1
|
Burkhart I, Wirmer-Bartoschek J, Plavec J, Schwalbe H. Exploring the Modulation of the Complex Folding Landscape of Human Telomeric DNA by a Low Molecular Weight Ligand. Chemistry 2025:e202501377. [PMID: 40261079 DOI: 10.1002/chem.202501377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Telomeric DNA forms G-quadruplex (G4) structures. These G4 structures are crucial for genomic stability and therapeutic targeting. Using time-resolved NMR and CD spectroscopy, we investigated how the ligand Phen-DC3 modulates the folding of the human telomeric repeat 23TAG DNA. The kinetics are modulated by the ligand and by the presence of potassium cations (K+). Ligand binding to G4 occurs via a triphasic process with fast and slow phases. Notably, for the G4 structure in the presence of K+, the slow rate is ten times slower than without K+. These findings offer key insights into the modulation of the complex folding landscape of G4s by ligands, advancing our understanding of G4-ligand interactions for potential therapeutic applications.
Collapse
Affiliation(s)
- Ines Burkhart
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max von Laue Str. 7, 60438, Frankfurt am Main, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max von Laue Str. 7, 60438, Frankfurt am Main, Germany
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, SI-1000, Slovenia
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max von Laue Str. 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Wang R, Hu MH. Development of a fluorescent ligand that specifically binds to the c-MYC G-quadruplex by migrating the benzene group on a carbazole-benzothiazolium scaffold. Bioorg Chem 2024; 151:107690. [PMID: 39098087 DOI: 10.1016/j.bioorg.2024.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
c-MYC is one of the most important oncogenes, which is overexpressed in many cancers, and is highly related to development, metastasis, and drug resistance of cancers. The G4 structure in the promoter of c-MYC oncogene contributes a lot to the gene transcriptional mechanism. Small-molecule ligands binding to the c-MYC G4 appear to be a new class of anticancer agents. However, selective ligands for the c-MYC G4 over other G4s have been rarely reported. In this study, we reported a novel fluorescent ligand by migrating the benzene group on a carbazole-benzothiazolium scaffold, which was demonstrated to exhibit considerable specificity to the c-MYC G4, which was distinguished from other small-molecule ligands. The further cellular experiments suggested that this ligand may indeed target the promoter G4 and cause apparent transcriptional inhibition of the c-MYC oncogene instead of other G4-mediated oncogenes, which thereby resulted in cancer cell growth inhibition. Collectively, this study provided a good example for developing specific c-MYC G4 ligands, which may further develop into an effective anticancer agent that inhibit the c-MYC expression.
Collapse
Affiliation(s)
- Rui Wang
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China
| | - Ming-Hao Hu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
3
|
Benassi A, Peñalver P, Pérez-Soto M, Pirota V, Freccero M, Morales JC, Doria F. Structure-Activity Study on Substituted, Core-Extended, and Dyad Naphthalene Diimide G-Quadruplex Ligands Leading to Potent Antitrypanosomal Agents. J Med Chem 2024; 67:10643-10654. [PMID: 38924701 DOI: 10.1021/acs.jmedchem.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Several G-quadruplex nucleic acid (G4s) ligands have been developed seeking target selectivity in the past decade. Naphthalene diimide (NDI)-based compounds are particularly promising due to their biological activity and red-fluorescence emission. Previously, we demonstrated the existence of G4s in the promoter region of parasite genomes, assessing the effectiveness of NDI-derivatives against them. Here, we explored the biological activity of a small library of G4-DNA ligands, exploiting the NDI pharmacophore, against both Trypanosoma brucei and Leishmania major parasites. Biophysical and biological assays were conducted. Among the various families analyzed, core-extended NDIs exhibited the most promising results concerning the selectivity and antiparasitic effects. NDI 16 emerged as the most potent, with an IC50 of 0.011 nM against T. brucei and remarkable selectivity vs MRC-5 cells (3454-fold). Fascinating, 16 is 480-fold more potent than the standard drug pentamidine (IC50 = 5.3 nM). Cellular uptake and parasite localization were verified by exploiting core-extended NDI red-fluorescent emission.
Collapse
Affiliation(s)
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Manuel Pérez-Soto
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Juan Carlos Morales
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Filippo Doria
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Paul R, Dutta D, Mukhopadhyay TK, Müller D, Lala B, Datta A, Schwalbe H, Dash J. A non-B DNA binding peptidomimetic channel alters cellular functions. Nat Commun 2024; 15:5275. [PMID: 38902227 PMCID: PMC11190219 DOI: 10.1038/s41467-024-49534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
DNA binding transcription factors possess the ability to interact with lipid membranes to construct ion-permeable pathways. Herein, we present a thiazole-based DNA binding peptide mimic TBP2, which forms transmembrane ion channels, impacting cellular ion concentration and consequently stabilizing G-quadruplex DNA structures. TBP2 self-assembles into nanostructures, e.g., vesicles and nanofibers and facilitates the transportation of Na+ and K+ across lipid membranes with high conductance (~0.6 nS). Moreover, TBP2 exhibits increased fluorescence when incorporated into the membrane or in cellular nuclei. Monomeric TBP2 can enter the lipid membrane and localize to the nuclei of cancer cells. The coordinated process of time-dependent membrane or nuclear localization of TBP2, combined with elevated intracellular cation levels and direct G-quadruplex (G4) interaction, synergistically promotes formation and stability of G4 structures, triggering cancer cell death. This study introduces a platform to mimic and control intricate biological functions, leading to the discovery of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Raj Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Debasish Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Diana Müller
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe, University Frankfurt, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - Binayak Lala
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe, University Frankfurt, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| |
Collapse
|
5
|
Fatma K, Thumpati P, Panda D, Velayutham R, Dash J. Selective Recognition of c-KIT 1 G-Quadruplex by Structural Tuning of Heteroaromatic Scaffolds and Side Chains. ACS Med Chem Lett 2024; 15:388-395. [PMID: 38505840 PMCID: PMC10945540 DOI: 10.1021/acsmedchemlett.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
In this study, carbazole (MC) and dibenzofuran (MD) derivatives were synthesized to examine their effect on the biomolecular recognition of G-quadruplex (G4) targets. Biophysical studies revealed that MC-4, a carbazole derivative, exhibits a specific affinity and effectively stabilizes the c-KIT 1 G4. Molecular modeling suggests a stable interaction of MC-4 with the terminal G-tetrad of c-KIT 1 G4. Biological studies demonstrate that MC-4 efficiently enters cells, reduces c-KIT gene expression, and induces cell cycle arrest, DNA damage, and apoptosis in cancer cells. These findings demonstrate MC-4 as a selective c-KIT G4 ligand with therapeutic potential, providing insight into the structural basis of its anticancer mechanisms.
Collapse
Affiliation(s)
- Khushnood Fatma
- Indian
Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra
Mallick Road, Jadavpur, Kolkata-700032, India
| | - Prasanth Thumpati
- Indian
Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra
Mallick Road, Jadavpur, Kolkata-700032, India
- National
Institute of Pharmaceutical Education and Research, Chunilal Bhawan, Maniktala, Kolkata-700054, India
| | - Deepanjan Panda
- Indian
Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra
Mallick Road, Jadavpur, Kolkata-700032, India
| | - Ravichandiran Velayutham
- National
Institute of Pharmaceutical Education and Research, Chunilal Bhawan, Maniktala, Kolkata-700054, India
| | - Jyotirmayee Dash
- Indian
Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra
Mallick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
6
|
Pratihar S, Bhagavath KK, Govindaraju T. Small molecules and conjugates as theranostic agents. RSC Chem Biol 2023; 4:826-849. [PMID: 37920393 PMCID: PMC10619134 DOI: 10.1039/d3cb00073g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 11/04/2023] Open
Abstract
Theranostics, the integration of therapy and diagnostics into a single entity for the purpose of monitoring disease progression and treatment response. Diagnostics involves identifying specific characteristics of a disease, while therapeutics refers to the treatment of the disease based on this identification. Advancements in medicinal chemistry and technology have led to the development of drug modalities that provide targeted therapeutic effects while also providing real-time updates on disease progression and treatment. The inclusion of imaging in therapy has significantly improved the prognosis of devastating diseases such as cancer and neurodegeneration. Currently, theranostic treatment approaches are based on nuclear medicine, while nanomedicine and a wide diversity of macromolecular systems such as gels, polymers, aptamers, and dendrimer-based agents are being developed for the purpose. Theranostic agents have significant roles to play in both early-stage drug development and clinical-stage therapeutic-containing drug candidates. This review will briefly outline the pros and cons of existing and evolving theranostic approaches before comprehensively discussing the role of small molecules and their conjugates.
Collapse
Affiliation(s)
- Sumon Pratihar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 Karnataka India
| | - Krithi K Bhagavath
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 Karnataka India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 Karnataka India
| |
Collapse
|
7
|
Chan KH, Wang Y, Zheng BX, Long W, Feng X, Wong WL. RNA-Selective Small-Molecule Ligands: Recent Advances in Live-Cell Imaging and Drug Discovery. ChemMedChem 2023; 18:e202300271. [PMID: 37649155 DOI: 10.1002/cmdc.202300271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
RNA structures, including those formed from coding and noncoding RNAs, alternative to protein-based drug targets, could be a promising target of small molecules for drug discovery against various human diseases, particularly in anticancer, antibacterial and antivirus development. The normal cellular activity of cells is critically dependent on the function of various RNA molecules generated from DNA transcription. Moreover, many studies support that mRNA-targeting small molecules may regulate the synthesis of disease-related proteins via the non-covalent mRNA-ligand interactions that do not involve gene modification. RNA-ligand interaction is thus an attractive approach to address the challenge of "undruggable" proteins in drug discovery because the intracellular activity of these proteins is hard to be suppressed with small molecule ligands. We selectively surveyed a specific area of RNA structure-selective small molecule ligands in fluorescence live cell imaging and drug discovery because the area was currently underexplored. This state-of-the-art review thus mainly focuses on the research published within the past three years and aims to provide the most recent information on this research area; hopefully, it could be complementary to the previously reported reviews and give new insights into the future development on RNA-specific small molecule ligands for live cell imaging and drug discovery.
Collapse
Affiliation(s)
- Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Yakun Wang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
| | - Xinxin Feng
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
8
|
Çapan İ, Hawash M, Jaradat N, Sert Y, Servi R, Koca İ. Design, synthesis, molecular docking and biological evaluation of new carbazole derivatives as anticancer, and antioxidant agents. BMC Chem 2023; 17:60. [PMID: 37328860 DOI: 10.1186/s13065-023-00961-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND The carbazole skeleton is an important structural motif occurring naturally or synthesized chemically and has antihistaminic, antioxidant, antitumor, antimicrobial, and anti-inflammatory activities. OBJECTIVES This study aimed to design and synthesize a novel series of carbazole derivatives and evaluate their antiproliferative and antioxidant activities. METHODS The synthesized compounds were characterized utilizing HRMS, 1H-, and 13CAPT-NMR, and assessed for their anticancer, antifibrotic, and antioxidant effects utilizing reference biomedical procedures. In addition, the AutoDock Vina application was used to perform in-silico docking computations. RESULTS A series of carbazole derivatives were synthesized and characterized in the current study. Compounds 10 and 11 were found to have a stronger antiproliferative effect than compounds 2-5 against HepG2, HeLa, and MCF7 cancer cell lines with IC50 values of 7.68, 10.09, and 6.44 µM, respectively. Moreover, compound 9 showed potent antiproliferative activity against HeLa cancer cell lines with an IC50 value of 7.59 µM. However, except for compound 5, all of the synthesized compounds showed moderate antiproliferative activities against CaCo-2 with IC50 values in the range of 43.7-187.23 µM. All of these values were compared with the positive control anticancer drug 5-Fluorouracil (5-FU). In addition, compound 9 showed the most potent anti-fibrotic compound, and the cellular viability of LX-2 was found 57.96% at 1 µM concentration in comparison with the positive control 5-FU. Moreover, 4 and 9 compounds showed potent antioxidant activities with IC50 values of 1.05 ± 0.77 and 5.15 ± 1.01 µM, respectively. CONCLUSION Most of the synthesized carbazole derivatives showed promising antiproliferative, antioxidant, and antifibrotic biological effects, and further in-vivo investigations are needed to approve or disapprove these results.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Material and Material Processing Technologies, Gazi University, Technical Sciences Vocational College, 06560, Ankara, Turkey.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, 00970, Nablus, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, 00970, Nablus, Palestine
| | - Yusuf Sert
- Yozgat Bozok University, Sorgun Vocational School, Yozgat, Turkey
| | - Refik Servi
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
9
|
Saini R, Kumari S, Bhatnagar A, Singh A, Mishra A. Discovery of the allosteric inhibitor from actinomyces metabolites to target EGFR CSTMLR mutant protein: molecular modeling and free energy approach. Sci Rep 2023; 13:8885. [PMID: 37264083 DOI: 10.1038/s41598-023-33065-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 04/06/2023] [Indexed: 06/03/2023] Open
Abstract
EGFR (epidermal growth factor receptor), a surface protein on the cell, belongs to the tyrosine kinase family, responsible for cell growth and proliferation. Overexpression or mutation in the EGFR gene leads to various types of cancer, i.e., non-small cell lung cancer, breast, and pancreatic cancer. Bioactive molecules identified in this genre were also an essential source of encouragement for researchers who accomplished the design and synthesis of novel compounds with anticancer properties. World Health Organization (WHO) report states that antibiotic resistance is one of the most severe risks to global well-being, food safety, and development. The world needs to take steps to lessen this danger, such as developing new antibiotics and regulating their use. In this study, 6524 compounds derived from Streptomyces sp. were subjected to drug-likeness filters, molecular docking, and molecular dynamic simulation for 1000 ns to find new triple mutant EGFRCSTMLR (EGFR-L858R/T790M/C797S) inhibitors. Docking outcomes revealed that five compounds showed better binding affinity (- 9.074 to - 9.3 kcal/mol) than both reference drug CH7233163 (- 6.11 kcal/mol) and co-crystallized ligand Osimertinib (- 8.07 kcal/mol). Further, molecular dynamic simulation confirmed that ligand C_42 exhibited the best interaction at the active site of EGFR protein and comprised a better average radius of gyration (3.87 Å) and average SASA (Solvent Accessible Surface Area) (82.91 Å2) value than co-crystallized ligand (4.49 Å, 222.38 Å2). Additionally, its average RMSD (Root Mean Square Deviation) (3.25 Å) and RMSF (Root Mean Square Fluctuation) (1.54 Å) values were highly similar to co-crystallized ligand (3.07 Å, 1.54 Å). Compared to the reference ligand, it also demonstrated conserved H-bond interactions with the residues MET_793 and GLN_791 with strong interaction probability. In conclusion, we have found a potential drug with no violation of the rule of three, Lipinski's rule of five, and 26 other vital parameters having great potential in medicinal and pharmaceutical industries applications and can overcome synthetic drug issues.
Collapse
Affiliation(s)
- Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Sonali Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Aditi Bhatnagar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
10
|
Xu P, Yuan L, Wang K, Pan B, Ye Y, Lu K. Interaction of bifunctional peptide-carbazole complexes with DNA and antimicrobial activity. Int J Biol Macromol 2023; 237:124070. [PMID: 36940762 DOI: 10.1016/j.ijbiomac.2023.124070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/24/2023] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Two peptide-carbazole conjugates, CTAT and CNLS, were designed and synthesized using carbazole Schiff base to modify the cell membrane penetrating peptide TAT (47-57) and the nuclear localization peptide NLS at the N terminus. The interaction with ctDNA was investigated by multispectral and agarose gel electrophoresis. And the effects of CNLS and CTAT on the G-quadruplex structure were explored by circular dichroism titration experiments. The results show that both CTAT and CNLS interact with ctDNA in a minor groove binding manner. Both conjugates bind more tightly to DNA than the individual substances CIBA, TAT and NLS. In addition, CTAT and CNLS are capable of unfolding parallel G-quadruplex structures and are potential G-quadruplex unfolding agents. Finally, broth microdilution was performed to test the antimicrobial activity of the peptides. The results showed that CTAT and CNLS had a 4-fold increase in antimicrobial activity compared with the parent peptides TAT and NLS. They could exert antimicrobial activity by disrupting the integrity of cell membrane bilayer and binding to DNA, and could be used as novel antimicrobial peptides for the development of novel antimicrobial antibiotics.
Collapse
Affiliation(s)
- Ping Xu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Libo Yuan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ke Wang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Boyuan Pan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yong Ye
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kui Lu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China.
| |
Collapse
|
11
|
Alexander A, Sumohan Pillai A, Sri Varalakshmi G, Ananthi N, Pal H, V. M. V. Enoch I, Sayed M. G-Quadruplex binding affinity variation on molecular encapsulation of ligands by porphyrin-tethered cyclodextrin. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Li ML, Yuan JM, Yuan H, Wu BH, Huang SL, Li QJ, Ou TM, Wang HG, Tan JH, Li D, Chen SB, Huang ZS. Design, Synthesis, and Evaluation of New Sugar-Substituted Imidazole Derivatives as Selective c-MYC Transcription Repressors Targeting the Promoter G-Quadruplex. J Med Chem 2022; 65:12675-12700. [PMID: 36121464 DOI: 10.1021/acs.jmedchem.2c00467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
c-MYC is a key driver of tumorigenesis. Repressing the transcription of c-MYC by stabilizing the G-quadruplex (G4) structure with small molecules is a potential strategy for cancer therapy. Herein, we designed and synthesized 49 new derivatives by introducing carbohydrates to our previously developed c-MYC G4 ligand 1. Among these compounds, 19a coupled with a d-glucose 1,2-orthoester displayed better c-MYC G4 binding, stabilization, and protein binding disruption abilities than 1. Our further evaluation indicated that 19a blocked c-MYC transcription by targeting the promoter G4, leading to c-MYC-dependent cancer cell death in triple-negative breast cancer cell MDA-MB-231. Also, 19a significantly inhibited tumor growth in the MDA-MB-231 mouse xenograft model accompanied by c-MYC downregulation. Notably, the safety of 19a was dramatically improved compared to 1. Our findings indicated that 19a could become a promising anticancer candidate, which suggested that introducing carbohydrates to improve the G4-targeting and antitumor activity is a feasible option.
Collapse
Affiliation(s)
- Mao-Lin Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing-Mei Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Bi-Han Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Gen Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ding Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Wang M, Zhang F, Luo Y, Shuo L, Wang MQ. DPA-Substituted Carbazole Derivative as a Fluorescent Ligand for G4 DNA. Chem Biodivers 2022; 19:e202200061. [PMID: 35762741 DOI: 10.1002/cbdv.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/17/2022] [Indexed: 11/07/2022]
Abstract
Herein a conjugated dipicolylamine/carbazole (Car-DPA) molecule was designed and synthesized to enhance the performance for the application as a G4 fluorescent ligand. This ligand has been found to display distinct and specific fluorescence enhancements in the presence of various G4 DNA structures, but limited with ssDNA or dsDNAs. The detail binding characteristics of the ligand with c-MYC G4 DNA were investigated by fluorescence, UV/VIS absorption, CD spectroscopy, and molecular docking. The present study demonstrated that Car-DPA bound to c-MYC G4s with a two-step complex formation, in which the binding mode appeared to be end-stacking. Confocal fluorescence images indicated that ligand Car-DPA could locate in nucleus, which is quite prominent from the cellular internalization studies.
Collapse
Affiliation(s)
- Ming Wang
- College of Mechanical Engineering and Automation, Shandong Institute of Petrochemical Technology, Dongying, 257001, P. R. China
| | - Feng Zhang
- College of Mechanic and Electronic Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.,Shengli Oil Field Petroleum Engineering Technology Research Institute Sinopec, Dongying, 257000, P. R. China
| | - Yang Luo
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Li Shuo
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Ming-Qi Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
14
|
Indole-Based Tubulin Inhibitors: Binding Modes and SARs Investigations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051587. [PMID: 35268688 PMCID: PMC8911766 DOI: 10.3390/molecules27051587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Tubulin inhibitors can interfere with normal cell mitosis and inhibit cell proliferation through interfering with the normal structure and function of microtubules, forming spindle filaments. Indole, as a privileged pharmacological skeleton, has been widely used in anti-cancer inhibitors. A variety of alkaloids containing an indole core obtained from natural sources have been proven to inhibit tubulin polymerization, and an ever-increasing number of synthetic indole-based tubulin inhibitors have been reported. Among these, several kinds of indole-based derivatives, such as TMP analogues, aroylindoles, arylthioindoles, fused indole, carbazoles, azacarbolines, alkaloid nortopsentin analogues and bis-indole derivatives, have shown good inhibition activities towards tubulin polymerization. The binding modes and SARs investigations of synthetic indole derivatives, along with a brief mechanism on their anti-tubulin activity, are presented in this review.
Collapse
|
15
|
Kang Y, Wei C. Crescent‐shaped carbazole derivatives as light‐up fluorescence probes for G‐quadruplex DNA and live cell imaging. Chem Biodivers 2022; 19:e202101030. [DOI: 10.1002/cbdv.202101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yongqiang Kang
- Shanxi University Institute of Molecular Science 92 Wucheng Road Taiyuan CHINA
| | - Chunying Wei
- Shanxi University Institute of Molecular Science No.92 Road Wucheng 030006 Taiyuan CHINA
| |
Collapse
|
16
|
Müller D, Saha P, Panda D, Dash J, Schwalbe H. Insights from Binding on Quadruplex Selective Carbazole Ligands. Chemistry 2021; 27:12726-12736. [PMID: 34138492 PMCID: PMC8518889 DOI: 10.1002/chem.202101866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 01/11/2023]
Abstract
Polymorphic G-quadruplex (G4) secondary DNA structures have received increasing attention in medicinal chemistry owing to their key involvement in the regulation of the maintenance of genomic stability, telomere length homeostasis and transcription of important proto-oncogenes. Different classes of G4 ligands have been developed for the potential treatment of several human diseases. Among them, the carbazole scaffold with appropriate side chain appendages has attracted much interest for designing G4 ligands. Because of its large and rigid π-conjugation system and ease of functionalization at three different positions, a variety of carbazole derivatives have been synthesized from various natural or synthetic sources for potential applications in G4-based therapeutics and biosensors. Herein, we provide an updated close-up of the literatures on carbazole-based G4 ligands with particular focus given on their detailed binding insights studied by NMR spectroscopy. The structure-activity relationships and the opportunities and challenges of their potential applications as biosensors and therapeutics are also discussed. This review will provide an overall picture of carbazole ligands with remarkable G4 topological preference, fluorescence properties and significant bioactivity; portraying carbazole as a very promising scaffold for assembling G4 ligands with a range of novel functional applications.
Collapse
Affiliation(s)
- Diana Müller
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 7Frankfurt am Main60438Germany
| | - Puja Saha
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Deepanjan Panda
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Jyotirmayee Dash
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 7Frankfurt am Main60438Germany
| |
Collapse
|