1
|
Ali SM, Sk S, Sarkar S, Das S, Sepay N, Molla MR. Entropically and enthalpically driven self-assembly of a naphthalimide-based luminescent organic π-amphiphile in water. SOFT MATTER 2024; 20:8684-8691. [PMID: 39444369 DOI: 10.1039/d4sm00986j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The self-assembly of π conjugated systems in water has emerged as an efficient method for the development of functional materials for biological applications. But the process is more difficult to understand and to control in water compared to organic solvents due to hydrophobic effects. For π-conjugated molecules, self-assembly in solution generally occurs due to either an enthalpic or entropic gain, but designing π systems that undergo self-assembly via both an entropically and enthalpically favorable process is challenging. Herein, we elucidate in detail the self-assembly of a luminescent naphthalene monoamide-based dipolar π-bolaamphiphile appended with a primary amine and triethylene glycol monomethyl ether (NMI-W) side chain into a vesicular nanostructure. By utilizing a detailed isothermal titration calorimetry (ITC) experiment, we have calculated the thermodynamic parameters associated with the self-assembly of NMI-W in water. Interestingly, the NMI-W shows both entropically and enthalpically favorable robust self-assembly into a vesicular structure, which can encapsulate both hydrophilic and hydrophobic guest molecules. The synergistic effect of dipole-dipole, π-π stacking and hydrophobic interactions of the NMI chromophore is found to be very crucial in driving self-assembly in an aqueous medium as revealed by various experiments and molecular dynamics.
Collapse
Affiliation(s)
- Sk Mursed Ali
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Sujauddin Sk
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Shuvajyoti Sarkar
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Sayani Das
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, P-1/2, Suhrawardy Ave, 700017, India
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| |
Collapse
|
2
|
Gu S, Ma Z, Lu X, Tanaka T, Osuka A, Chen F. Construction of a tetrabenzotetrathia[8]circulene by a "fold-in" oxidative fusion reaction: synthesis and optical properties. Chem Commun (Camb) 2024; 60:6264-6267. [PMID: 38819230 DOI: 10.1039/d4cc01598c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Herein we report the first synthesis of a tetrabenzotetrathia[8]circulene by a "fold-in" type oxidative fusion reaction. Compared to the pristine tetrathia[8]circulene, the four-fold benzoannulation slightly weakened the antiaromatic character of the central COT ring. The tetrabenzotetrathia[8]circulene exhibited fluorescence at room temperature, and phosphorescence at 77 K with a phosphorescence quantum yield of 11.7%.
Collapse
Affiliation(s)
- Shijun Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zhihao Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xiuqin Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Takayuki Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Fengkun Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Pompetti N, Smyser KE, Feingold B, Owens R, Lama B, Sharma S, Damrauer NH, Johnson JC. Tetracene Diacid Aggregates for Directing Energy Flow toward Triplet Pairs. J Am Chem Soc 2024; 146. [PMID: 38606884 PMCID: PMC11046478 DOI: 10.1021/jacs.4c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
A comprehensive investigation of the solution-phase photophysics of tetracene bis-carboxylic acid [5,12-tetracenepropiolic acid (Tc-DA)] and its related methyl ester [5,12-tetracenepropynoate (Tc-DE)], a non-hydrogen-bonding counterpart, reveals the role of the carboxylic acid moiety in driving molecular aggregation and concomitant excited-state behavior. Low-concentration solutions of Tc-DA exhibit similar properties to the popular 5,12-bis((triisopropylsilyl)ethynl)tetracene, but as the concentration increases, evidence for aggregates that form excimers and a new mixed-state species with charge-transfer (CT) and correlated triplet pair (TT) character is revealed by transient absorption and fluorescence experiments. Aggregates of Tc-DA evolve further with concentration toward an additional phase that is dominated by the mixed CT/TT state which is the only state present in Tc-DE aggregates and can be modulated with the solvent polarity. Computational modeling finds that cofacial arrangement of Tc-DA and Tc-DE subunits is the most stable aggregate structure and this agrees with results from 1H NMR spectroscopy. The calculated spectra of these cofacial dimers replicate the observed broadening in ground-state absorption as well as accurately predict the formation of a near-UV transition associated with a CT between molecular subunits that is unique to the specific aggregate structure. Taken together, the results suggest that the hydrogen bonding between Tc-DA molecules and the associated disruption of hydrogen bonding with solvent produce a regime of dimer-like behavior, absent in Tc-DE, that favors excimers rather than CT/TT mixed states. The control of aggregate size and structure using distinct functional groups, solute concentration, and solvent in tetracene promises new avenues for its use in light-harvesting schemes.
Collapse
Affiliation(s)
- Nicholas
F. Pompetti
- National
Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Kori E. Smyser
- University
of Colorado, Boulder, Colorado 80401, United States
| | | | - Raythe Owens
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Bimala Lama
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Sandeep Sharma
- University
of Colorado, Boulder, Colorado 80401, United States
| | - Niels H. Damrauer
- University
of Colorado, Boulder, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80401, United States
| | - Justin C. Johnson
- National
Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80401, United States
| |
Collapse
|
4
|
Protonation‐Induced Antiaromaticity in Octaaza[8]circulenes: Cyclooctatetraene Scaffolds Constrained with Four Amidine Moieties. Chem Asian J 2022; 17:e202200244. [DOI: 10.1002/asia.202200244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Indexed: 11/07/2022]
|
5
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 278] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
6
|
Hashimoto S, Kishi R, Tahara K. Theoretical study on the structures, electronic properties, and aromaticity of thia[4]circulenes. NEW J CHEM 2022. [DOI: 10.1039/d2nj04359a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The structures, electronic properties, and aromaticity of a series of thia[4]circulenes are predicted using quantum chemical calculations.
Collapse
Affiliation(s)
- Shingo Hashimoto
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ryohei Kishi
- Division of Chemical Engineering, Department of Materials Engineering Science, and Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|