1
|
Kaboudin B, Behroozi M, Sadighi S, Asgharzadeh F. Recent advances in the electrochemical synthesis of organophosphorus compounds. Beilstein J Org Chem 2025; 21:770-797. [PMID: 40276283 PMCID: PMC12018900 DOI: 10.3762/bjoc.21.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
In this review, we describe recent advances in electrochemical green methods for the synthesis of various organophosphorus compounds through the formation of phosphorus-carbon, phosphorus-nitrogen, phosphorus-oxygen, phosphorus-sulfur, and phosphorus-selenium bonds. The impact of different electrodes is also discussed in this matter. Graphite, platinum, RVC, and nickel electrodes have been used extensively for the electrochemical synthesis of organophosphorus compounds. The recent advances in the electrochemical synthesis of organophosphorus compounds have made this method a promising method for preparing various structures. This review is an introduction to encourage scientists to use electrosynthesis as a green, precise, and low-cost method to prepare phosphorous structures.
Collapse
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Milad Behroozi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Sepideh Sadighi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Fatemeh Asgharzadeh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| |
Collapse
|
2
|
Sun R, Hu F, Jiang H, Du W, Zhang C, Chang T, Zhou Y, Wu P, Li D, Weng Y. Electrochemical-induced phosphorylation of arenols and tyrosine containing oligopeptides. iScience 2024; 27:110487. [PMID: 39314241 PMCID: PMC11418147 DOI: 10.1016/j.isci.2024.110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024] Open
Abstract
A disclosed technique employs electrochemical dehydrogenative cross-coupling to create organophosphates, utilizing phosphites compounds with arenols. Inorganic iodide salts serve dual roles as redox catalysts and electrolytes in an undivided cell, omitting the need for external oxidants or bases. Initial mechanistic investigations indicate the reaction unfolds via an electro-oxidative radical pathway, facilitating the formation of P-O bonds, leading to the generation of oxygen radicals in the formation of acetylaminophenol. This environmentally friendly approach offers excellent tolerance to various functional groups, achieves high yields (up to 95% isolated yield), and accommodates a wide range of substrates, showcasing its utility for practical synthesis applications.
Collapse
Affiliation(s)
- Rong Sun
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Fan Hu
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Haoyang Jiang
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Wenbin Du
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Chaochao Zhang
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Tianhao Chang
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| | - Yuling Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Dingyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, P.R. China
| | - Yue Weng
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, P.R. China
| |
Collapse
|
3
|
Wang H, Xu L, Liu X, Shi Y, Yao Z, Zhou Y, Huang Q. NaIO 4/air-initiated phosphorylation of alcohols with H-phosphine oxides for the construction of P(O)-O bonds in water. Org Biomol Chem 2024; 22:7518-7523. [PMID: 39189981 DOI: 10.1039/d4ob01244e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A facile and efficient protocol for P(O)-O bond formation was discovered through NaIO4/air-initiated phosphorylation of alcohols with H-phosphine oxides in water. This reaction showed good functional group tolerance and a broad substrate scope, providing an alternative method for constructing P(O)-O bonds. Mechanistic studies suggested that a phosphoryl radical-involving process from H-phosphine oxides facilitated the phosphorylation of alcohols under air.
Collapse
Affiliation(s)
- Huabin Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Lianhua Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Xiongwei Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Zhen Yao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Qiang Huang
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| |
Collapse
|
4
|
Bieniek J, Nater DF, Eberwein SL, Schollmeyer D, Klein M, Waldvogel SR. Efficient and Sustainable Electrosynthesis of N-Sulfonyl Iminophosphoranes by the Dehydrogenative P-N Coupling Reaction. JACS AU 2024; 4:2188-2196. [PMID: 38938819 PMCID: PMC11200248 DOI: 10.1021/jacsau.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 06/29/2024]
Abstract
Iminophosphoranes are commonly used reagents in organic synthesis and are, therefore, of great interest. An efficient and sustainable iodide-mediated electrochemical synthesis of N-sulfonyl iminophosphoranes from readily available phosphines and sulfonamides is reported. This method features low amounts of supporting electrolytes, inexpensive electrode materials, a simple galvanostatic setup, and high conversion rates. The broad applicability could be demonstrated by synthesizing 20 examples in yields up to 90%, having diverse functional groups including chiral moieties and biologically relevant species. Furthermore, electrolysis was performed on a 20 g scale and could be run in repetitive mode by recycling the electrolyte, which illustrates the suitability for large-scale production. A reaction mechanism involving electrochemical mediation by the iodide-based supporting electrolyte is proposed, completely agreeing with all of the results.
Collapse
Affiliation(s)
- Jessica
C. Bieniek
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
| | - Darryl F. Nater
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34–36, 45470 Mülheim an der Ruhr, Germany
| | - Sara L. Eberwein
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
| | - Dieter Schollmeyer
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
| | - Martin Klein
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
- Institute
of Biological and Chemical Systems—Functional Molecular Systems
(IBCS-FMS), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34–36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Zhang L, Wang Z, Song Z. Synthesis of Benzo[ a]carbazoles and Dibenzo[ c, g]carbazoles via Sequential Gold Catalysis and Photomediated Cyclization. J Org Chem 2024; 89:8888-8895. [PMID: 38818883 DOI: 10.1021/acs.joc.4c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Herein, we report a reaction protocol for the construction of benzo[a]carbazole and dibenzo[c,g]carbazole frameworks. The detailed gold catalytic reaction conditions developed for the challenging intermolecular carbon nucleophilic addition to internal alkynes are realized, giving the desired alkyne hydroarylation products in good yields. The resulting trisubstituted alkenes are able to undergo photomediated cyclization, furnishing the desired carbazole molecules with excellent yields and high efficiency.
Collapse
Affiliation(s)
- Lijun Zhang
- College of Chemistry, Jilin University, Changchun 130012, Jilin, P. R. China
| | - Zhuo Wang
- College of Chemistry, Jilin University, Changchun 130012, Jilin, P. R. China
| | - Zhiguang Song
- College of Chemistry, Jilin University, Changchun 130012, Jilin, P. R. China
| |
Collapse
|
6
|
Tang J, Li Z, Meng Q, Liu L, Huang T, Li C, Li Q, Chen T. CuH-Catalyzed Reductive Coupling of Nitroarenes with Phosphine Oxides for the Direct Synthesis of Phosphamides. J Org Chem 2024. [PMID: 38809686 DOI: 10.1021/acs.joc.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A CuH-catalyzed reductive coupling of nitroarenes with phosphine oxides is developed, which produces a series of phosphamides in moderate to excellent yields with good functional group tolerance. Gram-scale synthesis and late-stage modification of nitro-aromatic functional molecule niclosamide are also successfully conducted. The mechanism study shows that the nitro group is transformed after being reduced to nitroso and a nucleophilic addition procedure is involved during the reaction.
Collapse
Affiliation(s)
- Jie Tang
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Zhiyou Li
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Qi Meng
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Long Liu
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Tianzeng Huang
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Chunya Li
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252000, China
| | - Tieqiao Chen
- Hainan Provincial Key Laboratory of Fine Chemical, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
7
|
Li S, Fang L, Dou Q, Wang T, Cheng B. Recent advances in phosphorylation of hetero-nucleophilic reagents via P–H bond cleavage. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
Qin G, Wang R, Cheng Z, Zhang Y, Wang B, Xia Y, Jin W, Liu C. Electrooxidative trifunctionalization of alkenes with N-chlorosuccinimide and ArSSAr/ArSH to α,β-dichloride arylsulfoxides. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
9
|
Chen J, Zhang R, Ma C, Zhang P, Zhang Y, Wang B, Xue F, Jin W, Xia Y, Liu C. Sustainable electrochemical dearomatization for the synthesis of diverse 2, 3-functionalized indolines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
10
|
Yang JM, Yao ML, Li JC, Liu JK, Wu B. Access to Azepino-Annulated Benzo[ c]carbazoles Enabled by Gold-Catalyzed Hydroarylation of Alkynylindoles and Subsequent Oxidative Cyclization. Org Lett 2022; 24:6505-6509. [PMID: 36047768 DOI: 10.1021/acs.orglett.2c02293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report a facile and efficient synthetic method to construct azepino[1,2-a]indoles through a novel gold(I)-catalyzed intramolecular hydroarylation of alkynylindoles. A wide range of functional groups can be well tolerated in this transformation, and the corresponding highly functionalized azepino[1,2-a]indole skeletons were obtained in moderate to excellent yields. Subsequent oxidation of the products gave the interesting and valuable polycyclic carbazoles, which were widely used as the key building blocks in materials science.
Collapse
Affiliation(s)
- Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Meng-Lian Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Jun-Chi Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China
| |
Collapse
|
11
|
Yuan Y, Liu X, Hu J, Wang P, Wang S, Alhumade H, Lei A. Electrochemical oxidative N-H/P-H cross-coupling with H 2 evolution towards the synthesis of tertiary phosphines. Chem Sci 2022; 13:3002-3008. [PMID: 35382477 PMCID: PMC8905962 DOI: 10.1039/d1sc07248j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/11/2022] [Indexed: 11/21/2022] Open
Abstract
Tertiary phosphines(iii) find widespread use in many aspects of synthetic organic chemistry. Herein, we developed a facile and novel electrochemical oxidative N-H/P-H cross-coupling method, leading to a series of expected tertiary phosphines(iii) under mild conditions with excellent yields. It is worth noting that this electrochemical protocol features very good reaction selectivity, where only a 1 : 1 ratio of amine and phosphine was required in the reaction. Moreover, this electrochemical protocol proved to be practical and scalable. Mechanistic insights suggested that the P radical was involved in this reaction.
Collapse
Affiliation(s)
- Yong Yuan
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
- College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 China
| | - Xue Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jingcheng Hu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Pengjie Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
- King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
12
|
Ju ZY, Song LN, Chong MB, Cheng DG, Hou Y, Zhang XM, Zhang QH, Ren LH. Selective Aerobic Oxidation of C sp3-H Bonds Catalyzed by Yeast-Derived Nitrogen, Phosphorus, and Oxygen Codoped Carbon Materials. J Org Chem 2022; 87:3978-3988. [PMID: 35254832 DOI: 10.1021/acs.joc.1c02641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitrogen, phosphorus, and oxygen codoped carbon catalysts were successfully synthesized using dried yeast powder as a pyrolysis precursor. The yeast-derived heteroatom-doped carbon (yeast@C) catalysts exhibited outstanding performance in the oxidation of Csp3-H bonds to ketones and esters, giving excellent product yields (of up to 98% yield) without organic solvents at low O2 pressure (0.1 MPa). The catalytic oxidation protocol exhibited a broad range of substrates (38 examples) with good functional group tolerance, excellent regioselectivity, and synthetic utility. The yeast-derived heteroatom-doped carbon catalysts showed good reusability and stability after recycling six times without any significant loss of activity. Experimental results and DFT calculations proved the important role of N-oxide (N+-O-) on the surface of yeast@C and a reasonable carbon radical mechanism.
Collapse
Affiliation(s)
- Zhao-Yang Ju
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Li-Na Song
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Ming-Ben Chong
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| | - Dang-Guo Cheng
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Xi-Ming Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Qing-Hua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Lan-Hui Ren
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| |
Collapse
|
13
|
Zhaoxin W, Renjie W, Yonghong Z, Bin W, Yu X, Weiwei J, Chenjiang L. Electrochemical Synthesis of N-Acyl/Sulfonylsulfenamides Using Potassium Iodide as Mediator. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Wang R, Sun P, Jin W, Zhang Y, Wang B, Xia Y, Xue F, Abdukader A, Liu C. Efficient and eco-friendly oxidative cleavage C–C bonds of 1,2-diols to ketones: electrochemistry vs thermochemistry. Org Chem Front 2022. [DOI: 10.1039/d2qo00221c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two efficient methods for the oxidative cleavage C–C single bonds of vicinal tertiary diols by electrochemical and thermochemical strategies have been independently developed. The corresponding ketone products are smoothly assembled...
Collapse
|
15
|
Zhao B, Yang L, Cheng K, Zhou L, Wan JP. Visible Light Induced Oxidation of α-Diazo Esters for the Transition Metal-Free Synthesis of α-Keto Esters. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202111020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|