1
|
Li JW, Shi S, Chen XH, Huang MG, Ban YL, Zhang H, Liu YJ. Cobalt(II)-Catalyzed Selective C2-H Heck Reaction of Native (N-H) Indoles Enabled by Salicylaldehyde Ligand. J Org Chem 2025; 90:1126-1136. [PMID: 39772629 DOI: 10.1021/acs.joc.4c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Direct functionalization of native (N-H) indoles via C-H activation remains a challenge. Herein, we report a salicylaldehyde-promoted cobalt-catalyzed selective C2-H Heck reaction of native (N-H) indoles with both active and unactivated olefins in the presence of free N-H bonds. A series of structurally diverse C2-alkenylated native (N-H) indoles including natural product and drug derivatives were prepared directly and effectively without additional preprotection and deprotection procedures.
Collapse
Affiliation(s)
- Jia-Wei Li
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Shuai Shi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiao-Hong Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yong-Liang Ban
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Hui Zhang
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
2
|
Li JW, Shi S, Huang MG, Chen XH, Qiao LY, Liu YJ. Salicylaldehyde-Enabled Co(II)-Catalyzed Oxidative C-H Alkenylation of Indoles with Olefins. J Org Chem 2025; 90:35-43. [PMID: 39726356 DOI: 10.1021/acs.joc.4c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A ligand-promoted oxidative dehydrogenation C-H alkenylation of indoles and olefins was achieved using commercial and low-cost Co(NO3)2·6H2O as a catalyst and Mn(OAc)2 as an oxidant. The design and selection of electrically unique methyl-substituted salicylaldehyde as a ligand is the key to achieve this transformation. This protocol can introduce an indole backbone into diverse bioactive molecules such as ibuprofen, naproxen, and Estrol for late-stage synthetic modification, which has potential applications in the discovery of drug molecules containing an indole motif.
Collapse
Affiliation(s)
- Jia-Wei Li
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application. School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Shuai Shi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiao-Hong Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Lu-Yuan Qiao
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application. School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
3
|
Kaur R, Dilip H, Kirubakaran S, Babu SA. Synthesis of biaryl-based carbazoles via C-H functionalization and exploration of their anticancer activities. Org Biomol Chem 2024; 22:8916-8944. [PMID: 39404867 DOI: 10.1039/d4ob01392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The synthesis of a library of new biaryl-based carbazoles via bidentate directing group-assisted C-H functionalization and preliminary screening of the anticancer properties of biaryl-based carbazoles is reported. While various classes of modified carbazoles are known for their applications in materials and medicinal chemistry, to our knowledge, the biological activities of designed biaryl-based carbazoles have been rarely known. Given the prominence of carbazoles in research in medicinal chemistry, we envisioned the scope for new scaffolds of carbazole-based biaryl structures. We screened the synthesized biaryl-based carbazoles for their anticancer properties against various cancer cell lines such as HeLa (cervical cancer), HCT116 (colon cancer), MDA-MB-231 and MDA-MB-468 (breast cancer). In addition, the hits were also tested in the human embryonic kidney cell line HEK293T to assess their impact on the viability of normal human cells in the presence of these compounds. In this preliminary study, we identified some of the biaryl-based carbazoles as lead compounds with anticancer activities.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge, City, Sector 81, SAS Nagar, Manauli P. O., Mohali, Punjab, 140306, India.
| | - Haritha Dilip
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Village, Gandhinagar, Gujarat, 382055, India.
| | - Sivapriya Kirubakaran
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Village, Gandhinagar, Gujarat, 382055, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge, City, Sector 81, SAS Nagar, Manauli P. O., Mohali, Punjab, 140306, India.
| |
Collapse
|
4
|
Doraghi F, Aghanour Ashtiani MM, Ameli M, Larijani B, Mahdavi M. Transition Metal-Catalyzed C-H Activation/Functionalization of 8-Methylquinolines. CHEM REC 2024; 24:e202400116. [PMID: 39422078 DOI: 10.1002/tcr.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Indexed: 10/19/2024]
Abstract
8-Methylquinoline is regarded as an ideal substrate to participate in diversely C(sp3)-H functionalization reactions. The presence of the chelating nitrogen atom enables 8-methylquinoline to easily form cyclometallated complexes with various transition metals, leading to the selective synthesis of functionalized quinolines. Considering the great importance of quinoline cores in medicinal chemistry, in this review article, we have covered the publications related to the C-H activation and functionalization of 8-methylquinoline under transition metal catalysis during the last decade.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Aghanour Ashtiani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ameli
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ni HQ, Alturaifi TM, Rodphon W, Scherschel NF, Yang S, Wang F, McAlpine IJ, Piercey DG, Liu P, Engle KM. Anti-selective Cyclopropanation of Nonconjugated Alkenes with Diverse Pronucleophiles via Directed Nucleopalladation. J Am Chem Soc 2024; 146:24503-24514. [PMID: 39172733 PMCID: PMC11815279 DOI: 10.1021/jacs.4c07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A facile approach to obtaining densely functionalized cyclopropanes is described. The reaction proceeds under mild conditions via the directed nucleopalladation of nonconjugated alkenes with readily available pronucleophiles and gives excellent yields and good anti-selectivity using I2 and TBHP as oxidants. Pronucleophiles bearing a diverse collection of electron-withdrawing groups, including -CN, -CO2R, -COR, -SO2Ph, -CONHR, and -NO2, are well tolerated. Internal alkenes, which are generally challenging substrates in other cyclopropanation methods, provide excellent yields and good diastereoselectivity in this methodology, allowing for controlled access to cyclopropanes substituted at all three C atoms. DFT calculations and mechanistic experiments reveal that the major mechanistic pathway involves the initial α-iodination of the nucleophile, followed by anti-carbopalladation and intramolecular C(sp3)-I oxidative addition. Strain-release-promoted C(sp3)-C(sp3) reductive elimination then furnishes the cyclopropanated product.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Turki M Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Warabhorn Rodphon
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas F Scherschel
- Department of Materials Engineering and Purdue Energetics Research Center, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Shouliang Yang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Fen Wang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Indrawan J McAlpine
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States
- Genesis Therapeutics, 11568 Sorrento Valley Rd. Suite 8, San Diego, California 92121, United States
| | - Davin G Piercey
- Department of Materials Engineering and Purdue Energetics Research Center, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Suzuki H, Moro R, Matsuda T. Palladium-Catalyzed anti-Michael-Type (Hetero)arylation of Acrylamides. J Am Chem Soc 2024; 146:13697-13702. [PMID: 38742920 DOI: 10.1021/jacs.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This paper reports a direct α-(hetero)arylation of acrylamides through an inverse electron-demand nucleophilic addition, specifically an anti-Michael-type addition. The introduction of a quinolyl directing group facilitates the nucleophilic addition of (hetero)arenes to the α-position of acrylamides. The quinolyl directing group effectively suppresses undesired β-hydrogen elimination and is removable for subsequent derivatization. The presented method provides an atom economical synthesis of α-(hetero)arylamide with a high degree of functional group tolerance.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Ryota Moro
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
7
|
Borgini M, Wieteska Ł, Hinck CS, Krzysiak T, Hinck AP, Wipf P. Synthesis of 13C-methyl-labeled amino acids and their incorporation into proteins in mammalian cells. Org Biomol Chem 2023; 21:9216-9229. [PMID: 37964666 PMCID: PMC10825848 DOI: 10.1039/d3ob01320k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Isotopic labeling of methyl-substituted proteinogenic amino acids with 13C has transformed applications of solution-based NMR spectroscopy and allowed the study of much larger and more complex proteins than previously possible with 15N labeling. Procedures are well-established for producing methyl-labeled proteins expressed in bacteria, with efficient incorporation of 13C-methyl labeled metabolic precursors to enable the isotopic labeling of Ile, Val, and Leu methyl groups. Recently, similar methodology has been applied to enable 13C-methyl labeling of Ile, Val, and Leu in yeast, extending the approach to proteins that do not readily fold when produced in bacteria. Mammalian or insect cells are nonetheless preferable for production of many human proteins, yet 13C-methyl labeling using similar metabolic precursors is not feasible as these cells lack the requisite biosynthetic machinery. Herein, we report versatile and high-yielding synthetic routes to 13C methyl-labeled amino acids based on palladium-catalyzed C(sp3)-H functionalization. We demonstrate the efficient incorporation of two of the synthesized amino acids, 13C-γ2-Ile and 13C-γ1,γ2-Val, into human receptor extracellular domains with multiple disulfides using suspension-cultured HEK293 cells. Production costs are reasonable, even at moderate expression levels of 2-3 mg purified protein per liter of medium, and the method can be extended to label other methyl groups, such as 13C-δ1-Ile and 13C-δ1,δ2-Leu. In summary, we demonstrate the cost-effective production of methyl-labeled proteins in mammalian cells by incorporation of 13C methyl-labeled amino acids generated de novo by a versatile synthetic route.
Collapse
Affiliation(s)
- Matteo Borgini
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Łukasz Wieteska
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Troy Krzysiak
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
8
|
Fitzgerald LS, McNulty RL, Greener A, O’Duill ML. Programmable Deuteration of Indoles via Reverse Deuterium Exchange. J Org Chem 2023; 88:10772-10776. [PMID: 37477980 PMCID: PMC10407927 DOI: 10.1021/acs.joc.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 07/23/2023]
Abstract
Methods for selective deuterium incorporation into drug-like molecules have become extremely valuable due to the commercial, mechanistic, and biological importance of deuterated compounds. Herein, we report a programmable labeling platform that allows access to C2, C3, or C2- and C3-deuterated indoles under mild, user-friendly conditions. The C2-deuterated indoles are accessed using a reverse hydrogen isotope exchange strategy which represents the first non-directed C2-deuteration of indoles.
Collapse
Affiliation(s)
- Liam S. Fitzgerald
- School
of Chemistry, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Rachael L. McNulty
- School
of Chemistry, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Andrew Greener
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Miriam L. O’Duill
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
9
|
Kohr M, Kazmaier U. Synthesis of HC-Toxin via Matteson Homologation and C-H Functionalization. J Org Chem 2023. [PMID: 37441789 DOI: 10.1021/acs.joc.3c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
A new synthetic route toward host-specific HC-toxin was developed. The HC-toxin belongs to a group of cyclic, tetrapeptide histone deacetylase inhibitors containing the unusual amino acid Aeo. Key steps in the synthesis of this building block include the Matteson homologation to generate the stereogenic centers in the side chain and a C-H functionalization to connect the side chain to a protected alanine.
Collapse
Affiliation(s)
- Michael Kohr
- Organic Chemistry I, Saarland University, Campus, Bldg. C4.2, D-66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Organic Chemistry I, Saarland University, Campus, Bldg. C4.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Ni HQ, Karunananda MK, Zeng T, Yang S, Liu Z, Houk KN, Liu P, Engle KM. Redox-Paired Alkene Difunctionalization Enables Skeletally Divergent Synthesis. J Am Chem Soc 2023. [PMID: 37220422 DOI: 10.1021/jacs.3c03274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multistep organic synthesis enables conversion of simple chemical feedstocks into a more structurally complex product that serves a particular function. The target compound is forged over several steps, with concomitant generation of byproducts in each step to account for underlying mechanistic features of the reactions (e.g., redox processes). To map structure-function relationships, libraries of molecules are often needed, and these are typically prepared by iterating an established multistep synthetic sequence. An underdeveloped approach is designing organic reactions that generate multiple valuable products with different carbogenic skeletons in a single synthetic operation. Taking inspiration from paired electrosynthesis processes that are widely used in commodity chemical production (e.g., conversion of glucose to sorbitol and gluconic acid), we report a palladium-catalyzed reaction that converts a single alkene starting material into two skeletally distinct products in a single operation through a series of carbon-carbon and carbon-heteroatom bond-forming events enabled by mutual oxidation and reduction, a process that we term redox-paired alkene difunctionalization. We demonstrate the scope of the method in enabling simultaneous access to reductively 1,2-diarylated and oxidatively [3 + 2]-annulated products, and we explore the mechanistic details of this unique catalytic system using a combination of experimental techniques and density functional theory (DFT). The results described herein establish a distinct approach to small-molecule library synthesis that can increase the rate of compound production. Furthermore, these findings demonstrate how a single transition-metal catalyst can mediate a sophisticated redox-paired process through multiple pathway-selective events along the catalytic cycle.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Malkanthi K Karunananda
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Tian Zeng
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Shenghua Yang
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhen Liu
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Ling B, Wang S, Xie Y, Liu P, Jiang YY, Zhong W, Bi S. Mechanistic Insights Into the Rhodium-Catalyzed C-H Alkenylation/Directing Group Migration and [3+2] Annulation: A DFT Study. J Org Chem 2023; 88:4494-4503. [PMID: 36972416 DOI: 10.1021/acs.joc.2c03089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The mechanism of the rhodium-catalyzed C-H alkenylation/directing group migration and [3+2] annulation of N-aminocarbonylindoles with 1,3-diynes has been investigated with DFT calculations. On the basis of mechanistic studies, we mainly focus on the regioselectivity of 1,3-diyne inserting into the Rh-C bond and the N-aminocarbonyl directing group migration involved in the reactions. Our theoretical study uncovers that the directing group migration undergoes a stepwise β-N elimination and isocyanate reinsertion process. As studied in this work, this finding is also applicable to other relevant reactions. Additionally, the role of Na+ versus Cs+ involved in the [3+2] cyclization reaction is also probed.
Collapse
Affiliation(s)
- Baoping Ling
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Shuangjie Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Yuxin Xie
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Wenhui Zhong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
12
|
Xiong W, Wang Y, Yang X, Liu WH. Selective Hydrolysis of Primary and Secondary Amides Enabled by Visible Light. Org Lett 2023; 25:2948-2952. [PMID: 36853098 DOI: 10.1021/acs.orglett.3c00354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Amide hydrolysis is a fundamentally important transformation in organic chemistry. Developing hydrolysis procedures under mild conditions with a broad substrate scope is desirable. Herein, by leveraging a photoresponsive auxiliary o-nitroanilide, we established a mild two-step protocol for the hydrolysis of primary and secondary amides. This protocol is driven by visible light irradiation at room temperature under neutral conditions, which tolerates numerous acid- and base-sensitive functional groups. Various drugs, natural product-, and amino acid-derived amides can be selectively hydrolyzed.
Collapse
Affiliation(s)
- Wenzhang Xiong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yichun Wang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Xiaobo Yang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Shao C, Xu T, Chen C, Yang Q, Tang C, Chen P, Lu M, Hu Z, Hu H, Zhang T. Copper-catalyzed selective C5-H bromination and difluoromethylation of 8-aminoquinoline amides using ethyl bromodifluoroacetate as the bifunctional reagent. RSC Adv 2023; 13:6993-6999. [PMID: 36874938 PMCID: PMC9977446 DOI: 10.1039/d3ra00088e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
A simple and effective method for the copper-catalyzed selective C5-H bromination and difluoromethylation of 8-aminoquinoline amides with ethyl bromodifluoroacetate as the bifunctional reagent was developed. The combination of cupric catalyst and alkaline additive results in a C5-bromination reaction, whereas cuprous catalyst combined with silver additive results in the C5-difluoromethylation reaction. This method has a broad substrate scope and allows for easy and convenient access to desired C5-functionalized quinolones with good to excellent yields.
Collapse
Affiliation(s)
- Changdong Shao
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Tianyi Xu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Chen Chen
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Qionglin Yang
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Chao Tang
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Ping Chen
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Mingzhu Lu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Zhengsong Hu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Huayou Hu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Tingting Zhang
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| |
Collapse
|
14
|
Gong X, Yu N, Gu L, Li Z, Ma W, Zhao F. Redox-neutral rhodium(III)-catalyzed divergent synthesis of tetrasubstituted 1,3-enynes and alkynylated benzofurans. Org Biomol Chem 2022; 21:147-152. [PMID: 36465010 DOI: 10.1039/d2ob01800d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the assistance of the acetamido directing group (DG), a rhodium-catalyzed C-H alkenylation/DG migration cascade for the synthesis of tetrasubstituted 1,3-enynes from N-phenoxyacetamides and 1,3-diynes has been achieved in this work. Alternatively, a rhodium-catalyzed [3 + 2] annulation for the synthesis of alkynylated benzofurans from the same set of substrates has also been achieved by simply changing the reaction conditions. This work highlights the tunable divergent synthesis of valuable compounds triggered by C-H activation.
Collapse
Affiliation(s)
- Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Na Yu
- Department of Preparation Center, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
15
|
Zayene M, Le Bideau F, Retailleau P, Jannet HB, Alami M, Romdhane A, Messaoudi S. Site-Selective Palladium(II)-Catalyzed Methylene C(sp 3)-H Diarylation of a Tropane Scaffold. J Org Chem 2022; 87:16399-16409. [PMID: 36473230 DOI: 10.1021/acs.joc.2c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of 2,4-di-arylated tropane derivatives was synthesized through a site-selective palladium-catalyzed β-C(sp3)-H di-arylation process. This type of structure has been scarcely reported in literature. They nevertheless represent an interesting class of biologically relevant molecules as illustrated by the observed activity at the micromolecular level of eight derivatives toward human colorectal cancer cell line HCT116.
Collapse
Affiliation(s)
- Mayssa Zayene
- Université Paris-Saclay, BioCIS, CNRS, 5 rue J-B Clément, 92296 Châtenay-Malabry cedex, France.,Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Franck Le Bideau
- Université Paris-Saclay, BioCIS, CNRS, 5 rue J-B Clément, 92296 Châtenay-Malabry cedex, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Universite Paris-Saclay, avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Mouad Alami
- Université Paris-Saclay, BioCIS, CNRS, 5 rue J-B Clément, 92296 Châtenay-Malabry cedex, France
| | - Anis Romdhane
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Samir Messaoudi
- Université Paris-Saclay, BioCIS, CNRS, 5 rue J-B Clément, 92296 Châtenay-Malabry cedex, France
| |
Collapse
|
16
|
8-Aminoquinoline-containing squaric acid congeners as polarity and viscosity probes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Parihar H, Thirupathi N. Cobalt(II)-Catalyzed Directed C–H Functionalization/[3+2] Annulation of N-Arylguanidines with Alkynes. Org Lett 2022; 24:8098-8103. [DOI: 10.1021/acs.orglett.2c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Harish Parihar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
18
|
Simlandy AK, Rodphon W, Alturaifi TM, Mai BK, Ni HQ, Gurak JA, Liu P, Engle KM. Catalytic Addition of Nitroalkanes to Unactivated Alkenes via Directed Carbopalladation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Warabhorn Rodphon
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Turki M. Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - John A. Gurak
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
19
|
LI L, Mahri L, de Robichon M, Fatthalla M, Ferry A, MESSAOUDI S. Directed Dehydrogenative Copper‐Catalyzed C‐H Thiolation in Pseudo‐Anomeric Position of Glycals using Thiol and Thiosugar Partners. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Lin YC, Schneider F, Eberle KJ, Chiodi D, Nakamura H, Reisberg SH, Chen J, Saito M, Baran PS. Atroposelective Total Synthesis of Darobactin A. J Am Chem Soc 2022; 144:14458-14462. [PMID: 35926121 PMCID: PMC9829381 DOI: 10.1021/jacs.2c05892] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A concise, modular synthesis of the novel antibiotic darobactin A is disclosed. The synthesis successfully forges the hallmark strained macrocyclic ring systems in a sequential fashion. Key transformations include two atroposelective Larock-based macrocyclizations, one of which proceeds with exquisite regioselectivity despite bearing an unprotected alkyne. The synthesis is designed with medicinal chemistry considerations in mind, appending key portions of the molecule at a late stage. Requisite unnatural amino acid building blocks are easily prepared in an enantiopure form using C-H activation and decarboxylative cross-coupling tactics.
Collapse
Affiliation(s)
- You-Chen Lin
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Fabian Schneider
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kelly J Eberle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Debora Chiodi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hugh Nakamura
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Solomon H Reisberg
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jason Chen
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Masato Saito
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Borgini M, Wipf P. Stereoselective synthesis of δ-fluorinated isoleucines exploiting consecutive C(sp3)-H bond activations. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Das Adhikari GK, Pati BV, Mohanty SR, Prusty N, Ravikumar PC. Co(II) Catalysed C‐H/N‐H Annulation of Cyclic Alkenes with Benzamides at Room Temperature; An Easy Access to the Core Skeleton of Hexahydrobenzo[c]phenanthridine type‐Alkaloids. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Namrata Prusty
- National Institute of Science Education and Research Chemical Science INDIA
| | - Ponneri C. Ravikumar
- National Institute of Science Education and Research School of Chemical Sciences NISER Jatni Campus 752050 Bhubaneswar INDIA
| |
Collapse
|
23
|
Wang Z, Ye X, Jin M, Tang Q, Fan S, Song Z, Shi X. 4-Aminobenzotriazole (ABTA) as a Removable Directing Group for Palladium-Catalyzed Aerobic Oxidative C-H Olefination. Org Lett 2022; 24:3107-3112. [PMID: 35324203 DOI: 10.1021/acs.orglett.2c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
4-Aminobenzotriazole (ABTA) was applied as an effective removable directing group (DG) in Pd-catalyzed C-H activation for the first time. Compared with the widely applied pyridine and quinoline analogs, ABTA showed significantly improved reactivity, achieving aerobic oxidative C-H olefination in excellent yields (up to 95% vs <50% with other reported DGs under identical conditions). Using this new strategy, macrocyclization was achieved to give cyclic peptides in good yields with easy ABTA removal under mild conditions, highlighting the promising potential of this new DG.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. hina
| | - Xiaohan Ye
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Meina Jin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. hina
| | - Qi Tang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Shengyu Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. hina
| | - Zhiguang Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. hina
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
24
|
Piticari A, Antermite D, Higham JI, Moore JH, Webster MP, Bull JA. Stereoselective Palladium‐Catalyzed C(
sp
3
)−H Mono‐Arylation of Piperidines and Tetrahydropyrans with a C(4) Directing Group. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Amalia‐Sofia Piticari
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - Daniele Antermite
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - Joe I. Higham
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - J. Harry Moore
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | | | - James A. Bull
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| |
Collapse
|
25
|
He Q, Yamazaki K, Ano Y, Chatani N. Palladium-Catalyzed Site-Selective [5 + 1] Annulation of Aromatic Amides with Alkenes: Acceleration of β-Hydride Elimination by Maleic Anhydride from Palladacycle. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Qiyuan He
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Thombal RS, Aslam M, Mohandoss S, Lee YR. Rhodium-catalyzed cascade C–H activation/annulation/1,6-acyl migration: direct construction of free N–H indoles under mild conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj00508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh-Catalyzed regioselective cascade C–H activation/annulation/1,6-acyl migration of N-acetanilides with alkynes via C–C/C–N/C–O bond formation is developed.
Collapse
Affiliation(s)
- Raju S. Thombal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mohammad Aslam
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
27
|
Zhang HY, Tao XW, Yi LN, Zhao ZG, Yang Q. Transamidation and Decarbonylation of N-Phthaloyl-Amino Acid Amides Enabled by Palladium-Catalyzed Selective C-N Bond Cleavage. J Org Chem 2021; 87:231-242. [PMID: 34941259 DOI: 10.1021/acs.joc.1c02245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amides are important functional synthons that have been widely used in the construction of peptides, natural products, and drugs. The C-N bond cleavage provides the direct method for amide conversion. However, amides, especially secondary amides, tend to be chemically inert due to the resonance of the amide bond. Here, we describe an efficient Pd-catalyzed transamidation and decarbonylation of multiamide structure molecules through C-N bond cleavage with excellent chemoselectivity. The transamidation of secondary amides and the decarbonylation of phthalimide provide meaningful tools for the modification of amino acid derivatives. Moreover, further transformations of azidation and C(sp3)-H monoarylation emphasized the potential utility of this selective C-N bond cleavage method.
Collapse
Affiliation(s)
- Hao-Yu Zhang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xuan-Wen Tao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Li-Na Yi
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Zhi-Gang Zhao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qiang Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
28
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
29
|
Liu S, He B, Li H, Zhang X, Shang Y, Su W. Facile Synthesis of Alkylidene Phthalides by Rhodium-Catalyzed Domino C-H Acylation/Annulation of Benzamides with Aliphatic Carboxylic Acids. Chemistry 2021; 27:15628-15633. [PMID: 34519367 DOI: 10.1002/chem.202102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/12/2022]
Abstract
The Rh-catalyzed ortho-C(sp2 )-H functionalization of 8-aminoquinoline-derived benzamides with aliphatic acyl fluorides generated in situ from the corresponding acids has been developed. This reaction initiated with 8-aminoquinoline-directed ortho-C(sp2 )-H acylation, which was accompanied by subsequent intramolecular nucleophilic acyl substitution of amide group to produce alkylidene phthalides This approach exhibits high stereo-selectivity for Z-isomer products, and tolerates a variety of functional groups as well as aliphatic carboxylic acids with diverse structural scaffolds.
Collapse
Affiliation(s)
- Sien Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bangyue He
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Hongyi Li
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
30
|
Zhao F, Zhou Z, Lu Y, Qiao J, Zhang X, Gong X, Liu S, Lin S, Wu X, Yi W. Chemo-, Regio-, and Stereoselective Assembly of Polysubstituted Furan-2(5 H)-ones Enabled by Rh(III)-Catalyzed Domino C–H Alkenylation/Directing Group Migration/Lactonization: A Combined Experimental and Computational Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yangbin Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jin Qiao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiaoning Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Siyu Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Shuang Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Wei Yi
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
31
|
Huang MG, Shi S, Li M, Liu YJ, Zeng MH. Salicylaldehyde-Promoted Cobalt-Catalyzed C-H/N-H Annulation of Indolyl Amides with Alkynes: Direct Synthesis of a 5-HT3 Receptor Antagonist Analogue. Org Lett 2021; 23:7094-7099. [PMID: 34449224 DOI: 10.1021/acs.orglett.1c02502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A cobalt-catalyzed annulation of the C(sp2)-H/N-H bond of indoloamides with alkynes assisted by 8-aminoquinoline is reported for the synthesis of six-membered indololactams. The use of salicylaldehyde as the ligand is crucial for this transformation. The protocol has a broad scope for both alkynes and indoles. Preparing an active Co complex illustrates that salicylaldehyde plays a key role in the C-H activation step. The synthetic applications are proven by the gram-scale reaction and one-step construction of the multicyclic 5-HT3 receptor antagonist.
Collapse
Affiliation(s)
- Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shuai Shi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ming Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ming-Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.,Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
32
|
Wu FP, Wu XF. Pd/Cu-Catalyzed amide-enabled selectivity-reversed borocarbonylation of unactivated alkenes. Chem Sci 2021; 12:10341-10346. [PMID: 34377419 PMCID: PMC8336481 DOI: 10.1039/d1sc02785a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
The addition reaction between CuBpin and alkenes to give a terminal boron substituted intermediate is usually fast and facile. In this communication, a selectivity-reversed procedure has been designed and established. This selectivity-reversed borocarbonylation reaction is enabled by a cooperative action between palladium and copper catalysts and proceeds with complete regioselectivity. The key to the success of this transformation is the coordination of the amide group and slower CuBpin formation by using KHCO3 as the base. A wide range of β-boryl ketones were produced from terminal unactivated aliphatic alkenes and aryl iodides. Further synthetic transformations of the obtained β-boryl ketones have been developed as well. A selectivity-reversed borocarbonylation reaction has been developed with complete regioselectivity.![]()
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 Liaoning China
| |
Collapse
|
33
|
Shabani S, Wu Y, Ryan HG, Hutton CA. Progress and perspectives on directing group-assisted palladium-catalysed C-H functionalisation of amino acids and peptides. Chem Soc Rev 2021; 50:9278-9343. [PMID: 34254063 DOI: 10.1039/d0cs01441a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide modifications can unlock a variety of compounds with structural diversity and abundant biological activity. In nature, peptide modifications, such as functionalisation at the side-chain position of amino acids, are performed using post-translational modification enzymes or incorporation of unnatural amino acids. However, accessing these modifications remains a challenge for organic chemists. During the past decades, selective C-H activation/functionalisation has attracted considerable attention in synthetic organic chemistry as a pathway to peptide modification. Various directing group strategies have been discovered that assist selective C-H activation. In particular, bidentate directing groups that enable tuneable and reversible coordination are now recognised as one of the most efficient methods for the site-selective C-H activation and functionalisation of numerous families of organic compounds. Synthetic peptide chemists have harnessed bidentate directing group strategies for selective functionalisation of the β- and γ-positions of amino acids. This method has been expanded and recognised as an effective device for the late stage macrocyclisation and total synthesis of complex peptide natural products. In this review, we discuss various β-, γ-, and δ-C(sp3)-H bond functionalisation reactions of amino acids for the formation of C-X bonds with the aid of directing groups and their application in late-stage macrocyclisation and the total synthesis of complex peptide natural products.
Collapse
Affiliation(s)
- Sadegh Shabani
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | | | | | | |
Collapse
|
34
|
Xiong F, Li B, Yang C, Zou L, Ma W, Gu L, Mei R, Ackermann L. Copper-mediated oxidative C-H/N-H activations with alkynes by removable hydrazides. Beilstein J Org Chem 2021; 17:1591-1599. [PMID: 34290838 PMCID: PMC8275871 DOI: 10.3762/bjoc.17.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022] Open
Abstract
The efficient copper-mediated oxidative C-H alkynylation of benzhydrazides was accomplished with terminal alkynes. Thus, a heteroaromatic removable N-2-pyridylhydrazide allowed for domino C-H/N-H functionalization. The approach featured remarkable functional group compatibility and ample substrate scope. Thereby, highly functionalized aromatic and heteroaromatic isoindolin-1-ones were accessed with high efficacy with rate-limiting C-H cleavage.
Collapse
Affiliation(s)
- Feng Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China
| | - Bo Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P.R. China
| | - Chenrui Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P.R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P.R. China
| | - Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P.R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany and 4Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
35
|
Zhang H, Lv X, Yu H, Bai Z, Chen G, He G. β-Lactam Synthesis via Copper-Catalyzed Directed Aminoalkylation of Unactivated Alkenes with Cyclobutanone O-Benzoyloximes. Org Lett 2021; 23:3620-3625. [DOI: 10.1021/acs.orglett.1c01007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heng Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoyan Lv
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanrui Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zibo Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|