1
|
Masuda R, Yano T, Kusama H. Selenoamides with two reactive sites: synthesis, structures, and dual reactivity of (selenocarbamoyl)phosphines. Chem Commun (Camb) 2025; 61:4955-4958. [PMID: 40059864 DOI: 10.1039/d5cc00607d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Selenoamides stabilized by a phosphino group, i.e., (selenocarbonyl)phosphines, were synthesized and their solid-state structures were crystallographically determined for the first time. These (selenocarbamoyl)phosphines exhibit dual reactivity on two principal sites in reactions with electrophiles, i.e., on the phosphorus and selenium atoms, whereby the site where the reaction occurs depends on the nature of the reagent.
Collapse
Affiliation(s)
- Ryosuke Masuda
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Japan.
| | - Tamaki Yano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Japan.
| | - Hiroyuki Kusama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Japan.
| |
Collapse
|
2
|
Zeppilli D, Pedergnana V, Filippi M, Orian L. The Role of Chalcogen in the ROS Scavenging Mechanism of Model Phenyl Compounds. Molecules 2025; 30:1408. [PMID: 40286063 PMCID: PMC11990681 DOI: 10.3390/molecules30071408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Phenolic compounds are important antioxidants with great ROS scavenging potential and the presence of the hydroxyl groups is fundamental for this chemical activity. Therefore, changing the chalcogen atom (oxygen) with any of its siblings of group 16 (sulfur, selenium and tellurium) may affect the reactivity of these compounds. In this work, the ROS scavenging activity and mechanism of phenyl chalcogenols was evaluated in silico, unravelling better performance with heavier chalcogens, both thermodynamically and kinetically. Furthermore, a scavenging mechanism switch is reported, moving from Concerted Proton Electron Transfer (CPET) in phenols to Hydrogen Atom Transfer (HAT) in the other phenyl chalcogenols. Both kinetic trends and mechanistic features are rationalized in the framework of Activation Strain Analysis (ASA). Lastly, the role of aromaticity is evidenced by analyzing the differences between the phenol/phenoxyl and methanol/methoxyl self-exchange reactions, as well as between the corresponding processes with the other chalcogens.
Collapse
Affiliation(s)
| | | | | | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy; (D.Z.); (V.P.); (M.F.)
| |
Collapse
|
3
|
Nieuwland C, van Dam AN, Bickelhaupt FM, Fonseca Guerra C. Urea hydrogen-bond donor strengths: bigger is not always better. Phys Chem Chem Phys 2025; 27:4099-4108. [PMID: 39660363 PMCID: PMC11632590 DOI: 10.1039/d4cp04042b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
The hydrogen-bond donor strength of ureas, widely used in hydrogen-bond donor catalysis, molecular recognition, and self-assembly, can be enhanced by increasing the size of the chalcogen X in the CX bond from O to S to Se and by introducing more electron-withdrawing substituents because both modifications increase the positive charge on the NH groups which become better hydrogen-bond donors. However, in 1,3-diaryl X-ureas, a steric mechanism disrupts the positive additivity of these two tuning factors, as revealed by our quantum-chemical analyses. This leads to an enhanced hydrogen-bond donor strength, despite a lower NH acidity, for 1,3-diaryl substituted O-ureas compared to the S- and Se-urea analogs. In addition, we provide a strategy to overcome this steric limitation using a predistorted urea-type hydrogen-bond donor featuring group 14 elements in the CX bond so that the hydrogen-bond donor strength of X-urea derivatives bearing two aryl substituents can be enhanced upon varying X down group 14.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Angelina N van Dam
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Queiroz MH, Santos SA, Sampaio BS, Alves TV, Rivelino R. A theoretical study of the photochemistry of 1,3-cyclopentadiene and its cyano derivatives bound to a water dimer: Assessing reactivity of ionized clusters and possible photoproducts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124637. [PMID: 38878722 DOI: 10.1016/j.saa.2024.124637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 07/08/2024]
Abstract
We theoretically investigate the photoionization scenarios of molecular complexes involving cyclopentadiene and cyanocyclopentadiene bound to water dimers. Using electronic structure calculations within density-functional theory (DFT) and time dependent DFT (TD-DFT), we explore the potential photochemical pathways following ionization, and determine the charge transfer excitations related to the possible subsequent reactions. Our findings suggest that the investigated photochemical pathways of the hydrated complexes take place in two well-defined ultraviolet regions: (i) 8.2-9.5 eV for the cyclic compounds and (ii) 11.2-11.4 eV for the bound water dimer. We quantify how H-bonding effects can influence the photoionization channels. Before forming possible photoproducts, we also examine the regiospecificity of OH addition to 1,3-cyclopentadiene and its cyano derivatives We analyze our results in light of photoionization studies of jet-cooled molecular complexes and possible implications in astrochemical environments.
Collapse
Affiliation(s)
- Murillo H Queiroz
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo 147, 40170-115 Salvador, Bahia, Brazil.
| | - Suelen A Santos
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo 147, 40170-115 Salvador, Bahia, Brazil
| | - Bruno S Sampaio
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo 147, 40170-115 Salvador, Bahia, Brazil
| | - Tiago V Alves
- Departamento de Físico-Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo 147, 40170-115 Salvador, Bahia, Brazil
| | - Roberto Rivelino
- Instituto de Física, Universidade Federal da Bahia, 40210-340 Salvador, Bahia, Brazil
| |
Collapse
|
5
|
Nagami S, Kaguchi R, Akahane T, Harabuchi Y, Taniguchi T, Monde K, Maeda S, Ichikawa S, Katsuyama A. Photoinduced dual bond rotation of a nitrogen-containing system realized by chalcogen substitution. Nat Chem 2024; 16:959-969. [PMID: 38418536 DOI: 10.1038/s41557-024-01461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Photoinduced concerted multiple-bond rotation has been proposed in some biological systems. However, the observation of such phenomena in synthetic systems, in other words, the synthesis of molecules that undergo photoinduced multiple-bond rotation upon photoirradiation, has been a challenge in the photochemistry field. Here we describe a chalcogen-substituted benzamide system that exhibits photoinduced dual bond rotation in heteroatom-containing bonds. Introduction of the chalcogen substituent into a sterically hindered benzamide system provides sufficient kinetic stability and photosensitivity to enable the photoinduced concerted rotation. The presence of two different substituents on the phenyl ring in the thioamide derivative enables the generation of a pair of enantiomers and E/Z isomers. Using these four stereoisomers as indicators of which bonds are rotated, we monitor the photoinduced C-N/C-C concerted bond rotation in the thioamide derivative depending on external stimuli such as temperature and photoirradiation. Theoretical calculations provide insight on the mechanism of this selective photoinduced C-N/C-C concerted rotation.
Collapse
Affiliation(s)
- Shotaro Nagami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Rintaro Kaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Taichi Akahane
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- JST, ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Sapporo, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Tohru Taniguchi
- Frontier Research Center of Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kenji Monde
- Frontier Research Center of Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- JST, ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Sapporo, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
6
|
Petelski AN, Peruchena NM, Zalazar MF. Acidity of Isomorphic Substituted Zeolites with B, Al and Ga Revisited. Chemphyschem 2024; 25:e202400080. [PMID: 38351426 DOI: 10.1002/cphc.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Isomorphic substitution of zeolites with B, Al and Ga is a widely used approach in catalysis. The experimentally reported trend of their acidities decreases in the order: Al>Ga>B. However, a consistent explanation is still lacking in the literature. To bring more understanding of this trend, density functional theory computations were conducted on several model systems. First, the acidity of small clusters with two (2T) and five (5T) tetrahedral sites was analyzed. These systems were then projected onto three large void structures: H-[A]-BEA (52T), H-[A]-FAU (84T) and H-[A]-MOR (112T) with A=B, Al, Ga. Our electron density and Interacting Quantum Atom analyses show that the acidity of Al zeolites originates from the much stronger O-Al bond, which is dominated by the electrostatic attraction. The bridging hydroxyl therefore donates more charge density to the metal, the proton becomes more positive and consequently more acidic. Ga zeolites are more acidic than B zeolites due to the greater covalent nature on the O-Ga bond. The resulting acidity, as seen by ammonia, depends on both the acidic oxygen and the charge distribution of the surrounding oxygens exerted by the substituents.
Collapse
Affiliation(s)
- Andre Nicolai Petelski
- Departamento de Ingeniería Química, Universidad Tecnológica Nacional (UTN), Facultad Regional Resistencia (FRRe), CONICET, Centro de Investigación en Química e Ingeniería Teórica y Experimental (QUITEX), French 802, H3500CHJ, Resistencia, Chaco, Argentin
| | - Nélida María Peruchena
- Laboratorio de Estructura Molecular y Propiedades (LEMyP), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Nordeste (UNNE-CONICET), Avenida Libertad 5460, 3400, Corrientes, Argentina
| | - María Fernanda Zalazar
- Laboratorio de Estructura Molecular y Propiedades (LEMyP), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Nordeste (UNNE-CONICET), Avenida Libertad 5460, 3400, Corrientes, Argentina
| |
Collapse
|
7
|
Nieuwland C, Fonseca Guerra C. Chalcogen Atom Size: A Key Parameter in Modulating Carbonyl Compound Properties. Chemistry 2024; 30:e202304361. [PMID: 38284777 DOI: 10.1002/chem.202304361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Exchanging oxygen in the functional group C=O (i. e., carbonyl) for the less electronegative Group 16 elements, sulfur or selenium, unexpectedly enhances the electronegativity of the C=X group in π-conjugated molecules and reduces the molecular π HOMO-LUMO energy gap. Quantum-chemical analyses revealed that the steric size of the chalcogen atom X is at the origin of this seemingly counterintuitive behavior. This tuning of the chemical properties of carbonyl compounds by varying the chalcogen atom size in the C=X bond can be applied in many fields of chemistry. This concept article delineates several useful applications in the fields of organocatalysis, supramolecular chemistry, and photo(electro)chemistry.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The, Netherlands
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The, Netherlands
| |
Collapse
|
8
|
Nieuwland C, Almacellas D, Veldhuizen MM, de Azevedo Santos L, Poater J, Fonseca Guerra C. Multiple hydrogen-bonded dimers: are only the frontier atoms relevant? Phys Chem Chem Phys 2024; 26:11306-11310. [PMID: 38054332 PMCID: PMC11022277 DOI: 10.1039/d3cp05244c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Non-frontier atom exchanges in hydrogen-bonded aromatic dimers can induce significant interaction energy changes (up to 6.5 kcal mol-1). Our quantum-chemical analyses reveal that the relative hydrogen-bond strengths of N-edited guanine-cytosine base pair isosteres, which cannot be explained from the frontier atoms, follow from the charge accumulation in the monomers.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands.
| | - David Almacellas
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Catalonia, Spain
| | - Mac M Veldhuizen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands.
| | - Lucas de Azevedo Santos
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands.
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands.
| |
Collapse
|
9
|
Byerly-Duke J, VanVeller B. Thioimidate Solutions to Thioamide Problems during Thionopeptide Deprotection. Org Lett 2024; 26:1452-1457. [PMID: 38341867 PMCID: PMC11031844 DOI: 10.1021/acs.orglett.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Thioamides have structural and chemical similarity to peptide bonds, offering valuable insights when probing peptide backbone interactions, but are prone to side reactions during solid-phase peptide synthesis (SPPS). Thioimidates have been demonstrated to be effective protecting groups for thioamides during peptide elongation. We further demonstrate how thioimidates can assist thioamides through the most yield-crippling step of thionopeptide deprotection, allowing for the first isolation of an important benchmark α-helical peptide that had previously eluded synthesis and isolation.
Collapse
Affiliation(s)
- Jacob Byerly-Duke
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
10
|
Cai Y, Zhao Y, Tang K, Zhang H, Mo X, Chen J, Huang Y. Amide C-N bonds activation by A new variant of bifunctional N-heterocyclic carbene. Nat Commun 2024; 15:496. [PMID: 38216571 PMCID: PMC10786861 DOI: 10.1038/s41467-024-44756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
We report an organocatalyst that combines a triazolium N-heterocyclic carbene (NHC) with a squaramide as a hydrogen-bonding donor (HBD), which can effectively catalyze the atroposelective ring-opening of biaryl lactams via a unique amide C-N bond cleavage mode. The free carbene species attacks the amide carbonyl, forming an axially chiral acyl-azolium intermediate. Various axially chiral biaryl amines can be accessed by this methodology with up to 99% ee and 99% yield. By using mercaptan as a catalyst turnover agent, the resulting thioester synthon can be transformed into several interesting atropisomers. Both control experiments and theoretical calculations reveal the crucial role of the hybrid NHC-HBD skeleton, which activates the amide via H-bonding and brings it spatially close to the carbene centre. This discovery illustrates the potential of the NHC-HBD chimera and demonstrates a complementary strategy for amide bond activation and manipulation.
Collapse
Affiliation(s)
- Yuxing Cai
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Yuxin Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Kai Tang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Hong Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Xueling Mo
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, 518118, Shenzhen, China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
11
|
Nieuwland C, Verdijk R, Fonseca Guerra C, Bickelhaupt FM. More Electropositive is More Electronegative: Atom Size Determines C=X Group Electronegativity. Chemistry 2023:e202304161. [PMID: 38117278 DOI: 10.1002/chem.202304161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Opposite to what one might expect, we find that the C=X group can become effectively more, not less, electronegative when the Pauling electronegativity of atom X decreases down Groups 16, 15, and 14 of the Periodic Table. Our quantum-chemical analyses, show that, and why, this phenomenon is a direct consequence of the increasing size of atom X down a group. These findings can be applied to tuning and improving the hydrogen-bond donor strength of amides H2 NC(=X)R by increasingly withdrawing density from the NH2 group. A striking example is that H2 NC(=SiR2 )R is a stronger hydrogen-bond donor than H2 NC(=CR2 )R.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Ron Verdijk
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
12
|
Almacellas D, Fonseca Guerra C, Poater J. Strengthened cooperativity of DNA-based cyclic hydrogen-bonded rosettes by subtle functionalization. Org Biomol Chem 2023; 21:8403-8412. [PMID: 37830458 DOI: 10.1039/d3ob01391j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cooperative effects cause extra stabilization of hydrogen-bonded supramolecular systems. In this work we have designed hydrogen-bonded rosettes derived from a guanine-cytosine Janus-type motif with the aim of finding a monomer that enhances the synergy of supramolecular systems. For this, relativistic dispersion-corrected density functional theory computations have been performed. Our proposal involves a monomer with three hydrogen-bonds pointing in the same direction, which translates into shorter bonds, stronger donor-acceptor interactions, and more attractive electrostatic interactions, thus giving rise to rosettes with strengthened cooperativity. This newly designed rosette has triple the cooperativity found for the naturally occurring guanine quadruplex.
Collapse
Affiliation(s)
- David Almacellas
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Jena S, Routray C, Dutta J, Biswal HS. Hydrogen Bonding Directed Reversal of
13
C NMR Chemical Shielding. Angew Chem Int Ed Engl 2022; 61:e202207521. [DOI: 10.1002/anie.202207521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Chinmay Routray
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Himansu S. Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur Via-Jatni, District-Khurda PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
14
|
Jena S, Routray C, Dutta J, Biswal HS. Hydrogen‐Bonding Directed Reversal of 13C NMR Chemical Shielding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Subhrakant Jena
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Chinmay Routray
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Juhi Dutta
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Himansu Sekhar Biswal
- National Institute of Science Education and Research School of Chemical Sciences Jatani 752050 Bhubaneswar INDIA
| |
Collapse
|