1
|
Sugahara T, Hashizume D, Espinosa Ferao A, Masada K, Tokitoh N, Sasamori T. Experimental and Theoretical Characterization of 4π-Electron Möbius Aromatic System of a 1,2-Digermacyclobutadiene †. Angew Chem Int Ed Engl 2025; 64:e202413426. [PMID: 39235154 DOI: 10.1002/anie.202413426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/06/2024]
Abstract
We present the visualization of the experimental valence electron-density distribution (EDD) in the isolated 1,2-digermacyclobutadiene ring system, revealing the unique 4π electron-delocalization on the four-membered Ge2C2 ring. A remarkably high Möbius 4π-electron aromatic character in the Ge2C2 ring can be suggested from theoretical calculations, in sharp contrast to the significant antiaromaticity of the all-carbon cyclobutadiene ring.
Collapse
Affiliation(s)
- Tomohiro Sugahara
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Arturo Espinosa Ferao
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia Campus de Espinardo, 30100, Murcia, Spain
| | - Koichiro Masada
- Division of Chemistry, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takahiro Sasamori
- Division of Chemistry, Institute of Pure and Applied Sciences, and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
2
|
Jiang Q, Tang H, Peng Y, Hu Z, Zeng W. Helical polycyclic hydrocarbons with open-shell singlet ground states and ambipolar redox behaviors. Chem Sci 2024; 15:10519-10528. [PMID: 38994409 PMCID: PMC11234857 DOI: 10.1039/d4sc02116a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Organic π-conjugated polycyclic hydrocarbons (PHs) with an open-shell diradical character are attracting increasing interest due to their promising applications in organic electronics and spintronics. However, most of the open-shell PHs synthesized thus far are based on planar π-conjugated molecules. Herein, we report the synthesis and characterization of two new quinodimethane-embedded expanded helicenes H1 and H2. The helical structures of both molecules were revealed using X-ray crystallographic analysis. It was elucidated in detailed experimental and theoretical studies that they possess an open-shell singlet biradical structure in the ground state and show a small energy gap and amphoteric redox behavior. Both compounds can also be easily oxidized or reduced into relatively stable charged species. The dianions of H1 and H2 exhibit similar electronic structures to the respective isoelectronic structures of their all-benzenoid helical analogues according to NMR measurements and theoretical calculations. Moreover, the structures of the dication and dianion of H2 were identified by X-ray crystallographic analysis, revealing the effect of electron transfer on their backbones and aromaticity. This study thus opens up new avenues for both helical polycyclic π-systems and diradicaloids.
Collapse
Affiliation(s)
- Qing Jiang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Hui Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Yuchen Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Zhenni Hu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Wangdong Zeng
- School of Materials Science and Engineering, Hunan University of Science and Technology Xiangtan 411201 China
| |
Collapse
|
3
|
Yu X, Wu P, Yuan Q, Yan C, Li D, Cheng L. Unraveling the Aromatic Rule of Cyclic Superatomic Molecules in π-Conjugated Compounds. J Phys Chem A 2023; 127:7487-7495. [PMID: 37669444 DOI: 10.1021/acs.jpca.3c03872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The aromaticity of π-conjugated compounds has long been a confusing issue. Based on a recently emerged two-dimensional (2D) superatomic-molecule theory, a unified rule was built to decipher the aromaticity of cyclic superatomic molecules of π-conjugated compounds from the chemical bonding perspective. Herein, a series of planar [n]helicenes and [n]circulenes, composed of benzene, thiophene, or furfuran, are systemically studied and seen as superatomic molecules ◊On-2◊F2 or ◊On, where superatoms ◊F and ◊O denote π-conjugated units with 5 and 4 π electrons, respectively. The ascertained superatomic Lewis structures intuitively display aromaticity with each basic unit meeting the superatomic sextet rule of benzene, similar to classical valence bond theory, which is favored by the synthesized complex π-conjugated compounds comprising different numbers and kinds of subrings. The evolutionary trend of ring currents and chemical bonding suggests a local ribbon-like aromaticity in these π-conjugated compounds. Moreover, nonplanar helical π-conjugated compounds have the potential to evolve into spring-like periodic materials with excellent physical properties.
Collapse
Affiliation(s)
- Xinlei Yu
- Department of Chemistry, Anhui University, Hefei 230601, China
| | - Panpan Wu
- Department of Chemistry, Anhui University, Hefei 230601, China
| | - Qinqin Yuan
- Department of Chemistry, Anhui University, Hefei 230601, China
| | - Chen Yan
- Department of Chemistry, Anhui University, Hefei 230601, China
| | - Dan Li
- Department of Chemistry, Anhui University, Hefei 230601, China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, Hefei 230601, China
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
4
|
Merino G, Solà M, Fernández I, Foroutan-Nejad C, Lazzeretti P, Frenking G, Anderson HL, Sundholm D, Cossío FP, Petrukhina MA, Wu J, Wu JI, Restrepo A. Aromaticity: Quo Vadis. Chem Sci 2023; 14:5569-5576. [PMID: 37265727 PMCID: PMC10231312 DOI: 10.1039/d2sc04998h] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/22/2023] [Indexed: 07/25/2023] Open
Abstract
Aromaticity is one of the most deeply rooted concepts in chemistry. But why, if two-thirds of existing compounds can be classified as aromatic, is there no consensus on what aromaticity is? σ-, π-, δ-, spherical, Möbius, or all-metal aromaticity… why are so many attributes needed to specify a property? Is aromaticity a dubious concept? This perspective aims to reflect where the aromaticity community is and where it is going.
Collapse
Affiliation(s)
- Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados Unidad Mérida, km 6 Antigua Carretera a Progreso, Apdo. Postal 73, Cordemex 97310 Mérida Yucatán Mexico
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Department de Química, Universitat de Girona C/M. Aurèlia Capmany, 69 Girona 17003 Catalonia Spain
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Paolo Lazzeretti
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno via Giovanni Paolo II 132, Fisciano 84084 SA Italy
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4, D-35043 Marburg Germany
| | | | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki P.O. Box 55, A. I. Virtasen aukio 1 FIN-00014 Helsinki Finland
| | - Fernando P Cossío
- Departamento de Química Orgánica I, Instituto de Innovaciónen Química Avanzada (ORFEO-CINQA), University of the Basque Country (UPV/EHU) Paseo Manuel Lardizabal 3 20018 Donostia/San Sebastián Spain
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York Albany New York 12222 USA
| | - Jishan Wu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Judy I Wu
- Department of Chemistry, University of Houston Houston Texas 77204 USA
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia Calle 70 No. 52-21 050010 Medellín Colombia
| |
Collapse
|
5
|
Lin L, Zhu J. Antiaromaticity-Promoted Radical Anion stability in α-vinyl Heterocyclics. Org Chem Front 2022. [DOI: 10.1039/d1qo01944a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an electron-rich species, radical anions have a wide range of applications in organic synthesis. In addition, aromaticity is an essential concept in chemistry that has attracted considerable attention from...
Collapse
|
6
|
Mauksch M, Tsogoeva SB. Disclosure of Ground-State Zimmerman-Möbius Aromaticity in the Radical Anion of [6]Helicene and Evidence for 4π Periodic Aromatic Ring Currents in a Molecular "Metallic" Möbius Strip. Chemistry 2021; 27:14660-14671. [PMID: 34375466 PMCID: PMC8596793 DOI: 10.1002/chem.202102230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 12/19/2022]
Abstract
In 1966, Zimmerman proposed a type of Möbius aromaticity that involves through-space electron delocalization; it has since been widely applied to explain reactivity in pericyclic reactions, but is considered to be limited to transition-state structures. Although the easily accessible hexahelicene radical anion has been known for more than half a century, it was overlooked that it exhibits a ground-state minimum and robust Zimmerman-Möbius aromaticity in its central noose-like opening, becoming, hence, the oldest existing Möbius aromatic system and with smallest Möbius cycle known. Despite its overall aromatic stabilization energy of 13.6 kcal mol-1 (at B3LYP/6-311+G**), the radical also features a strong, globally induced paramagnetic ring current along its outer edge. Exclusive global paramagnetic currents can also be found in other fully delocalized radical anions of 4N+2 π-electron aromatic polycyclic benzenoid hydrocarbons (PAH), thus questioning the established magnetic criterion of antiaromaticity. As an example of a PAH with nontrivial topology, we studied a novel Möbius[16]cyclacene that has a non-orientable surface manifold and a stable closed-shell singlet ground state at several density functional theory levels. Its metallic monoanion radical (0.0095 eV band gap at HSE06/6-31G* level) is also wave-function stable and displays an unusual 4π-periodic, magnetically induced ring current (reminiscent of the transformation behaviour of spinors under spatial rotation), thus indicating the existence of a new, Hückel-rule-evading type of aromaticity.
Collapse
Affiliation(s)
- Michael Mauksch
- Department of Chemistry and PharmacyInstitute of Theoretical ChemistryComputer Chemistry CenterFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nägelsbachstrasse 25a91052ErlangenGermany
| | - Svetlana B. Tsogoeva
- Department of Chemistry and PharmacyOrganic Chemistry Chair I andInterdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebinger Str. 1091058ErlangenGermany
| |
Collapse
|