1
|
Wang Y, Du C, Cheng Z, Ge S, Feng Z, Wan L, Hu Y, Ma X, Su Z, Lu P. Rational Molecular Design of Phenanthroimidazole-Based Fluorescent Materials toward High-Efficiency Deep-Blue OLEDs by Molecular Isomer Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51201-51211. [PMID: 39279143 DOI: 10.1021/acsami.4c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Organic light-emitting diodes (OLEDs) have been extensively investigated in full-color displays and energy-saving lighting owing to their unique advantages. However, deep-blue OLEDs based on nondoped emitting layers with a satisfactory external quantum efficiency (EQE) are still rare for applications. In this work, six hot exciton materials, PPIM-12F, PPIM-22F, PPIM-13F, PPIM-23F, PPIM-1CN, and PPIM-2CN, are designed and synthesized via an isomer engineering design strategy and their photophysical properties and OLED performance are systematically investigated. These emitters all possess wide band gaps (3.53-3.69 eV), hybrid local and charge transfer (HLCT) characteristics, and good thermal stabilities. The C2 series compounds, PPIM-22F, PPIM-23F, and PPIM-2CN, all show redder emission peaks than the N1 series counterparts of PPIM-12F, PPIM-13F, and PPIM-1CN. In addition, the LUMO energy levels decrease consecutively in the sequence of PPIM-22F < PPIM-23F < PPIM-2CN and are all lower than their respective N1 series position isomers of PPIM-12F, PPIM-13F, and PPIM-1CN. The CV measurements indicate that such a design strategy renders the fine-tuning of LUMO energy levels, and the incorporation of electron acceptors at the extended C2 position of the PI unit is a better choice to improve the electron injection ability. Theoretical simulations indicate that they may harvest the triplet exciton through an upper-level reverse intersystem crossing process, which decreases the gathering of triplet excitons and allows the OLEDs to be fabricated by nondoping technology. Among them, PPIM-22F with a difluorobenzene substituent at the C2 position manifests the best performance in OLEDs, which exhibits the maximum EQE of 7.87% and Commission Internationale de ĺEclairage (CIE) coordinates of (0.16, 0.10). This work demonstrates an effective strategy for considerable improvement in device performance by a subtle change in the molecular structure through isomer engineering.
Collapse
Affiliation(s)
- Yaxue Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Chunya Du
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Zhuang Cheng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Shuyuan Ge
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Zijun Feng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Liang Wan
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Yin Hu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Xiaobo Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Zihan Su
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Ping Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Xiong W, Zhang C, Fang Y, Peng M, Sun W. Progresses and Perspectives of Near-Infrared Emission Materials with "Heavy Metal-Free" Organic Compounds for Electroluminescence. Polymers (Basel) 2022; 15:98. [PMID: 36616447 PMCID: PMC9823557 DOI: 10.3390/polym15010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Organic/polymer light-emitting diodes (OLEDs/PLEDs) have attracted a rising number of investigations due to their promising applications for high-resolution fullcolor displays and energy-saving solid-state lightings. Near-infrared (NIR) emitting dyes have gained increasing attention for their potential applications in electroluminescence and optical imaging in optical tele-communication platforms, sensing and medical diagnosis in recent decades. And a growing number of people focus on the "heavy metal-free" NIR electroluminescent materials to gain more design freedom with cost advantage. This review presents recent progresses in conjugated polymers and organic molecules for OLEDs/PLEDs according to their different luminous mechanism and constructing systems. The relationships between the organic fluorophores structures and electroluminescence properties are the main focus of this review. Finally, the approaches to enhance the performance of NIR OLEDs/PLEDs are described briefly. We hope that this review could provide a new perspective for NIR materials and inspire breakthroughs in fundamental research and applications.
Collapse
Affiliation(s)
- Wenjing Xiong
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Cheng Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuanyuan Fang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Mingsheng Peng
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|