components and allows to perform long-time EPR measurements of NO labeled biomolecules close to the intracellular conditions. The strategy of maleimide treatment on cell lysates for the EPR applications has been demonstrated on double electron-electron resonance (DEER) measurements on a number of NO labeled protein samples. The method opens a broad application range for the NO labeled biomolecules by EPR in conditions that resemble the intracellular milieu.
Collapse
Affiliation(s)
- Xi-Wei Wang
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xing Zhang
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao-Yu Cui
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yin Yang
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Shenberger Y, Gevorkyan-Airapetov L, Hirsch M, Hofmann L, Ruthstein S. An in-cell spin-labelling methodology provides structural information on cytoplasmic proteins in bacteria. Chem Commun (Camb) 2023; 59:10524-10527. [PMID: 37563959 DOI: 10.1039/d3cc03047d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
EPR in-cell spin-labeling was applied to CueR in E. coli. The methodology employed a Cu(II)-NTA complexed with dHis. High resolved in-cell distance distributions were obtained revealing minor differences between in vitro and in-cell data. This methodology allows study of structural changes of any protein in-cell, independent of size or cellular system.
Collapse
Affiliation(s)
- Yulia Shenberger
- Department of Chemistry, Faculty of Exact Sciences and Institute of Nanotechnology and Advanced Materials, Bar Ilan university, 5290002, Israel.
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry, Faculty of Exact Sciences and Institute of Nanotechnology and Advanced Materials, Bar Ilan university, 5290002, Israel.
| | - Melanie Hirsch
- Department of Chemistry, Faculty of Exact Sciences and Institute of Nanotechnology and Advanced Materials, Bar Ilan university, 5290002, Israel.
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences and Institute of Nanotechnology and Advanced Materials, Bar Ilan university, 5290002, Israel.
| | - Sharon Ruthstein
- Department of Chemistry, Faculty of Exact Sciences and Institute of Nanotechnology and Advanced Materials, Bar Ilan university, 5290002, Israel.
| |
Collapse
|
15
|
Galazzo L, Bordignon E. Electron paramagnetic resonance spectroscopy in structural-dynamic studies of large protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:1-19. [PMID: 37321755 DOI: 10.1016/j.pnmrs.2022.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macromolecular protein assemblies are of fundamental importance for many processes inside the cell, as they perform complex functions and constitute central hubs where reactions occur. Generally, these assemblies undergo large conformational changes and cycle through different states that ultimately are connected to specific functions further regulated by additional small ligands or proteins. Unveiling the 3D structural details of these assemblies at atomic resolution, identifying the flexible parts of the complexes, and monitoring with high temporal resolution the dynamic interplay between different protein regions under physiological conditions is key to fully understanding their properties and to fostering biomedical applications. In the last decade, we have seen remarkable advances in cryo-electron microscopy (EM) techniques, which deeply transformed our vision of structural biology, especially in the field of macromolecular assemblies. With cryo-EM, detailed 3D models of large macromolecular complexes in different conformational states became readily available at atomic resolution. Concomitantly, nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy (EPR) have benefited from methodological innovations which also improved the quality of the information that can be achieved. Such enhanced sensitivity widened their applicability to macromolecular complexes in environments close to physiological conditions and opened a path towards in-cell applications. In this review we will focus on the advantages and challenges of EPR techniques with an integrative approach towards a complete understanding of macromolecular structures and functions.
Collapse
Affiliation(s)
- Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
16
|
Abdullin D, Hett T, Fleck N, Kopp K, Cassidy S, Richert S, Schiemann O. Magneto-Structural Correlations in a Mixed Porphyrin(Cu 2+ )/Trityl Spin System: Magnitude, Sign, and Distribution of the Exchange Coupling Constant. Chemistry 2023; 29:e202203148. [PMID: 36519664 DOI: 10.1002/chem.202203148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Tetrathiatriarylmethyl radicals (TAM or trityl) are receiving increasing attention in various fields of magnetic resonance such as imaging, dynamic nuclear polarization, spin labeling, and, more recently, molecular magnetism and quantum information technology. Here, a trityl radical attached via a phenyl bridge to a copper(II)tetraphenylporphyrin was synthesized, and its magnetic properties studied by multi-frequency continuous-wave electron paramagnetic resonance (EPR) spectroscopy and magnetic measurements. EPR revealed that the electron spin-spin coupling constant J between the trityl and Cu2+ spin centers is ferromagnetic with a magnitude of -2.3 GHz (-0.077 cm-1 , + J S → 1 S → 2 ${+J{\vec{S}}_{1}{\vec{S}}_{2}}$ convention) and a distribution width of 1.2 GHz (0.040 cm-1 ). With the help of density functional theory (DFT) calculations, the obtained ferromagnetic exchange coupling, which is unusual for para-substituted phenyl-bridged biradicals, could be related to the almost perpendicular orientation of the phenyl linker with respect to the porphyrin and trityl ring planes in the energy minimum, while the J distribution was rationalized by the temperature weighted rotation of the phenyl bridge about the molecular axis connecting both spin centers. This study exemplifies the importance of molecular dynamics for the homogeneity (or heterogeneity) of the magnetic properties of trityl-based systems.
Collapse
Affiliation(s)
- Dinar Abdullin
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Tobias Hett
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Nico Fleck
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany.,Merck KGaA, Q20/001, Frankfurterstr. 250, 64293, Darmstadt, Germany
| | - Kevin Kopp
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Simon Cassidy
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Olav Schiemann
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany.,Department of Chemical and Biological Physics, Weizmann Institute of Science, 761001, Rehovot, Israel
| |
Collapse
|
17
|
Ketter S, Joseph B. Gd 3+-Trityl-Nitroxide Triple Labeling and Distance Measurements in the Heterooligomeric Cobalamin Transport Complex in the Native Lipid Bilayers. J Am Chem Soc 2023; 145:960-966. [PMID: 36599418 PMCID: PMC9853854 DOI: 10.1021/jacs.2c10080] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 01/06/2023]
Abstract
Increased efforts are being made for observing proteins in their native environments. Pulsed electron-electron double resonance spectroscopy (PELDOR, also known as DEER) is a powerful tool for this purpose. Conventionally, PELDOR employs an identical spin pair, which limits the output to a single distance for monomeric samples. Here, we show that the Gd3+-trityl-nitroxide (NO) three-spin system is a versatile tool to study heterooligomeric membrane protein complexes, even within their native membrane. This allowed for an independent determination of four different distances (Gd3+-trityl, Gd3+-NO, trityl-NO, and Gd3+-Gd3+) within the same sample. We demonstrate the feasibility of this approach by observing sequential ligand binding and the dynamics of complex formation in the cobalamin transport system involving four components (cobalamin, BtuB, TonB, and BtuF). Our results reveal that TonB binding alone is sufficient to release cobalamin from BtuB in the native asymmetric bilayers. This approach provides a potential tool for the structural and quantitative analysis of dynamic protein-protein interactions in oligomeric complexes, even within their native surroundings.
Collapse
Affiliation(s)
- Sophie Ketter
- Institute of Biophysics,
Department of Physics and Centre for Biomolecular Magnetic Resonance
(BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt 60438, Germany
| | - Benesh Joseph
- Institute of Biophysics,
Department of Physics and Centre for Biomolecular Magnetic Resonance
(BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt 60438, Germany
| |
Collapse
|
18
|
Vanas A, Soetbeer J, Breitgoff FD, Hintz H, Sajid M, Polyhach Y, Godt A, Jeschke G, Yulikov M, Klose D. Intermolecular contributions, filtration effects and signal composition of SIFTER (single-frequency technique for refocusing). MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:1-18. [PMID: 38269110 PMCID: PMC10807728 DOI: 10.5194/mr-4-1-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2024]
Abstract
To characterize structure and molecular order in the nanometre range, distances between electron spins and their distributions can be measured via dipolar spin-spin interactions by different pulsed electron paramagnetic resonance experiments. Here, for the single-frequency technique for refocusing dipolar couplings (SIFTER), the buildup of dipolar modulation signal and intermolecular contributions is analysed for a uniform random distribution of monoradicals and biradicals in frozen glassy solvent by using the product operator formalism for electron spin S = 1 / 2 . A dipolar oscillation artefact appearing at both ends of the SIFTER time trace is predicted, which originates from the weak coherence transfer between biradicals. The relative intensity of this artefact is predicted to be temperature independent but to increase with the spin concentration in the sample. Different compositions of the intermolecular background are predicted in the case of biradicals and in the case of monoradicals. Our theoretical account suggests that the appropriate procedure of extracting the intramolecular dipolar contribution (form factor) requires fitting and subtracting the unmodulated part, followed by division by an intermolecular background function that is different in shape. This scheme differs from the previously used heuristic background division approach. We compare our theoretical derivations to experimental SIFTER traces for nitroxide and trityl monoradicals and biradicals. Our analysis demonstrates a good qualitative match with the proposed theoretical description. The resulting perspectives for a quantitative analysis of SIFTER data are discussed.
Collapse
Affiliation(s)
- Agathe Vanas
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - Janne Soetbeer
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - Frauke Diana Breitgoff
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - Henrik Hintz
- Department of Chemistry, Bielefeld University, Universitätsstrasse
25, 33615 Bielefeld, Germany
| | - Muhammad Sajid
- Department of Chemistry, Bielefeld University, Universitätsstrasse
25, 33615 Bielefeld, Germany
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Department of Chemistry, Bielefeld University, Universitätsstrasse
25, 33615 Bielefeld, Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| |
Collapse
|
19
|
Pierro A, Bonucci A, Normanno D, Ansaldi M, Pilet E, Ouari O, Guigliarelli B, Etienne E, Gerbaud G, Magalon A, Belle V, Mileo E. Probing the Structural Dynamics of a Bacterial Chaperone in Its Native Environment by Nitroxide‐Based EPR Spectroscopy. Chemistry 2022; 28:e202202249. [DOI: 10.1002/chem.202202249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Annalisa Pierro
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
- Department of Chemistry University of Konstanz, and Konstanz Research School Chemical Biology 78457 Konstanz Germany
| | - Alessio Bonucci
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Davide Normanno
- Aix Marseille Univ CNRS, Inserm Institut Paoli-Calmettes, CRCM Centre de Recherche en Cancérologie de Marseille 13273 Marseille France
- Univ Montpellier CNRS, IGH Institut de Génétique Humaine 34396 Montpellier France
| | - Mireille Ansaldi
- Aix Marseille Univ CNRS, LCB Laboratoire de Chimie Bacterienne, IMM 13009 Marseille France
| | - Eric Pilet
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ CNRS, ICR Institut de Chimie Radicalaire 13397 Marseille France
| | - Bruno Guigliarelli
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Emilien Etienne
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Guillaume Gerbaud
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Axel Magalon
- Aix Marseille Univ CNRS, LCB Laboratoire de Chimie Bacterienne, IMM 13009 Marseille France
| | - Valérie Belle
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| | - Elisabetta Mileo
- Aix Marseille Univ CNRS, BIP Bioénérgetique et Ingénierie des Protéines, IMM 13009 Marseille France
| |
Collapse
|
20
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
21
|
Goldfarb D. Exploring protein conformations in vitro and in cell with EPR distance measurements. Curr Opin Struct Biol 2022; 75:102398. [PMID: 35667279 DOI: 10.1016/j.sbi.2022.102398] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022]
Abstract
The electron-electron double resonance (DEER) method, which provides distance distributions between two spin labels, attached site specifically to biomolecules (proteins and nucleic acids), is currently a well-recognized biophysical tool in structural biology. The most commonly used spin labels are based on nitroxide stable radicals, conjugated to the proteins primarily via native or engineered cysteine residues. However, in recent years, new spin labels, along with different labeling chemistries, have been introduced, driven in part by the desire to study structural and dynamical properties of biomolecules in their native environment, the cell. This mini-review focuses on these new spin labels, which allow for DEER on orthogonal spin labels, and on the state of the art methods for in-cell DEER distance measurements.
Collapse
Affiliation(s)
- Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 761001, Israel
| |
Collapse
|
22
|
Abstract
Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.
Collapse
|
23
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
24
|
Biondi B, Syryamina VN, Rocchio G, Barbon A, Formaggio F, Toniolo C, Raap J, Dzuba SA. Is Cys(MTSL) the Best α-Amino Acid Residue to Electron Spin Labeling of Synthetically Accessible Peptide Molecules with Nitroxides? ACS OMEGA 2022; 7:5154-5165. [PMID: 35187331 PMCID: PMC8851612 DOI: 10.1021/acsomega.1c06227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Electron paramagnetic resonance spectroscopy, particularly its pulse technique double electron-electron resonance (DEER) (also termed PELDOR), is rapidly becoming an extremely useful tool for the experimental determination of side chain-to-side chain distances between free radicals in molecules fundamental for life, such as polypeptides. Among appropriate probes, the most popular are undoubtedly nitroxide electron spin labels. In this context, suitable biosynthetically derived, helical regions of proteins, along with synthetic peptides with amphiphilic properties and antibacterial activities, are the most extensively investigated compounds. A strict requirement for a precise distance measurement has been identified in a minimal dynamic flexibility of the two nitroxide-bearing α-amino acid side chains. To this end, in this study, we have experimentally compared in detail the side-chain mobility properties of the two currently most widely utilized residues, namely, Cys(MTSL) and 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC). In particular, two double-labeled, chemically synthesized 20-mer peptide molecules have been adopted as appropriate templates for our investigation on the determination of the model intramolecular separations. These double-Cys(MTSL) and double-TOAC compounds are both analogues of the almost completely rigid backbone peptide ruler which we have envisaged and 3D structurally analyzed as our original, unlabeled compound. Here, we have clearly found that the TOAC side-chain labels are largely more 3D structurally restricted than the MTSL labels. From this result, we conclude that the TOAC residue offers more precise information than the Cys(MTSL) residue on the side chain-to-side chain distance distribution in synthetically accessible peptide molecules.
Collapse
Affiliation(s)
- Barbara Biondi
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | - Victoria N. Syryamina
- Institute
of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russian Federation
| | - Gabriele Rocchio
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Antonio Barbon
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fernando Formaggio
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Claudio Toniolo
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Jan Raap
- Leiden
Institute of Chemistry, Gorlaeus Laboratories,
Leiden University, 2300 RA Leiden, The Netherlands
| | - Sergei A. Dzuba
- Institute
of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russian Federation
- Department
of Physics, Novosibirsk State University, 630090 Novosibirsk, Russian Federation
| |
Collapse
|
25
|
|
26
|
Gopinath A, Joseph B. Conformational Flexibility of the Protein Insertase BamA in the Native Asymmetric Bilayer Elucidated by ESR Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202113448. [PMID: 34761852 PMCID: PMC9299766 DOI: 10.1002/anie.202113448] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 12/15/2022]
Abstract
The β-barrel assembly machinery (BAM) consisting of the central β-barrel BamA and four other lipoproteins mediates the folding of the majority of the outer membrane proteins. BamA is placed in an asymmetric bilayer and its lateral gate is suggested to be the functional hotspot. Here we used in situ pulsed electron-electron double resonance spectroscopy to characterize BamA in the native outer membrane. In the detergent micelles, the data is consistent with mainly an inward-open conformation of BamA. The native membrane considerably enhanced the conformational heterogeneity. The lateral gate and the extracellular loop 3 exist in an equilibrium between different conformations. The outer membrane provides a favorable environment for occupying multiple conformational states independent of the lipoproteins. Our results reveal a highly dynamic behavior of the lateral gate and other key structural elements and provide direct evidence for the conformational modulation of a membrane protein in situ.
Collapse
Affiliation(s)
- Aathira Gopinath
- Institute of BiophysicsDepartment of PhysicsCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| | - Benesh Joseph
- Institute of BiophysicsDepartment of PhysicsCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| |
Collapse
|
27
|
Kugele A, Ketter S, Silkenath B, Wittmann V, Joseph B, Drescher M. In situ EPR spectroscopy of a bacterial membrane transporter using an expanded genetic code. Chem Commun (Camb) 2021; 57:12980-12983. [PMID: 34792069 PMCID: PMC8640571 DOI: 10.1039/d1cc04612h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
The membrane transporter BtuB is site-directedly spin labelled on the surface of living Escherichia coli via Diels-Alder click chemistry of the genetically encoded amino acid SCO-L-lysine. The previously introduced photoactivatable nitroxide PaNDA prevents off-target labelling, is used for distance measurements, and the temporally shifted activation of the nitroxide allows for advanced experimental setups. This study describes significant evolution of Diels-Alder-mediated spin labelling on cellular surfaces and opens up new vistas for the the study of membrane proteins.
Collapse
Affiliation(s)
- Anandi Kugele
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Sophie Ketter
- Institute of Biophysics, Department of Physics & The Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany.
| | - Bjarne Silkenath
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Benesh Joseph
- Institute of Biophysics, Department of Physics & The Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany.
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
28
|
Gopinath A, Joseph B. Conformational Flexibility of the Protein Insertase BamA in the Native Asymmetric Bilayer Elucidated by ESR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aathira Gopinath
- Institute of Biophysics Department of Physics Center for Biomolecular Magnetic Resonance (BMRZ) Goethe University Frankfurt Max-von-Laue-Str. 1 60438 Frankfurt/Main Germany
| | - Benesh Joseph
- Institute of Biophysics Department of Physics Center for Biomolecular Magnetic Resonance (BMRZ) Goethe University Frankfurt Max-von-Laue-Str. 1 60438 Frankfurt/Main Germany
| |
Collapse
|
29
|
Hasanbasri Z, Singewald K, Gluth TD, Driesschaert B, Saxena S. Cleavage-Resistant Protein Labeling With Hydrophilic Trityl Enables Distance Measurements In-Cell. J Phys Chem B 2021; 125:5265-5274. [PMID: 33983738 DOI: 10.1021/acs.jpcb.1c02371] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensitive in-cell distance measurements in proteins using pulsed-electron spin resonance (ESR) require reduction-resistant and cleavage-resistant spin labels. Among the reduction-resistant moieties, the hydrophilic trityl core known as OX063 is promising due to its long phase-memory relaxation time (Tm). This property leads to a sufficiently intense ESR signal for reliable distance measurements. Furthermore, the Tm of OX063 remains sufficiently long at higher temperatures, opening the possibility for measurements at temperatures above 50 K. In this work, we synthesized deuterated OX063 with a maleimide linker (mOX063-d24). We show that the combination of the hydrophilicity of the label and the maleimide linker enables high protein labeling that is cleavage-resistant in-cells. Distance measurements performed at 150 K using this label are more sensitive than the measurements at 80 K. The sensitivity gain is due to the significantly short longitudinal relaxation time (T1) at higher temperatures, which enables more data collection per unit of time. In addition to in vitro experiments, we perform distance measurements in Xenopus laevis oocytes. Interestingly, the Tm of mOX063-d24 is sufficiently long even in the crowded environment of the cell, leading to signals of appreciable intensity. Overall, mOX063-d24 provides highly sensitive distance measurements both in vitro and in-cells.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Teresa D Gluth
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
30
|
Kucher S, Elsner C, Safonova M, Maffini S, Bordignon E. In-Cell Double Electron-Electron Resonance at Nanomolar Protein Concentrations. J Phys Chem Lett 2021; 12:3679-3684. [PMID: 33829785 DOI: 10.1021/acs.jpclett.1c00048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is an established technique to site-specifically monitor conformational changes of spin-labeled biomolecules. Emerging in-cell EPR approaches aiming to address spin-labeled proteins in their native environment still struggle to reach a broad applicability and to target physiologically relevant protein concentrations. Here, we present a comparative in vitro and in-cell double electron-electron resonance (DEER) study demonstrating that nanomolar protein concentrations are at reach to measure distances up to 4.5 nm between protein sites carrying commercial gadolinium spin labels.
Collapse
Affiliation(s)
- Svetlana Kucher
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Universitaetsstr. 150, 44801 Bochum, Germany
| | - Christina Elsner
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Universitaetsstr. 150, 44801 Bochum, Germany
| | - Mariya Safonova
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Universitaetsstr. 150, 44801 Bochum, Germany
| | - Stefano Maffini
- Max Planck Institute of Molecular Physiology, Department of Mechanistic Cell Biology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Enrica Bordignon
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Universitaetsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
31
|
Fleck N, Heubach C, Hett T, Spicher S, Grimme S, Schiemann O. Ox-SLIM: Synthesis of and Site-Specific Labelling with a Highly Hydrophilic Trityl Spin Label. Chemistry 2021; 27:5292-5297. [PMID: 33404074 PMCID: PMC8048664 DOI: 10.1002/chem.202100013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Indexed: 01/04/2023]
Abstract
The combination of pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) with site-directed spin labelling is a powerful tool in structural biology. Rational design of trityl-based spin labels has enabled studying biomolecular structures at room temperature and within cells. However, most current trityl spin labels suffer either from aggregation with proteins due to their hydrophobicity, or from bioconjugation groups not suitable for in-cell measurements. Therefore, we introduce here the highly hydrophilic trityl spin label Ox-SLIM. Engineered as a short-linked maleimide, it combines the most recent developments in one single molecule, as it does not aggregate with proteins, exhibits high resistance under in-cell conditions, provides a short linker, and allows for selective and efficient spin labelling via cysteines. Beyond establishing synthetic access to Ox-SLIM, its suitability as a spin label is illustrated and ultimately, highly sensitive PDS measurements are presented down to protein concentrations as low as 45 nm resolving interspin distances of up to 5.5 nm.
Collapse
Affiliation(s)
- Nico Fleck
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| | - Caspar Heubach
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| | - Tobias Hett
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| | - Sebastian Spicher
- University of BonnInstitute of Physical and Theoretical ChemistryBeringstr. 453115BonnGermany
| | - Stefan Grimme
- University of BonnInstitute of Physical and Theoretical ChemistryBeringstr. 453115BonnGermany
| | - Olav Schiemann
- University of BonnInstitute of Physical and Theoretical ChemistryWegelerstr. 1253115BonnGermany
| |
Collapse
|
32
|
Matsumoto KI, Mitchell JB, Krishna MC. Multimodal Functional Imaging for Cancer/Tumor Microenvironments Based on MRI, EPRI, and PET. Molecules 2021; 26:1614. [PMID: 33799481 PMCID: PMC8002164 DOI: 10.3390/molecules26061614] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Radiation therapy is one of the main modalities to treat cancer/tumor. The response to radiation therapy, however, can be influenced by physiological and/or pathological conditions in the target tissues, especially by the low partial oxygen pressure and altered redox status in cancer/tumor tissues. Visualizing such cancer/tumor patho-physiological microenvironment would be a useful not only for planning radiotherapy but also to detect cancer/tumor in an earlier stage. Tumor hypoxia could be sensed by positron emission tomography (PET), electron paramagnetic resonance (EPR) oxygen mapping, and in vivo dynamic nuclear polarization (DNP) MRI. Tissue oxygenation could be visualized on a real-time basis by blood oxygen level dependent (BOLD) and/or tissue oxygen level dependent (TOLD) MRI signal. EPR imaging (EPRI) and/or T1-weighted MRI techniques can visualize tissue redox status non-invasively based on paramagnetic and diamagnetic conversions of nitroxyl radical contrast agent. 13C-DNP MRI can visualize glycometabolism of tumor/cancer tissues. Accurate co-registration of those multimodal images could make mechanisms of drug and/or relation of resulted biological effects clear. A multimodal instrument, such as PET-MRI, may have another possibility to link multiple functions. Functional imaging techniques individually developed to date have been converged on the concept of theranostics.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| |
Collapse
|