1
|
Sookai S, Akerman M, Færch M, Sayed Y, Munro OQ. Cytotoxic pyrrole-based gold(III) chelates target human topoisomerase II as dual-mode inhibitors and interact with human serum albumin. Eur J Med Chem 2025; 287:117330. [PMID: 39904146 DOI: 10.1016/j.ejmech.2025.117330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Topoisomerase IIα (Top II) is a critical enzyme that resolves DNA topology during transcription and replication. Inhibitors of Top II are used as anticancer agents and are classified as interfacial poisons (IFPs) or catalytic inhibitors (CICs). Here, we report a novel class of cytotoxic, stable cationic gold(III) Schiff base chelates (AuL1, AuL2, and AuL3) with DNA-intercalating properties. In the NCI-60 screen, AuL1 and AuL3 exhibited potent cytotoxicity (mean GI50 values of 11 (7) μM and 14 (9) μM, respectively), whereas AuL2 showed minimal cytotoxicity. Cluster analysis aligned AuL1 and AuL3 with the Top II poison etoposide. Mechanistic studies revealed that AuL1 acts as an IFP at concentrations between 0.5 and 50 μM and as a CIC at concentrations between 50 and 500 μM. Further investigations demonstrated that all three gold(III) chelates bind to and intercalate DNA, the main substrate for Top II. Finally, binding studies with human serum albumin (HSA) indicated that the chelates have moderate affinity for the protein. Thermodynamic analysis indicates entropically driven binding, with minimal structural disruption observed via UV-CD spectroscopy. These findings highlight the dual mode Top II inhibition mechanism delineated for the gold(III) chelates and their favourable pharmacodynamic interactions with HSA, underscoring their potential as promising anticancer agents.
Collapse
Affiliation(s)
- Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
| | - Matthew Akerman
- School of Chemistry, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Mia Færch
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa; School of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT, UK
| |
Collapse
|
2
|
Razuwika R, Sookai S, Aronson R, Kaur M, Munro OQ. A Cytotoxic Indazole-based Gold(III) Carboxamide Pincer Complex Targeting DNA Through Dual Binding Modes of Groove Binding and Alkylation. Chemistry 2025:e202404345. [PMID: 40162557 DOI: 10.1002/chem.202404345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
Gold(III) complexes have garnered increasing attention in drug delivery due to their structural and mechanistic similarities to cisplatin. This study investigates an indazole-based gold(III) carboxamide pincer complex, [N2·N6-bis(1-methyl-1H-indazol-3-yl)pyridine-2·6-dicarboxamide]gold(III) chloride (AuL), for its potential as an anticancer agent. Speciation analysis at physiological pH revealed that AuL predominantly exists as a neutral chlorinated species. The complex exhibited strong cytotoxicity against the MCF-7 breast cancer cell line, with an impressive IC50 value of 9 µM, while showing no significant activity against the HT-29 colon cancer cell line. Comprehensive analysis using electrophoresis, viscometry, ultraviolet-visible spectroscopy (UV-Vis), circular dichroism (CD), linear dichroism (LD) spectroscopy, and biomolecular simulations demonstrated that AuL binds to DNA via a dual mechanism, specifically minor groove binding and alkylation, with binding constants Ka1 = 1.48 × 109 M-1 and Ka2 = 6.59 × 105 M-1, respectively. Our data indicate that AuL initially binds to the minor groove of DNA, at which point a nucleobase substitutes the Cl ion, resulting in AuL binding directly to the DNA bases. In conclusion, the dual binding mode of AuL with DNA underscores its potential as a promising anticancer agent, opening new avenues for drug discovery and the development of metal-based therapeutics.
Collapse
Affiliation(s)
- Rufaro Razuwika
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2050, South Africa
| | - Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2050, South Africa
| | - Ruth Aronson
- School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2050, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2050, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2050, South Africa
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
3
|
Pascual LMH, Devy J, Colin M, Chazée L, Guillaneuf A, Marin B, Plantier-Royon R, Gatard S. Biosourced Au(III) Complexes from D-Xylose: Synthesis and Biological Evaluation. ChemMedChem 2025; 20:e202400565. [PMID: 39429067 DOI: 10.1002/cmdc.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
A series of xylose-based ligands was obtained using a convenient approach, in a few steps from D-xylose. The complexation properties of these ligands towards Au3+ cations have been studied through different methods (multinuclear NMR, mass spectrometry, elemental analysis). The biological properties (antibacterial and anti-tumoral) of all the isolated xyloside Au(III) complexes were investigated in vitro. The xyloside Au(III) complexes gave the highest activities against E. coli (vs P. aeruginosa, S. aureus and S. epidermidis). The study also revealed that the nature of the sugar may play an important role in determining the selectivity of the antibacterial effect. Preliminary anti-tumoral evaluations showed that one complex containing a polyamine chain, exhibited interesting anti-proliferative activities on breast tumor cell lines MDA-MB-231 and BT-20. The anti-migratory effect of this complex also showed an average 35 % reduction in cell migration on the same two cancer cell lines.
Collapse
Affiliation(s)
- Laura M H Pascual
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, 51687, Reims Cedex 2, France
| | - Jérôme Devy
- Université de Reims Champagne-Ardenne, CNRS, MEDyC, Reims, France
| | - Marius Colin
- Université de Reims Champagne-Ardenne, BIOS, Reims, France
| | - Lise Chazée
- Université de Reims Champagne-Ardenne, CNRS, MEDyC, Reims, France
| | | | - Béatrice Marin
- Université de Reims Champagne-Ardenne, GEGENAA, Reims, France
| | | | - Sylvain Gatard
- Université de Reims Champagne-Ardenne, CNRS, ICMR, Reims, 51687, Reims Cedex 2, France
| |
Collapse
|
4
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
5
|
Guan Q, Gao Z, Chen Y, Guo C, Chen Y, Sun H. Structural modification strategies of triazoles in anticancer drug development. Eur J Med Chem 2024; 275:116578. [PMID: 38889607 DOI: 10.1016/j.ejmech.2024.116578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The triazole functional group plays a pivotal role in the composition of biomolecules with potent anticancer activities, including numerous clinically approved drugs. The strategic utilization of the triazole fragment in the rational modification of lead compounds has demonstrated its ability to improve anticancer activities, enhance selectivity, optimize pharmacokinetic properties, and overcome resistance. There has been significant interest in triazole-containing hybrids in recent years due to their remarkable anticancer potential. However, previous reviews on triazoles in cancer treatment have failed to provide tailored design strategies specific to these compounds. Herein, we present an overview of design strategies encompassing a structure-modification approach for incorporating triazoles into hybrid molecules. This review offers valuable references and briefly introduces the synthesis of triazole derivatives, thereby paving the way for further research and advancements in the field of effective and targeted anticancer therapies.
Collapse
Affiliation(s)
- Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ziming Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuting Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
6
|
van Niekerk A, Chakraborty S, Bellis C, Chellan P, Prince S, Mapolie SF. Binuclear palladacycles with ionisable and non-ionisable tethers as anticancer agents. J Inorg Biochem 2024; 257:112608. [PMID: 38761581 DOI: 10.1016/j.jinorgbio.2024.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
The search for novel anticancer agents to replace the current platinum-based treatments remains an ongoing process. Palladacycles have shown excellent promise as demonstrated by our previous work which yielded BTC2, a binuclear palladadycle with a non-ionisable polyethylene glycol (PEG) tether. Here, we explore the importance of the PEG-tether length on the anticancer activity of the binuclear palladacycles by comparing three analogous binuclear palladacycles, BTC2, BTC5 and BTC6, in the oestrogen receptor positive MCF7 and triple-negative MDA-MB-231 breast cancer cell lines. In addition, these are compared to another analogue with an ionisable morpholine tether, BTC7. Potent anticancer activity was revealed through cell viability studies (MTT assays) revealed that while BTC6 showed similar potent anticancer activity as BTC2, it was less toxic towards non-cancerous cell lines. Interestingly, BTC7 and BTCF were less potent than the PEGylated palladacycles but showed significantly improved selectivity towards the triple-negative breast cancer cells. Cell death analysis showed that BTC7 and BTCF significantly induced apoptosis in both the cancer cell lines while the PEGylated complexes induced both apoptosis and secondary necrosis. Furthermore, experimental and computational DNA binding studies indicated partial intercalation and groove binding as the modes of action for the PEGylated palladacycles. Similarly, experimental and computational BSA binding studies indicated and specific binding sites in BSA dependent on the nature of the tethers on the complexes.
Collapse
Affiliation(s)
- A van Niekerk
- Department of Chemistry and Polymer Science, Stellenbosch University, Private bag X1, Stellenbosch 7602, South Africa,; Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - S Chakraborty
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - C Bellis
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - P Chellan
- Department of Chemistry and Polymer Science, Stellenbosch University, Private bag X1, Stellenbosch 7602, South Africa
| | - S Prince
- Department of Human Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - S F Mapolie
- Department of Chemistry and Polymer Science, Stellenbosch University, Private bag X1, Stellenbosch 7602, South Africa
| |
Collapse
|
7
|
Vanucci-Bacqué C, Wolff M, Delavaux-Nicot B, Abdallah AM, Mallet-Ladeira S, Serpentini CL, Bedos-Belval F, Fong KW, Ng XY, Low ML, Benoist E, Fery-Forgues S. 1,2,3-Triazol-5-ylidene- vs. 1,2,3-triazole-based tricarbonylrhenium(I) complexes: influence of a mesoionic carbene ligand on the electronic and biological properties. Dalton Trans 2024; 53:11276-11294. [PMID: 38776120 DOI: 10.1039/d4dt00922c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The tricarbonylrhenium complexes that incorporate a mesoionic carbene ligand represent an emerging and promising class of molecules, the solid-state optical properties of which have rarely been investigated. The aim of this comprehensive study is to compare three of these complexes with their 1,2,3-triazole-based analogues. The Hirshfeld surface analysis of the crystallographic data revealed that the triazolylidene derivatives are more prone to π-π interactions than their 1,2,3-triazole-based counterparts. The FT-IR and electrochemical data indicated a stronger electron donor effect from the organic ligand to the rhenium atom for triazolylidene derivatives, which was confirmed by DFT calculations. All compounds were phosphorescent in solution, where the 1,2,3-triazole-based complexes showed unusually strong dependence on dissolved oxygen. All compounds also emitted in the solid state, some of them exhibited marked solid-state luminescence enhancement (SLE) effect. The 1,2,3-triazole based complex Re-Phe even displayed astounding photoluminescence efficiency with quantum yield up to 0.69, and proved to be an excellent candidate for applications linked to aggregation-induced emission (AIE). Interestingly, one triazolylidene-based complex (Re-T-BOP) showed attractive antibacterial activity. This study highlights the potential of these new molecules for applications in the fields of photoluminescent and therapeutic materials, and provides the first bases for the design of efficient molecules in these research areas.
Collapse
Affiliation(s)
- Corinne Vanucci-Bacqué
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Mariusz Wolff
- Institut für Funktionelle Materialien und Katalyse, Universität Wien, Währinger Straße 38-42, 1090 Wien, Österreich
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9th Street, 40-006 Katowice, Poland
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination du CNRS, UPR 8241, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Abanoub Mosaad Abdallah
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza 11561, Egypt
| | - Sonia Mallet-Ladeira
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse, ICT-UAR 2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Charles-Louis Serpentini
- Laboratoire SOFTMAT, CNRS UMR 5623, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Florence Bedos-Belval
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Kar Wai Fong
- School of Postgraduate Studies, IMU University, Kuala Lumpur, Malaysia
| | - Xiao Ying Ng
- School of Postgraduate Studies, IMU University, Kuala Lumpur, Malaysia
| | - May Lee Low
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Eric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Suzanne Fery-Forgues
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
8
|
Bandyopadhyay K, Verma A, Pandey A, Walia R, Saha S. The crucial role of stability of intercalating agent for DNA binding studies in DMSO/water system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124265. [PMID: 38626674 DOI: 10.1016/j.saa.2024.124265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/18/2024]
Abstract
In recent years, extensive research has been directed towards understanding the interactions between various zinc complexes with DNA, specifically delving into their intercalation and binding behaviors. The binding of zinc complexes to DNA is particularly intriguing due to their distinctive intercalating capabilities. This study unveils a remarkable phenomenon observed with a specific Zn complex, ([B-Zn-N3], where B is a Schiff base ligand), during DNA intercalation investigations in the popular DMSO-Water binary solvent mixture. An unanticipated observation revealed time-dependent changes in the UV-visible absorption spectroscopic studies, coupled with the existence of an isosbestic point. This observation questions the stability of the intercalating agent itself during the intercalation process. The emergence of a decomposed product during the intercalation study has been confirmed through various analytical techniques, including CHN analysis, MALDI mass, XPS, Raman spectroscopy, and Powder XRD. The change in the chemical species on intercalation is further substantiated by theoretical studies, adding depth to our understanding of the intricate dynamics at play during DNA intercalation with the [B-Zn-N3] complex in the DMSO-Water system.
Collapse
Affiliation(s)
- Krishanu Bandyopadhyay
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Abhineet Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ankita Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajat Walia
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR
| | - Satyen Saha
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
9
|
Papangelis E, Pelzer K, Gourlaouen C, Armspach D, Braunstein P, Danopoulos AA, Bailly C, Tsoureas N, Gerokonstantis DT. New Pyridine Dicarbene Pincer Ligands with Ring Expanded NHCs and their Nickel and Chromium Complexes. Chem Asian J 2024; 19:e202400169. [PMID: 38619064 DOI: 10.1002/asia.202400169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
The pincer complexes [NiIIBr(CNC)]Br (4), [CrIIIBr3(CNC)] (5 a) and [CrIIIBr2.3Cl0.7(CNC)] (5 b), where CNC=3,3'-(pyridine-2,6-diyl)bis(1-mesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene), were obtained from the novel ligand CNC, generated in situ from the precursor (CHNCH)Br2 and [NiIIBr2(PPh3)2] or from [CrII{N(SiMe3)2}2(THF)2] and (CHNCH)Br2 by aminolysis, respectively. The tetrahedrally distorted square planar (τ4≅0.30) geometry and the singlet ground state of Ni in 4 were attributed to steric constraints of the CNC backbone. Computational methods highlighted the dependence of the coordination geometry and the singlet-triplet energy difference on the size of the N-substituent of the tetrahydropyrimidine wingtips and contrasted it to the situation in 5-membered imidazolin-2-ylidene pincer analogues. The octahedral CrIII metal center in 5 a and 5 b is presumably formed after one electron oxidation from CH2Cl2. 4/MAO and 5 a/MAO were catalysts of moderate activity for the oligomerization and polymerization of ethylene, respectively. The analogous (CH^N^CH)Br2 precursor, where (CH^N^CH)=3,3'-(pyridine-2,6-diylbis(methylene))bis(1-mesityl-3,4,5,6-tetrahydropyrimidin-1-ium), was also prepared, however its coordination chemistry was not studied due to the inherent instability of the resulting free C^N^C ligand.
Collapse
Affiliation(s)
- Evangelos Papangelis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Katrin Pelzer
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS-90032, 67081, Strasbourg Cedex, France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS-90032, 67081, Strasbourg Cedex, France
| | - Dominique Armspach
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS-90032, 67081, Strasbourg Cedex, France
| | - Pierre Braunstein
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS-90032, 67081, Strasbourg Cedex, France
| | - Andreas A Danopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Corinne Bailly
- Fédération de Chimie "Le Bel" -, UAR2042, BP 296R8, 1, rue Blaise Pascal, 67008, Strasbourg Cedex, France
| | - Nikolaos Tsoureas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Dimitrios Triantafyllos Gerokonstantis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| |
Collapse
|
10
|
Martín J, Schörgenhumer J, Biedrzycki M, Nevado C. (P^N^C) Ligands to Stabilize Gold(III): A Straightforward Access to Hydroxo, Formate, and Hydride Complexes. Inorg Chem 2024; 63:8390-8396. [PMID: 38657169 PMCID: PMC11080065 DOI: 10.1021/acs.inorgchem.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
A novel class of (P^N^C) pincer ligands capable of stabilizing elusive gold(III) species is reported here. Straightforward access to (P^N^C)gold(III) hydroxo, formate, and hydride complexes has been streamlined by first incorporating a cycloauration step devoid of toxic metals or harsh conditions. The resulting gold complexes exhibit remarkable stability in solution as well as in the solid state under ambient conditions, which enabled their characterization by X-ray diffraction analyses. Interestingly, the influence of the ligand allowed the preparation of gold(III)-hydrides using mild hydride donors such as H-Bpin, which contrasts with sensitive super hydrides or strong acids and cryogenic conditions employed in previous protocols. A detailed bonding characterization of these species is complemented by reactivity studies.
Collapse
Affiliation(s)
- Jaime Martín
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Johannes Schörgenhumer
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Michał Biedrzycki
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University
of Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| |
Collapse
|
11
|
Sookai S, Akerman MP, Munro OQ. Chiral Au(III) chelates exhibit unique NCI-60 cytotoxicity profiles and interactions with human serum albumin. Dalton Trans 2024; 53:5089-5104. [PMID: 38375922 DOI: 10.1039/d3dt04024k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Au(III) bis(pyrrolide-imine) chelates are emerging as a class of versatile, efficacious metallodrug candidates. Here, we synthesised two enantiopure chiral ligands H2L1 and H2L2 (tetradentate cyclohexane-1,2-diamine-bridged bis(pyrrole-imine) derivatives). Metallation of the ligands with Au(III) afforded the chiral cationic complexes AuL1 and AuL2. The in vitro cytotoxicities of AuL1 and AuL2 determined in the NCI-60 single-dose drug screen were 56.5% and 89.1%, respectively. AuL1 was subsequently selected for a five-dose NCI-60 screen, attaining GI50, IC50, and LC50 values of 4.7, 9.3 and 39.8 μM, respectively. Hierarchical cluster analysis of the NCI-60 data indicated that the profile for AuL1 was similar to that of vinblastine sulfate, a microtubule-targeting vinca alkaloid. Reactions of AuL1 with glutathione (GSH) in vitro confirmed its susceptibility to reduction, Au(III) → Au(I), by intracellular thiols. Because human serum albumin (HSA) is responsible for transporting clinically deployed and investigational drugs, we studied the uptake of AuL1 and AuL2 by HSA to delineate how chirality impacts their protein-binding affinity. Steady-state fluorescence quenching data acquired on the native protein and data from site-specific probes showed that the compounds bind at sites close enough to Trp-214 (subdomain IIA) of HSA to quench the fluorophore. The bimolecular quenching rate constants, Kq, were ca. 102 times higher than the maximum diffusion-controlled collision constant of a biomolecule in water (1010 M-1 s-1), confirming that static fluorescence quenching was the dominant mechanism. The Stern-Volmer constants, KSV, were ∼104 M-1 at 37 °C, while the affinity constants, Ka (37 °C), measured ∼2.1 × 104 M-1 (AuL1) and ∼1.2 × 104 M-1 (AuL2) for enthalpy-driven ligand uptake targeting Sudlow's site I. Although far- and near-UV CD spectroscopy indicated that both complexes minimally perturb the secondary and tertiary structure of HSA, substantial shifts in the CD spectra were recorded for both protein-bound ligands. This study highlights the role of chirality in determining the cytotoxicity profiles and protein binding behaviour of enantiomeric Au(III) chelates.
Collapse
Affiliation(s)
- Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
| | - Matthew P Akerman
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO WITS 2050, Johannesburg, South Africa.
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
13
|
van Niekerk A, Blanckenberg A, Kimani S, Chakraborty S, Prince S, Chellan P, Mapolie S. Mechanistic insights into the anti-cancer activity of the PEGylated binuclear palladacycle, BTC2, against triple-negative breast cancer. J Inorg Biochem 2023; 243:112191. [PMID: 36996694 DOI: 10.1016/j.jinorgbio.2023.112191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Triple-negative breast cancer (TNBC) has a low five-year survival rate, especially if the cancer is diagnosed at a late stage and has already metastasized beyond the breast tissue. Current chemotherapeutic options for TNBC rely on traditional platinum-containing drugs like cisplatin, oxaliplatin and carboplatin. Unfortunately, these drugs are indiscriminately toxic, resulting in severe side effects and the development of drug resistance. Palladium compounds have shown to be viable alternatives to platinum complexes since they are less toxic and have displayed selectivity towards the TNBC cell lines. Here we report the design, synthesis, and characterization of a series of binuclear benzylidene palladacycles with varying phosphine bridging ligands. From this series we have identified BTC2 to be more soluble (28.38-56.77 μg/mL) and less toxic than its predecessor, AJ5, while maintaining its anticancer properties (IC50 (MDA-MB-231) = 0.58 ± 0.012 μM). To complement the previous cell death pathway study of BTC2, we investigated the DNA and BSA binding properties of BTC2 through various spectroscopic and electrophoretic techniques, as well as molecular docking studies. We demonstrate that BTC2 displays multimodal DNA binding properties as both a partial intercalator and groove binder, with the latter being the predominant mode of action. BTC2 was also able to quench the fluorescence of BSA, thereby suggesting that the compound could be transported by albumin in mammalian cells. Molecular docking studies revealed that BTC2 is a major groove binder and binds preferentially to subdomain IIB of BSA. This study provides insight into the influence of the ligands on the activity of the binuclear palladacycles and provides much needed information on the mechanisms through which these complexes elicit their potent anticancer activity.
Collapse
Affiliation(s)
- Annick van Niekerk
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Angelique Blanckenberg
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Serah Kimani
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7625, South Africa
| | - Suparna Chakraborty
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7625, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7625, South Africa
| | - Prinessa Chellan
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Selwyn Mapolie
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
14
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
15
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
16
|
Gu YQ, Shen WY, Yang QY, Chen ZF, Liang H. Ru(III) complexes with pyrazolopyrimidines as anticancer agents: bioactivities and the underlying mechanisms. Dalton Trans 2022; 51:1333-1343. [PMID: 34989734 DOI: 10.1039/d1dt02765d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three ruthenium(III) complexes with pyrazolopyrimidine [Ru(Ln)(H2O)Cl3] (1-3, n = 1-3) were prepared and characterized. These Ru(III) compounds show strong cytotoxicity against six cancer cell lines and low toxicity to normal human liver cells. Particularly, they exhibited stronger cytotoxicity to SK-OV-3 cells than cisplatin. Mechanism studies revealed that complex 1 inhibited tumor cell invasion and suppressed cell proliferation, induced apoptosis by elevating the levels of intracellular ROS (reactive oxygen species) and free calcium (Ca2+), and reduced mitochondrial membrane potential (ΔΨ). It also activated the caspase cascade, accompanied with upregulation of cytochrome c, Bax, p53, Apaf-1 and downregulation of Bcl-2. Moreover, complex 1 caused cell cycle arrest at S phase by inhibiting the expression of CDC 25, cyclin A2 and CDK 2 proteins, and induced DNA damage by interacting with DNA and inhibiting the topoisomerase I enzyme. Complex 1 exhibited efficient in vivo anticancer activity in a model of SK-OV-3 tumor xenograft.
Collapse
Affiliation(s)
- Yun-Qiong Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China. .,School of Environment and Life Science, Nanning Normal University, Nanning, 530001, P. R China
| | - Wen-Ying Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Qi-Yuan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
17
|
van der Westhuizen D, Bezuidenhout DI, Munro OQ. Cancer molecular biology and strategies for the design of cytotoxic gold(I) and gold(III) complexes: a tutorial review. Dalton Trans 2021; 50:17413-17437. [PMID: 34693422 DOI: 10.1039/d1dt02783b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review highlights key principles underpinning the design of selected metallodrugs to target specific biological macromolecules (DNA and proteins). The review commences with a descriptive overview of the eukaryotic cell cycle and the molecular biology of cancer, particularly apoptosis, which is provided as a necessary foundation for the discovery, design, and targeting of metal-based anticancer agents. Drugs which target DNA have been highlighted and clinically approved metallodrugs discussed. A brief history of the development of mainly gold-based metallodrugs is presented prior to addressing ligand systems for stabilizing and adding functionality to bio-active gold(I) and gold(III) complexes, particularly in the burgeoning field of anticancer metallodrugs. Concepts such as multi-modal and selective cytotoxic agents are covered where necessary for selected compounds. The emerging role of carbenes as the ligand system of choice to achieve these goals for gold-based metallodrug candidates is highlighted prior to closing the review with comments on some future directions that this research field might follow. The latter section ultimately emphasizes the importance of understanding the fate of metal complexes in cells to garner key mechanistic insights.
Collapse
Affiliation(s)
- Danielle van der Westhuizen
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Daniela I Bezuidenhout
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland.
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
18
|
Theulier CA, García-Rodeja Y, Mallet-Ladeira S, Miqueu K, Bouhadir G, Bourissou D. Gold-to-Boron Aryl Transfer from a T-Shaped Phosphine–Borane Gold(I) Complex. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cyril A. Theulier
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Yago García-Rodeja
- CNRS/Université de Pau et des Pays de l’Adour, E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux - IPREM UMR 5254, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (UAR 2599), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l’Adour, E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux - IPREM UMR 5254, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - Ghenwa Bouhadir
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| |
Collapse
|